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Abstract: The limit cycles behavior for a class of two-relay systems is investigated in this paper. 
The analysis, which is performed both in frequency domain and in time domain, is using exact 
methods, which are essentially extensions of those presented for one-relay feedback systems. 
Simulation results are given to substantiate the proposed methods. 
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1. INTRODUCTION 

Relay feedback systems have both theoretical 
and practical great interest. They have been 
widely used in control applications, owing to:  

a) their simplicity and low cost,  

b) proportional amplification is realized with 
vibrating relays,  

c) optimization methods lead in many cases to 
control inputs of rectangular form (which 
thus a posteriori justifies the interest of 
relays in control systems), and  

d) recent use of relay for auto-tuning 
techniques, almost since 1984 [8]. 

Moreover, relays are important elements in 
variable-structure systems [10] and they 
represent a special class of switched systems 
with simple characteristic. However, even if 
they represent a classical topic in control theory, 

open theoretical interesting problems still exist 
(see [6]). 

In many practical situations, more than one relay 
type element may be found in a closed-loop 
system, and some results available for one-relay 
systems can be extended for theoretical analysis 
of systems containing several relays [9], [1]. 

A particular class of such systems is shown in 
fig. 1, named two-relay feedback system. It 
contains an inner relay with amplitude f and an 
outer relay with amplitude d, with hysteresis  ε 
or with time lag τ (not shown on the figure). 
This con¯guration with two relays can represent, 
for example, a system containing Coulomb 
friction (inner relay), controlled by another relay 
(outer relay). 

In some previous studies dealing with this 
configuration, it has been shown how to 
simply determine the amplitude of the inner 
relay, if unknown (Coulomb friction force is 
in general unknown in a mechanical 
servo-system). Time domain methods [3] or 
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frequency domain methods, like the 
describing function [2], [5], [4] have been 
developed. However, the exact analysis of 
the periodic solution has not been yet 
realized in frequency domain, in the sense 
that until present, there is no mean to 
calculate a priori the frequency of the limit 
cycle for such a two-relay system 
(describing function method is an 
approximate one). 

It has been shown in [9] that the hodographs 
of a relay control system (known since then 
as Tsypkin locus) constitute a very 
convenient tool in quantitative and 
qualitative analysis of the influence of the 
structure and parameters of the linear part 
and of the relay element on the frequency 
and the form of self-oscillations. 

In this paper, Tsypkin locus is constructed, 
in order to give the limit cycle conditions for 
this class of two-relay systems using an 
exact analysis method in frequency domain. 
The aim is to find the frequency of the 
periodic solution for the two-relay system, 
using similar ideas as in the existing results 
for one-relay systems [9]. The advantage of 
this method over the describing function is 
that the limit cycle frequency is found more 
accurately. 

Moreover, a time-domain version of these 
frequency-domain methods is given, using 
some previous existing results for one relay 
[7], and for two relays [3]. 

Both methods (frequency and time-domain) 
are also developed in the case of a system 
containing a time-delay in the outer relay, 
instead of the hysteresis. 

Illustrative examples are given to show the 
accuracy of these methods. 

2. TWO-RELAY FEEDBACK SYSTEM 
AND PERIODIC MODES 

2.1. System structure and relay commutations 

In this paper we are interested in a class of 
two-relay feedback systems which consist of 
a linear part with a transfer function 
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ssD
sNsG =  containing an inner loop with 

a first relay (inner relay) and in closed loop 
with a second relay (outer relay) as 
described by the block diagram in fig. 1. 

The inner loop is made up of : 

- a transfer function 
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sN

, assumed to be 

asymptotically stable (D(s) is a Hurwitz 
polynomial) and to have a positive 
steady-state gain, and 

- an inner ideal relay feedback of 
amplitude f. 
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Fig. 1. Feedback system structure. 
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The input signal to the outer relay is the error 
e(t) (where e(t) = r(t) - y(t)), the output is ud(t), 
while the input signal to the outer relay is  
and the output is u

)(ty&
f(t). 

The input to the linear part of the feedback 
system, denoted by u(t), is the difference 
between the outer and inner relay outputs: 

u(t) = ud(t) - uf(t) 

For sake of simplicity, in the sequel it is 
assumed that the reference signal r(t) is zero 

(r(t) ≡ 0). This implies that e(t) ≡ -y(t). 

