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Abstract: In the last years the problem of fragile controllers (high sensitivity of closed-loop
stability and/or performance against small changes in controller coefficients) designed by using
robust and optimal control methods has generated some controversial discussions. In this paper,
we analyse the parametric stability margins for some optimal controllers by using different
measures. So, we show that the normalized 2l  parametric stability margin is not suitable when the
controller coefficients lie in very different ranges and, in this case, we propose a new measure to
appreciate the parametric stability margin. Also, we propose some reformulations of optimization
problem such that to increase the parametric stability margins around the coefficients of the
designed optimal controller. An algorithm to determine an extended range of robust stability is
presented. Also, an iterative algorithm that allows computing controllers with increased
parametric stability margins is proposed. We illustrate these design techniques by numerical
examples.
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1. INTRODUCTION

There are several techniques for designing linear
time-invariant control systems that are optimum
and robust. These are based on the Youla
parameterization of all stabilizing controllers for
a nominal (fixed) linear time-invariant plant,
which provides a free parameter. This parameter
is determined by minimizing the 2H  or ∞H
norm of an appropriate closed-loop transfer
function to obtain robust stability and/or robust
performance with respect to plant perturbations.
In this type of methodology, an implicit
assumption is that the controller that is designed
will be implemented exactly. This assumption is
usually reasonable, since clearly, the plant

uncertainty is the most significant source of
uncertainty in the control system, while
controllers are implemented with high precision
hardware. However, there will inevitably be
some amount of uncertainty in the controller: if
the controller is implemented by analogue
means, there are some tolerances in the analogue
components; if the controller will be
implemented digitally, there will be uncertainty
involved with the quantization in the analogue-
digital conversion and rounding in the parameter
representation and in the numerical
computations. In practice, due to the imprecision
of controller implementation or to the
requirements for readjustment of its coefficients,
it is necessary that any controller be able to
tolerate some uncertainty in its coefficients. This
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translates to the requirement that an adequate
stability and performance margin be available
around  the  transfer  function coefficients of the
designed nominal controller.

Recently it has been claimed in the literature [1]
that several optimal and robust control synthesis
techniques ( 2H , ∞H , 1l  and μ ) tend produce
fragile controllers (that is, controllers resulting
in high sensitivity of closed-loop stability and/or
performance against small changes in controller
coefficients). Unfortunately, the standard
optimal and robust control design methods
involve optimization criteria that do not include
any explicit penalty terms against such fragility.
This paper has generated some controversial
discussions [2] and some techniques to increase
the controller robustness against uncertainties in
the controller coefficients were proposed [3-5].

Incited by these results, in this paper, we make a
detailed analysis of one of the examples given in
[1] and some conclusions are outlined. So, we
show that the normalized 2l  parametric stability
margin is not suitable when the controller
coefficients lie in very different ranges and, in
this case, we propose a new measure to
appreciate the parametric stability margin. Also,
we propose some reformulations of optimization
problem such that to increase the parametric
stability margin around the coefficients of the
designed optimal controller. Then, an algorithm
to determine an extended range (of box type) of
parametric robust stability is presented. Also, an
iterative algorithm that allows computing
controllers with increased parametric stability
margins is proposed. Finally, some simulation
results that illustrate the ideas of this paper are
presented.

2. STABILITY MARGINS

The robustness of a closed-loop system can be
defined both with respect to plant uncertainty
and with respect to perturbations of the
controller coefficients.

2.1. The maximum stability margin with respect
to plant uncertainty

In this paragraf the stability margin for plant
(unstructured) uncertainties is considered.
Common approaches are to model the plant
uncertainty in a multiplicative or additive way
with respect to the nominal plant or as stable

additive perturbations on the factors in a
coprime factorization of the nominal plant. For
each of these three classes of uncertainties the
model of the perturbed system can be
represented as an Upper Linear Fractional
Transformation (see Fig. 1):
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where P is the standard plant (that depends on
the model of uncertainty) and ∆  ( ε<∆ ∞ ) is
the corresponding model of the (admissible)
uncertainty.
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Fig.1. The generalized model of the uncertainty.

