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Abstract: Results of previous work on componentwise asymptotic stability (characterizations
based on the flow-invariance method) are applied for the study of a class of bilinear differential
equations, describing the dynamics of (compartmental) endemic epidemic systems. Using the
standard form of a SIR model, a necessary and sufficient condition is formulated for the
componentwise absolute stability on a given closed and bounded set, which includes the
equilibrium point of the system. It is shown that the class of approachable sets can be considerably
enlarged, by applying adequate bijective transformations of the original coordinates, used for the
initial statement of the problem. A detailed example illustrates the whole procedure for the
exploration of the componentwise absolute stability on a set resulting from a nonsingular linear
transformation applied to the original state variables.
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1. INTRODUCTION

In the last decades a lot of attention has been
attracted to the mathematical modelling of
biological systems and to the study of their
properties. Beginning with Vito Volterra’s
pioneering works on predator-prey models the
stability of biological systems remains a
perennial research problem that has always to
deal with new emerging mathematical models
and/or by using new analysis methods.

This paper is concerned with epidemic systems.
It is already accepted that the most suitable

models for the microparasitic, usually short
infections are the compartmental models.
General compartmental models for epidemic
systems have been formulated and, by using the
Lyapunov direct method, their stability
properties have been studied, [1]. In this respect
the purpose of this paper is to refine in a certain
sense the mentioned results by applying the
flow-invariance method, [2], and more specific,
the subsequent concept of componentwise
absolute stability, [2] ÷ [6], to the compartmental
epidemic systems which are modelled by a class
of bilinear differential equations. The text is
organized according to the following plan.
Section 2 creates an overview of the
componentwise absolute stability. Section 3
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formulates the problem for endemic epidemic
systems, presents the main results and discusses
possibilities for enlarging the class of sets on
which the componentwise absolute stability can
be explored. Section 4 illustrates, by the help of
an example, the whole procedure for the analysis
of the componentwise absolute stability. Section
5 comments the novelty of the work, the
applicability of the results and possible future
developments.

2. BRIEF OVERVIEW OF
COMPONENTWISE ABSOLUTE
STABILITY

Notations

Let rnQP ×∈R, , with { }nr ,1∈  and
( ) ( )ijij qQpP == :,: . One denotes by
( )QPQP <≤  or by ( )QPQP >≥  the

inequalities ( )ijijijij qpqp <≤  or

( )ijijijij qpqp >≥  respectively, by P  the

matrix with the elements ijp , by ( )ijpP =:  the

matrix with iiii pp = and ,, jipp ijij ≠=  and by

kP  the leading principal minors of P .

Let nV R⊂  and nnVΦ ×→R:  be a continuous
function with ( ))(:)( xxΦ ijϕ=  and let Vvv i ∈= )(: ,

( ) .: Vzz i ∈=  One denotes by { })(vΦz
vC  the

operation which "catches" each column )(vjϕ
of )(vΦ  in a diagonal manner in z, i.e.
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where [⋅]T signifies the transposition.

Definition and characterization

Consider the nonlinear dynamical system:

( ) nVxtxxtFx RR ⊂∈∈= + ,,, , (1)

( ) nVxtxtx RR ⊂∈∈= + 0000 ,, , (2)

where V is a closed and bounded domain with
V∈0  and ( )xtF ,  belongs to a class MF  of real

(n×n) matrices which are continuous and

adequately bounded.  Pertaining the stability of
equilibrium point

0=x (3)

of system (1) this boundedness must be
understood in the following sense: for a given
real constant matrix M there exist ( )V∈> αα 0 ,
a maximal ρm ≥ 1 with V∈ρα  for each

],1[ mρρ∈ , and β > 0 (scalar) such that:

( ){ } ].,1[,,,, m
t

v vtMvetF ρραρ βα ∈<∈≤ +
−± RC (4)

Clearly there exists a nonempty class MF  of
continuous matrices F(t,x), because at least

MM F∈ . M is called an elementwise C -
majorant of F(t,x) on V.

Definition ([6], cf. Definition 6)

System (1) is called componentwise absolutely
stable in V (CWABSV) if it is componentwise
exponential asymptotically stable in V
(CWEASV) for all MF F∈ , i.e. there exist
α > 0, a maximal ρm ≥ 1 with V∈ρα  for each

],1[ mρρ∈ , and β > 0 such that for each t0 ∈R+,
for each ρα≤0x , for each ρ ∈[1,ρm] with

V∈ρα  and for each MF F∈  the solution of
(1), (2) satisfies:

[ ]m
tt ttetx ρρρα β ,1;,)( 0

)( 0 ∈≥≤ −− . (5)

Theorem 1 ([6], cf. Theorems 9 and 8)

System (1) is CWABSV if and only if
,0)(:),(: >== iijmM αα  with V∈ρα , ρ ∈[1,ρm],

and β > 0, satisfy one of the five following
equivalent conditions:
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4o ( ) ;,1,01 nkM k
k =>−

5o M  is Hurwitzian.