Relay systems behavior is described by the relay 
commutations (or switchings). In the case of this 
two-relay system, the conditions for the kth 
commutation (k = 0; 1; …) are described as 
functions of e(t) and its two derivatives, and can 
be expressed mathematically as follows: 

1. for the outer relay, at the time instants , the 
switching conditions are: 
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where it has been assumed that  
or ; 
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2. for the inner relay, at the time instants tk 
the switching conditions are: 
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Equalities in conditions (1) and (2) are 
referred to as “commutation conditions” and 
the inequalities are called “complementary 
conditions”. The commutation instants are 
denoted by tk (inner relay switching instants) 
and  (outer relay switching instants). '

kt

In the case of periodic oscillations, the 
commutations alternate regularly, i.e. the 
time interval between two consecutive 
commutations of each relay is constant 
( -t'

1+kt k=h1=const. and tk- =h'
kt 2=const. , for 

k=0, 1, …). 

A particularity of the relay feedback systems 
(as well as of many other non-linear 
systems) consists of the periodic modes 
(periodic oscillations), which are not due to 

external periodic action r(t), but to forces 
that depend on the state of the system. These 
oscillations have been called self-
oscillations by Andronov. The present study 
consists of establishing their existence and 
in determining their frequency. The 
investigation of their form and stability are 
beyond of the scope of this paper. 

2.2. Periodic modes analysed in frequency 
domain 
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Fig. 2. Input to the linear part of the system:  
a) outer relay, b) inner relay and c) the result of 

signals composition. 

In order to construct Tsypkin loci for our 
system, it is useful to firstly present the 
output signals from both relays, that are 
generated during the limit cycles. 

Suppose that the limit cycles in the system 
are symmetrical and simple (there is, 
minimum number of commutations per 
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period). Two parameters characterize the 
limit cycle: the frequency ω, and the mutual 
shift α of two (synchronized) rectangular 
signals ud and uf corresponding to the outer 
and inner relay outputs, respectively (see 
figure 2). The second parameter α is also 
equal to the phase shift of the first 
harmonics of both signals. 

In the case of a symmetric periodic mode, 
like the one studied in this paper, the 
conditions of proper switching time and 
direction are derived from the general ones 
for transient processes (1, 2), by putting the 
following values for the switching instants: 
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The switching conditions (1, 2) become : 

- for the outer relay: 
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- for the inner relay: 
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Fig. 3. First commutation instants (k=0, 1, 2),  
input u(t) to the linear part. 

The time intervals between two consecutive 

commutations of each relay become h1= ω
α

 

and h2= ω
απ −

 (see fig. 3). 

Moreover, in the periodic modes considered 
here, as in [9], the periodicity conditions for 

e(t),  and  can be simplified 
naturally by taking a fixed value for k, in 
particular k = 1. 

)(te& )(te&&

Substituting k = 1 in (4, 5), it is obtained: 

- for the outer relay: 
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- for the inner relay 
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2.2.1. Definition of Tsypkyn Locus of a relay 
system 

As it has been already mentioned, Tsypkin loci 
[9] allow to analyze self-oscillations of 
frequency ω in a relay controlled system, 
providing also a graphical interpretation. This 
approach is referred to in this paper as a 
frequency domain method. Moreover, in this 
paper, Tsypkin loci is constructed using the 
frequency characteristics of the linear dynamics 
G(s). However, Tsypkin loci can also be derived 
from time-domain expressions of the signals 
generated during the periodic modes. 

The definition of Tsypkin locus, or hodograph, 
for a system containing only one relay is (see 
also [9], chapter 6): 
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The imaginary part of J(ω), denoted here by 
ℑ (J(ω)), is equal to the value of the output y(t) 
of the linear part of the system at t=π/ω (taken 
with opposite sign). The real part of J(ω), which 
is denoted by ℜ(J(ω)), is equal to the value of 
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the derivative of y(t) with respect to ωt at 
t=π/ω-0 (also with opposite sign) divided by the 
frequency ω, that is, to the value of the 
derivative of y(t) with respect to ωt at t=π/ω-0: 
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The hodograph of a relay without dead-zone is 
fully determined by the response of the 
corresponding open-loop system to a periodic 
action and has the dimension of the output. 