The largest stability margin for unstructured
uncertainties is given by [6]:

( )
1

Lmax ,inf
−

∞ 


 ℑ=ε CP
C

(1)

where C is chosen from all controllers which
stabilize )0,P(Uℑ  and Lℑ  is the Lower Linear
Fractional Transformation:
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For a given controller, the stability margin for
unstructured uncertainties of the plant is given
by

( )( ) 1
L C,P −

∞ℑ=ε (2)

2.2. The normalized 2l  parametric stability
margin

Now, we consider the transfer function
coefficients of the controller to be a parameter
vector ],,[ l21 qqq=q , with its nominal value
being q0, and let ∆ q be the vector representing
perturbations in q. Then, the characteristic
polynomial of the closed-loop system is

),()(),()(),( CPCP qqq smsmsnsnsn += (3)
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where ( PP , nm ) and ( CC , nm ) are the nominator
and denominator polynomials of the plant and,
respectively, controller. The 2l  parametric
stability margin around the nominal point is
defined as being the radius of the largest stable
hypersphere in the space of parameters q for the
characteristic polynomial of the closed-loop
system. Since the coefficients of this polynomial
have affine dependency on q and based on the
Boundary Crossing Theorem, the stability radius

sρ  is found as [7]

{ })(,,min C0
∗

∞ ω=ρ rrrs (4)

where 0r , ∞r  and )(C
∗ωr  are the distances of

the origin from the hyperplanes that define the
stability boundaries corresponding to the
following three possibilities for the polynomial
to become unstable: a) a real zero goes through
the origin; b) a real zero goes through infinity; c)
a pair of conjugate zeros crosses the imaginary
axis. The normalized stability radius is defined
as [1]:

2
0qssn ρ=ρ (5)

2.3. The largest stable box in the parameter
space

We consider the closed-loop characteristic
polynomial family N(s, Q) defined by

{ }QsnQsN ∈= qq |),(),( (6)

with
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Since the polynomial coefficients have an affine
dependency on the controller coefficients, the
polynomial family ),( QsN  can be rewritten in
the following form
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Remark:  Shifting the origin and scaling the iq -
axes in the parameter space, the box Q is

transformed to an l-dimensional cube with
sidelength two and center at ]0...0[=q .

Let sω  be a common real zero of the rational
functions
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Now a real-valued function )(ωτ  is defined by
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For ∞=ω=ω ,0  and sω=ω  the function τ  is,
in general, discontinuous. The first two cases
correspond to roots at 0=s  and ∞=s . Now,
the following theorem [7] can be presented.

Theorem 1 (Tsypkin and Polyak). The
polynomial family N(s,Q) is stable, if and only if

1. )(0 sn  is stable;

2. 1)( >ωτ , ∞≤ω≤0 .

Assume that n(s, q) is stable for the nominal
point 0q of the Q box. Then, the box may be
blown up by a factor ρ , i.e. the polynomial
family

{ }QsnQsN ρ∈=ρ qq |),(),( (15)

is considered. By increasing ρ  a value maxρ
must be reached, where a member of the
polynomial family becomes unstable, i. e. the
box ρQ hits a stability boundary; it is a measure
for the smallest destabilizing perturbation.

In this paper we choose the Q box having the
edges proportional to the nominal values of 0q ;
so, we consider
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Based on the Tsypkin and Polyak Theorem, the
largest stable box of this type (defined by

maxρ=ρ ) can be determined.

3. EXTENDED PARAMETRIC
STABILITY MARGINS

Here, we propose the following algorithm to
extend the stability box given by (16):

Algorithm 1.
1. The largest stable box of type (16) is

determined;
2. This stable box is extended by successively

extending of each edge iq  in each direction
by a very small factor. If the box is
destabilized then the corresponding limit of

iq  is fixed (precisely −ρi  and/or +ρi );
3. The steps 1 and 2 are repeated for the edges

(and directions) unfixed while all these limits
are fixed.