It is worth to be noticed here that each of the
equivalent conditions 1o - 5o from Theorem 1 is
a necessary and sufficient condition such that
the linear C - majorant system:
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,R,R, nxtMxx ∈∈= + (6)

be componentwise exponential asymptotically
stable (CWEAS) on Rn,, [3], [4], [6]. CWEAS of
(6) corresponds to a certain diagonal dominance
along the rows of M, necessarily implying that
the diagonal elements are negative.

3. EPIDEMIC SYSTEMS

3.1. SIR models

The epidemic systems are described by
compartmental models, [1]. The usual starting
point case is the SIR model, which is based on
the division of the considered population into
the following three classes (compartments):

S - susceptibles; they are capable of
contracting the disease and becoming
infective;

I - infectives; they are capable of
transmitting the disease to susceptibles;

R - removed individuals; having contracted
the disease, they died or are permanently
immune, or have been isolated.

The transfer of the individuals from a
compartment to another is illustrated by the
scheme in fig. 1, where r (with specified
subscripts) denotes the appropriate transfer rates.

The classes (compartments) S, I and R can be
divided into more subclasses (subcompartments)
according to some specific criteria issued from
the epidemiological casuistic.

Input
rI S

rSI I
rIR

R
rR Output

rIrS

Fig.1. Schematic representation of the transfer of
individuals between the compartments of the SIR

model.

3.2. General epidemic bilinear models

The general bilinear model of an epidemic
system divided into the compartments iK ,

mi ,1= , [1], is the following:

( )( ) ,,,diag mztcBzAzezz RR ∈∈+++= + (7)

with ( ) mm
ij

mmmm bB:,A,c,e ×× ∈=∈∈∈ RRRR ,

bii = 0 and bij ≥ 0, i≠j, and ( )izz =: ,
( ) ( ).,...,diag:diag 1 mzzz =

The components mizi ,1, = , of state z are the
number of individuals in mii ,1,K = ,
respectively, and

∑ +=m
mi zz1 1 (8)

is the total population of the system.

In the case zm+1 = constant one considers that the
total population is maintained by compensation
of the output by an equal input in the class S (e.g
the birth rate is equal to the death rate as the level
of the overall system). Usually zm+1 = 1 and

mizi ,1, = , represents fractions of the total
population. Certainly one can write:

01 ==+ zhz T
m (9)

with .]11[ mT...h: R∈=  Equation (7) must satisfy
(9).

Further one can ascertain that any trajectory
{z(t), t∈R+} of system (7) is contained in a
bounded domain Ω ∈Rm which is positively
invariant. According to this invariance of Ω and
to the fact that the right side term of (7) belongs
to C1(Ω), it follows that standard fixed point
theorems assure the existence of at least one
equilibrium point ze ∈ Ω, [1], satisfying:

( )( ) .0diag =+++ cBzAzez eee (10)

Equilibrium point satisfying ze > 0 is called
endemic point, because in this case the epidemic
disease is endemic. It can be shown that c > 0
implies ze > 0, [1].

For the endemic point ze several sufficient
conditions for global asymptotic stability, based
on Lyapunov direct method, are available, [1].

3.3. Problem statement for endemic points

For system (7) one can use the transformation:
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Under these circumstances the last scalar
equation of (7) will be replaced by (9). The first
m - 1 equations of (7) does not depend on zm+1
and consequently one has to study only the
system of the first m - 1 scalar equations of (7).
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For the sake of simplicity of writing let us
observe that by denoting n:=m - 1 the system
under consideration has the same form as (7), i.e.

( )( ) nΩz,tc,BzAzezz RR ∈∈∈+++= +diag , (11)

where e, c, A, B have the properties specified in
connection with (7) (mutatis mutandis), and

{ }10 ≤≤∈= + zhzΩ TnR . (12)

Let ze ∈ Ω  be an equilibrium point of (11)
according to:

( )( ) .0diag =+++ cBzAzez eee (13)

Using the transformation:

ezzx −= , (14)

from (1) (with )(),( xFxtF ≡ ) and (11), with
(13), one obtains:

( ) ,,, nVxtxxFx RR ⊂∈∈= + (15)

where:

( ) ( ) ( ) BAzeAzxxF ee ++++= diagdiag (16)

and

{ }1)(0 ≤+≤∈= e
Tn zxhxV R . (17)

Notice that the endemic point

x = 0, (18)

corresponding to ze
 > 0, satisfies VInt0∈ .