For a fixed value of ω the hodograph J(ω) is a 
vector. When ω varies, the end point of this 
vector describes a curve on which every point 
corresponds to a definite value of ω. 

2.2.2. Tsypkin Loci of two-relay system, case 
without time delay in the outer relay 

In the following, Tsypkin loci is derived for a 
system structure shown in figure 1. 

In the case of the two-relay system from this 
paper, a useful analogy with the relays 
containing a dead-zone (see [9], chapter 6.3) 
will be used. In both two-relay system and in a 
relay system with a dead-zone, two types of 
commutations must be accounted for. In a relay 
containing a dead-zone, two different types of 
commutations occur. In our case also two 
different types of commutations occur: outer and 
inner relay commutations, respectively. Then 
two system characteristics (or hodographs) can 
be constructed. 

For the outer relay, the Tsypkin locus is denoted 
J1 and for the inner relay, it is denoted Jα. They 
are defined by the following expressions 
(Tsypkin loci), which are complex functions of 
or two real variables (ω and α): 
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Proposition 2.1 A limit cycle with frequency ω0 
and phase shift α0 exists if the Tsypkin loci 
satisfy respectively: 
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Proof 

The proposition is very easy to prove. 

The conditions (4) and (5) for limit cycle 
existence with frequency ω0 and phase shift α0 
can be rewritten as follows: 

1) for the outer relay, at the time instants 

0
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2) for the outer relay, at the time instants 

0ω
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conditions are: 
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or, for k=1, conditions (6, 7) can be rewritten as: 

- for the outer relay: 
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- for the inner relay: 
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Now keeping into account that y(t) = -e(t), these 
conditions can be re-written as: 
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- for the outer relay 
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- for the inner relay 
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Looking to the expressions of J1(ω, α) and of 
Jα(ω, α), one can see that conditions (18), (19) 
are equivalent with (12), (13), because ω is 
positive. 

This shows that verification of conditions (12) 
and (13) ensures the existence of limit cycles 
with frequency ω0 and phase shift α0. 

End of proof. 

2.2.3 Graphical interpretation 

The search for the limit cycles with frequency 
ω0 and phase shift α0.by means of the Tsypkin 
loci has a graphical interpretation that is similar 
to that of the describing function approach. 

For the outer relay, the frequency of the self-
oscillations is determined as follows. In the 
same plane as J1(ω, α), one has to draw a line 
parallel to the real axis at a distance -ε from it, 
called the -ε line, for short. The points in the left 
half-plane where this line intersects J1(ω) 
determine the frequency of the self-oscillations 
that may occur in the system. 

For the inner relay, the frequency of the self-
oscillations can be determined in a similar way 
as for the outer relay. In the same plane as 
Jα(ω, α), the negative real axis has to be drawn 
(the inner relay has no hysteresis), and the 
intersection between Jα(ω, α) and this axis 
determine the frequency of the self-oscillations. 

The only difficulty with the two-relay system is 
that both Tsypkin loci J1(ω, α) and Jα(ω, α) 
depend not only on the frequency ω, but they 
depend also on the phase shift α. In order to 
determine graphically both limit cycle 
characteristics, i.e. ω0 and α0, two parametric 

curves of parameter α, one from the J1 loci and 
the second from Jα loci have to be constructed. 

The first curve, A1(α) represent a function ω(α) 
obtained from the intersection points between 
the Tsypkin loci and the horizontal line -(ε). 
Indeed, for any value αi of the parameter α, the 
corresponding Tsypkin loci J1(ω; αi) is drawn. 
The frequency corresponding to the intersection 
between Tsypkin loci and the horizontal line -(ε) 
is denoted by ωi (see fig. 4, left side). The 
function A1 is then given by all the pairs [ωi; αi], 
representing the pairs for which conditions (12) 
are fulfilled. 

The same idea is applied for the second Tsypkin 
loci, Jα(ω; αi), and a function Aα is found, given 
by all the pairs [ωi; αj], for which conditions 
(13) are fulfilled (see also fig. 4, right side). 
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Fig. 4. Graphic interpretation of the system 
characteristics: a) J1 and b) Jα. 
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Fig. 5. Global intersection of two sets of intersections 

corresponding to limit cycles [ω0; α0]. 
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Finally, to find the solution [ω0; α0] that 
determines the limit cycles in the system, one 
must than look for the global intersection of 
both sets A1 and Aα (see figure 5), representing 
the values for which both conditions (12) and 
(13) are fulfilled . 