Finally, the resulting stable box is characterized
by
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Obviously, maxρ  for the largest stable box of
type (16) is given by

{ }+− ρρ=ρ ii
i
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Sometimes, in order to obtain a controller with
increased parametric stability margins (that is, to
increase maxρ ), the following iterative method
can be tried (the improvement of stability
margin is not always possible by this method):

Algorithm 2.
1. Apply the Algorithm 1 and determine the

stable box of type (17);
2. Compute the centred controller in the box

(17) characterized by
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3. Repeat, if it is necessary, the steps 1 and 2
for the new centred controller obtained in the
step 2.

Remark: Generally, the increasing of the
controller parametric stability margin lead to

decreasing of the plant stability margin against
unstructured uncertainty.

4. A WORKING EXAMPLE

4.1. Upper gain margin optimization

This example, originally proposed in [8] is
treated in [1, 9, 10]. The plant to be controlled is

2
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and the controller, designed to give an upper
gain margin of 3.5, is obtained by optimizing the

∞H  norm of the complementary sensitivity
function as follows

0
0

0
1

20
2

30
3

40
4

50
5

60
6

0
0

0
1

20
2

30
3

40
4

50
5

60
6)(

pspspspspspsp
qsqsqsqsqsqsqsC
++++++
++++++=

(21)
where:
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The 2l  parametric stability margin around the
nominal point ];[ 0

0
0
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0 ppqq=q  is
found as 158.0s ≈ρ and the normalized

stability radius is .10103.2 7
sn

−×≈ρ  To
illustrate the fragility of this controller, in [1] is
constructed a destabilizing controller whose
parameters are very closed to the nominal ones,
except 6p  that is .158.36 ≈p  The relative

change in 6p  is %27.5/ 0
66 ≈∆ pp  and, in this

case, the normalized stability radius (that is very
small) is not adequate to measure the parametric
stability margin for the controller. This is
specifically for the cases where the controller
coefficients lie in very different ranges.

The fragility of this controller is determined by
an inadequate formulation of optimization
problem, where only the upper gain margin is
considered. So, the resulting lower gain margin
and phase margin are very small (see, Fig. 2).

Based on Theorem 1, we have determined the
largest stable box of type (16) to be given by
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038.0max ≈ρ=ρ , value that illustrates more
adequately the possibilities for readjustment of
nominal controller coefficients. The function τ
given by (12)-(14), for maxρ=ρ , is represented
in Fig. 3.

Real Axis

Fig.2. Nyquist plot of P(s)C(s).

Fig.3. The distance function τ(ω).

4.2. Gain margin optimization

Here, we propose to extend the robust stability
problem formulated in Section 4.1 for the family

{ }11: kkkP ≤≤=℘ (22)

to the following family

{ }10: kkkkP ≤≤=℘ , 10 10 kk <<< (23)

where the interval [ ]10 ,kk  must be centred in 1,
in the sense that 110 =kk . This family can be
reduced  to (22) by scaling, where the scaling
factor is supinf0 /1 kkk =  and infk , supk  are
the lower and, respectively, upper gain margins
obtained in Section 4.1.  Now,  the controller is
obtained as 0/)( ksC , where C(s) is given by

(21). The resulting gain margins are now
534.0inf ≈k  and 872.1sup ≈k  (see, Fig. 4). The

2l  parametric stability margin is now 3=ρ s
and the normalized stability radius is about

610455.2 −× .

Fig.4. Nyquist plot of P(s)C(s).

Remark: In this case, the 2l  parametric stability
margin is determined by a real zero that goes
through infinity corresponding to 06 =p . So,
this destabilizing perturbation of controller
coefficients is very strong ( %100/ 0

66 =∆ pp )

and the normalized stability radius is not an
adequately measure for the controller
robustness.

We have determined the largest stable box of
type (16) to be given by 85.0max ≈ρ=ρ , value
that illustrates more adequately the possibilities
for readjustment of nominal controller
coefficients. The function τ  given by (12)-(14),
for maxρ=ρ , is represented in Fig. 5.

Fig.5. The distance function τ(ω).