2.2.4 Analytical expressions of Tsypkin loci 

In order to derive an expression for both 
Tsypkin loci, we first look for the expression of 
the system output y(t) in the case of a limit cycle 
with frequency ω. This expression is found as a 
response of a linear system to an input u(t), 
which is a periodic sequence of pulses. This 
sequence of pulses can be expressed by means 
of two Fourier series as two sums of harmonic 

components with multiple frequencies mω. 
Using similar calculations to [9] (see chapter 5 
of this book), u(t) can be expressed as in (20). 

The response of the linear part of the system to 
this excitation (20) is given in (21). 

From equation (21) one can easily express the 
first and second derivatives of the system 
output, too ( , ). )(ty& )(ty&&

Using equation (21), the characteristics J1 and Jα 
can be expressed as infinite series depending on 
the linear part G(jω) = U(ω) + j⋅V(ω) of the 
system (relations 22 to 25). 
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Fig. 6. System with time delay τ in the outer relay. 

2.2.5 Tsypkin Loci, case with time delay in the 
outer relay 

Unlike the preceding paragraph, suppose now a 
non-zero time delay τ ≠ 0 included in the outer 
relay (e.g. due to the discrete implementation of 
the outer relay), like shown in figure 6. 

To be able to cope with this modification, an 
additional hypothesis on the limit cycles is 
necessary. As above, the self-oscillations are 
supposed to be symmetrical and simple. 

Moreover, the system should oscillate “slowly 
enough”, so that the time delay never includes 
more than one commutation. The assumption of 
slow oscillations can be expressed as follows: 
An outer relay commutation can be succeeded 
by an inner relay commutation not sooner than 
in τ seconds, where τ is the pure time lag (in 
seconds) included in the outer relay. 

Keeping the notation of switching instants 
introduced in section 2 (tk for an inner relay 
switch and  for an outer relay switch), the 
above hypothesis yields (26). 
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Then, although the order of the system is now 
infinite, it can be can analyzed with very few 
modifications. 

The same commutation and complementary 
conditions (equations (12) and (13)) are used 
and the same system characteristics J1 and Jα 
(equations (10) and (11)). The time lag τ will 
appear in the mathematical expressions of the 
input u(t) and the output y(t) in the terms 
corresponding to the outer relay (equations (27) 
and (28)). 
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Using (28) along with definitions (10) and (11), 
the system characteristics is then as represented 
by equations (29) to (32). 

The graphic interpretation and the use of the 
Tsypkin loci is the same as in section 2.2.3. 

3. TIME-DOMAIN ANALYSIS 

3.1. Analysis of the system without time lag 

Another possibility to find exact parameters of 
limit cycles in a relay system is related with a 
state representation of the system. Consider the 
linear part of the system being expressed by the 
equations (33) where A, B and C satisfy equation 

(34) with D(s) a Hurwitz polynomial in s. 

The limit cycle is supposed to begin with the 
inner relay commutation (i.e.  = 0). Two limit 
cycle parameters are looked for: h

y&
1, which is the 

time between an inner relay commutation and 
the following outer relay commutation, and h2, 
which is the rest of one half-period (i.e. the limit 
cycle period is T = 2 ⋅ (h1 + h2)). These 
parameters have been already defined in section 
2.2 (see also fig. 3). Parameters h1 and h2 must 
verify the conditions (35) (issued from 
switching conditions for both relays), where x(t) 
is the state vector. 

The third condition (35) ensures the odd 
symmetry of the limit cycles. 
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From the solution of (33) with conditions (35) 
(see [3]), the expressions (36) and (37) define 
the time parameters h1 and h2, where u1 = d - f 
and u2 = - d - f are the values of the input u(t) 
during the first part (h1) and the second part (h2) 
of one half-period, respectively (see also fig. 3). 
The total time of one half-period is denoted by 
h*, where h* = h1 + h2. 

Note that the Tsypkin method (which is a 
frequency domain method) and the state space 
method (a time domain method) are equivalent, 
in the sense that the limit cycle conditions are 
the same. Indeed, conditions (36), (37) are the 
time version of equality conditions (13), (12), 
which correspond to the equality conditions in 
(18), (19). 

This time-domain analysis can be used to 
determine stability of limit cycles in two-relay 
systems [3]. 

3.2. Analysis of the system with time delay 

The same analytical approach can be applied for 
the case of an outer relay with pure time delay τ. 
The assumption made in section 2.2.5 on the 
limit cycles frequency must be again taken into 
account - the self-oscillations must be slow 
enough for the time between an outer relay 

switch and the following inner relay switch to be 
at least τ (see equation (26)). These conditions 
can be rewritten in terms of parameters h1 and 
h2: 

τ≤1h   τ≤2h  

The solution of state equations (34) is given by 
the equations (38) to (40).  

The input value (which is equal to u1 = d - f 
during the first part h1 of the half-period) 
changes only after h1 + τ where the instant h1 
corresponds to the outer relay commutation. 

The second value u2 = - d - f appears on the 
system input during h2 - τ . 

Substituting (40) in (39) and using the third 
switching condition (35), the state vector is 
described by the equations (41) and (42). 

Considering (41) and (42) together with the first 
two switching conditions (35) gives relations 
(43) and (44). 

The preceding expressions determine limit 
cycles parameters h1 and h2 which must be 
found numerically as a solution of the system 
composed by the two nonlinear equations (43) 
and (44). 
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4. EXAMPLES 

Simulations are aimed to verify the results that 
are obtained from the equations of the preceding 
sections. The value of the limit cycle frequency 
ω0 is calculated for three examples of linear 
dynamics G(s) and outer relay with hysteresis or 
with time lag. Several values of the outer relay 
amplitude d have been used. 

Table 1 presents the limit cycle frequency ω0 for 
the two analytical methods presented above 
(Tsypkin loci and state-space), compared with 
the describing function approach (DF) applied to 

this class of systems ([5]. All these results are 
also compared with the true values, given by 
measuring the limit cycle characteristics in 
simulation . 

Tsypkin loci have been obtained numerically in 
Matlab, based on equations (22, 23) and (24, 25) 
in the case of systems without time delay and 
based on equations (29, 30) and (31, 32) in the 
case of systems with time delay τ . 

The limit cycle frequency ω0 and phase shift α0 
have been determined from the intersections of 
A1 with Aα as it has been presented in section 
2.2.3. 

Table 1: Comparison of different analytical methods with simulation results. The transfer function of the linear 
part is denoted G(s), the outer relay has an hysteresis ε and a pure time lag τ, limit cycle frecquency ω0 (rad/d). 

DF Tsypkin 
loci 

State space Simul 
G(s) 

d ω0 ω0 ω0 ω0

02.0

1
2

=ε
s  

0.2 
0.3 
0.4 
0.5 

2.348 
2.451 
2.482 
2.498 

2.153 
2.342 
2.405 
2.434 

2.152 
2.341 
2.407 
2.434 

2.123 
2.310 
2.327 
2.398 

02.0
)1(

1

=
+

ε
ss  

0.2 
0.3 
0.4 
0.5 

2.508 
3.027 
3.339 
3.574 

2.315 
2.905 
3.257 
3.517 

2.307 
2.909 
3.255 
3.530 

2.310 
2.910 
3.210 
3.490 

s
s

2.0

1
2

=τ
 

0.2 
0.3 
0.4 
0.5 

2.618 
1.699 
1.263 
1.006 

2.168 
1.404 
1.037 
0.821 

2.162 
1.403 
1.036 
0.821 

2.166 
1.408 
1.072 
0.842 
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ss
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=
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0.2 
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0.4 
0.5 

3.807 
3.152 
2.868 
2.710 

3.292 
2.828 
2.615 
2.494 
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2.827 
2.615 
2.493 

3.378 
2.830 
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2.533 

2)1(
1
+ss

 
0.2 
0.3 
0.4 
0.5 

1.618 
1.387 
1.280 
1.219 

1.605 
1.365 
1.256 
1.195 

1.603 
1.366 
1.257 
1.195 

1.605 
1.365 
1.256 
1.195 

02.0
)1(

1
2

=
+

ε
ss  

0.2 
0.3 
0.4 
0.5 

1.273 
1.199 
1.155 
1.127 

1.245 
1.174 
1.131 
1.103 

1.245 
1.174 
1.131 
1.103 

1.237 
1.168 
1.126 
1.078 
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Fig. 7. Auto oscilations analysis by Tsipkin loci.  