ω [rad/s]

τ(∞) ≈2703

τ(0) ≈1503

Real Axis

ω [rad/s]

τ(0) ≈35.7

τ(∞) ≈117.6



CONTROL ENGINEERING AND APPLIED INFORMATICS 21

Though we have obtained an improvement in
stability margins, the robustness in respect with
the coefficients of the nominal controller is yet
very small. This result confirms us that good
gain and phase margins are not necessarily
reliable indicators of robustness, because the
uncertainties can affect simultaneously the gain
and phase of the system. However, poor gain
and/or phase margins are accurate indicators of
fragileness!

4.3. Maximum stability margin

Since the coefficient perturbations of the
transfer function of the nominal controller
modify both the gain and the phase of the
system, these perturbations can be treated as
unstructured uncertainties and can be included
in the initial uncertainty of the plant. So, in this
section, we design a controller to obtain a
maximum stability margin with respect to
unstructured uncertainty of the plant. The
maximum stability margin depends of the type
of uncertainty modelling. Here, we use the
normalized coprime factor plant description [6].
Then, for the same nominal plant (20), we
obtain the maximum stability margin (defined
by (1)) 0744.0429.13/1/1 minmax ≈=γ=ε ,
which show that the plant, which is unstable and
non-minimum phase, is relatively difficult to
control.

By choosing min5.13 γ>=γ , the following
controller is obtained:

0
0

0
1

20
2

0
0

0
1)(

pspsp
qsq

sC
++

+
= (24)

where, 2.51370
0

0
1 == qq ; 10

2 =p ; 06.3870
1 =p ;

30640
0 −=p . The 2l  parametric stability margin

is now 1s =ρ  and the normalized stability radius

is 4
sn 102667.1 −×≈ρ , that is approximately

600 times bigger than in Section 4.1. The
resulting lower and upper gain margins are

732.0inf ≈k  and 193.1sup =k  (see Fig. 6).

Remark: In this case, the 2l  parametric stability
margin is determined by a real zero that goes
through infinity corresponding to 02 =p . So,
this destabilizing perturbation of controller
coefficients is very strong and the normalized
stability radius is not an adequately measure for
the controller robustness. The largest stable box
of type (16) it is given by 79.8max ≈ρ , value

that illustrates more adequately the possibilities
for readjustment of nominal controller
coefficients. The function τ  given by (12)-(14),
for maxρ=ρ , is represented in Fig. 7.

Fig.6. Nyquist plot of P(s)C(s).

Fig.7. The distance function τ(ω).

4.4. Extended stability margins

By using the Algorithm 1 proposed in Section 3
we have determined an extended stable box
characterized by the following lower and upper
limits ( −ρi  and +ρi  ):

]79.820.9899.99;41.1441.14[≈−ρ ,

]41.1441.1447.98;79.818.19[≈+ρ

Then, by applying the Algorithm 2 we obtained
several centred controllers with increased
stability margins (see, Table 1).

The Nyquist plots for the centred controller
obtained after iteration 4 together with that for
the initial controller – given by (24) are
presented in Fig. 8.

Real Axis

ω [rad/s]

τ(0) ≈1.0000259

τ(∞) ≈11.37
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Table 1.

Iteration 1 2 3 4

maxρ 11.57 14.83 16.92 18.22

infk 0.682 0.674 0.672 0.672

supk 1.262 1.348 1.408 1.446

Fig.8. Nyquist plot of P(s)C(s).

5. CONCLUSIONS

In this paper we have proposed some
reformulations of optimization problems such
that to increase the parametric stability margin
around the coefficients of the designed optimal
controller. Also, we have presented some
remarks about the parametric stability margin
measures. So, we have showed that the
normalized parametric stability radius is not
suitable when the coefficients lie in very
different ranges; in this case, more adequately is
the maximum relative change accepted for
controller coefficients to preserve stability. Also,
we presented an algorithm to determine an
extended range of robust stability. Finally, we
proposed an algorithm to determine a centred
controller with increased parametric stability
margins. A possibility to maintain the stability/
performance robustness against the plant
uncertainties is to use the free parameter from

∞H  optimization method in the controller
design process.
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