Figure 7 presents auto oscilations analysis by 

Tsipkin loci for systems with G(s) = 2)1(
1
+ss

 

(a) and b) cases) and G(s) = 
)14.0(

1
2 ++ sss

 

(c) and d) cases); d = 0.2 (a) and c) cases) and 
d = 0.4 (b) and d) cases); f = 0.1. Solid line: 
intersection of J1 loci with -ε line (function A1). 
Discontinuous line: intersection of Jα loci with 
the real negative axis (function Aα). 

For the state-space method, the limit cycle 

frequency is calculated as 
21

0 hh +
=

πω , where 

h1 and h2 are calculated as shown in section 3. 

The numerical values obtained show that there is 
a very good accordance between the exact 
analytical techniques (Tsypkin loci and state 
space approach) and the simulation. The 
describing function method show the same 
tendency of increasing or decreasing ω0 with 
increasing d as the analytical methods, but the 
numerical values have a lower accuracy. 

For more details on the tendency of the limit 
cycle frequency ω0 with increasing d see [4]. 

5. CONCLUSIONS 

Limit cycles in a two-relay system are analyzed 
by means of two exact approaches - the Tsypkin 
loci and the state-space analysis. Both 
techniques are inspired from existing approaches 
of one-relay system analysis. In this paper these 
methods have been extended for two-relay 
systems, eventually with time lag τ in the outer 
relay (the time lag is either due to 
implementation or introduced artificially for 
estimation of the inner relay amplitude f, like in 
[5]). The analytical results have been verified on 
some numerical examples that show the 
improved accuracy of the proposed methods 
compared with approximation methods, like 
describing function (harmonic balance). 

Using the proposed methods, stability analysis 
of the two-relay system can further be 
developed, like for example it has been done in 
time-domain, for the case without time delay in 
the outer relay (see [3]). 



CONTROL ENGINEERING AND APPLIED INFORMATICS 59 

 

6. REFERENCES 

[1] Atherton, D. – “Conditions for periodicity 
in control systems containing several 
relays”, In 4th IFAC World Congress, 
pp. 28E.1 - 28E.16, Moscow, Russia, 1966. 

[2] Besançon-Voda, A. – “Analysis of 
oscillations in systems with relay and 
friction”. In IFAC Conference on System 
Structure and Control, Bucarest, Romania, 
1997. 

[3] Besançon-Voda A. and Besançon, G. – 
“Analysis of a two-relay system 
configuration with application to Coulomb 
friction identification”. Automatica, 35(8), 
pp. 1391-1399, 1999. 

[4] Besançon-Voda, A. and Blaha, P. – 
“Analysis of a two-relay system 
configuration with application to Coulomb 
friction identification”. Control 
Engineering Practice, 10, pp. 655-668, 
2002. 

[5] Besançon-Voda, A. and Drazdil, P. – 
“Estimation of a plant relay nonlinearity, by 

nonlinear oscillations analysis. In 4th 
European Control Conference (ECC 97), 
Bruxelles, Belgium, 1997.  

[6] Johansson, K.H., Rantzer, A. and 
Åström, K.J. – “Fast switches in relay 
feedback systems, Automatica, 35, 
pp. 539-552, 1999. 

[7] Olsson, H. – “Control of systems with 
friction”. PhD thesis, Dept. of Automatic 
Control, Lund Institute of Technology, 
Sweden, 1996. 

[8] Åström, K.J. and Häglund, T. – “Automatic 
tuning of simple regulators with 
specifications on phase and amplitude 
margins”. Automatica, 20(5), pp. 645-651, 
1984. 

[9] Tsypkin, J. – “Relay control systems”, 
Cambridge Univ. Press, Cambridge, U.K., 
1984. 

[10] Utkin, V.I – “Discontinuous control 
systems: State of art in theory and 
applications”. In 10th IFAC World 
Congress, Munich, Germany, 1987. 

 