Consequently and in connection with
CWABSV, for system (13) a symmetric
exponentially time-dependent hyperinterval
belonging to V can be considered.

3.4. Main results for endemic points

In order to apply the operator C  to matrix (16)
let us denote:

αρα mm =: , with ,Vm∈±α

( ),,...,diag: 11 nnd aaA =

( )nnd aaA sgn,...,sgndiagsgn 11=  with ,00sgn =

.:0 dd AAA −=

Lemma: There exists an elementwise C -
majorant of F(x) on V.

( )[ ]
( ) ( ) BAzeAz

AzAMMM

edem
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++==≥

diagdiag
sgndiag:

0

00

α
α

(19)

Proof: It can be shown that any matrix M

satisfying (19) is an elementwise C - majorant of
F(x) on V.

Clearly, by applying C  to matrix (16) one can
successively write:
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Theorem 2: System (15) with (16) and an
elementwise C - majorant M according to (19) is
CWABSV if and only if in terms of Theorem 1
one of the equivalent conditions 1o - 5o is
satisfied.

Theorem 3: A necessary condition such that
system (15) with (16) and an elementwise C -
majorant according to (19) be CWABSV is that:

( ) .0<+++ eαAzAA mded (20)

Proof: It relies on the condition that, according
to Theorem 1 (5o) and (19), M and 0M must
satisfy:

,00 <≤ dd MM (21)

where subscript d signifies the diagonal matrices
extracted from 0M  and M.

Extracting dd MM =  and 00
dd MM =  from (19),

with (21) it results (20).

3.5. Enlarging the class of approachable sets

In some situations, it might be of great interest
to operate with sets resulting from bijective
transformations of the original coordinates. For
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example, in the most usual case when a
nonsingular linear transformation:

0det,~ ≠= TxTx (22)

is used, equation (15) becomes:

( ) +∈= RtxxFx ,~~~~ , (23)

where:

TxTFTxF )~()~(~ 1−= . (24)

The factorization occurring in the right hand
side of (23) means that one first performs all the
calculations requested by the usage of
transformation (22) in equation (15), and,
afterwards, extracts vector x~  to the right side of
operator F~  (24).

Obviously, the results obtained in the previous
paragraph (3.4) can be applied for the
transformed system (23).

Considering nonsymmetrical exponentially
time-dependent hyper-intervals represents
another possibility to enlarge the applicability of
componentwise absolute stability to the study of
endemic, epidemic systems. This opens new
research opportunities, for which there already
exist a general result (on flow-invariance of
nonsymmetrical time-dependent hyper-intervals,
[6]) and some special results (for linear constant
systems, extending CWEAS for nonsymmetrical
intervals, [7], [8], and for interval matrix
systems, [9]).

4. ILLUSTRATIVE EXAMPLE

Consider a second order system of form (11),
described (according to [1]) by the matrices A
and B and the vectors e and c as follows:
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where the meaning of parameters is given below
(in accordance with fig. 1):

k – rate of transfer from class S to class I
γ - rate of transfer from class I to class R
δ - rate of birth/death

The state variables are defined as follows:

x1 – number of individuals in class S;
x2 – number of individuals in class I;
x3 - number of individuals in class R (already
eliminated as shown in equation (11));

The equilibrium point of the system is:
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where the parameters fulfil the condition δγ+>k .
The operator F(x) used in (15), with the detailed
expression (16), has (in our concrete case) the
form:
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After applying linear transformation (22) with:
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one obtains the following expression for
operator )~(~ xF used in the right hand side of
equation (23):
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Now, according to Theorem 3, the following
necessary condition should be met:
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which yields the situations detailed below:
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meaning δγ +>k  (already requested by the
existence of the equilibrium point)
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On the other hand, according to Theorem 2,
after evaluating (4):

























−

+
−





−

+
+−

−

=

=≤






 




<

−±

0

22

~

11~~11~~

~~~

k
kk

k
kk

MevF t

δγ
δαρ

δγ
δαρ

γδ

ρ βα
νC



28 CONTROL ENGINEERING AND APPLIED INFORMATICS

we also need the fulfillment of one of the five
conditions presented in Theorem 1. For instance,
using condition 4o in Theorem 1, together with
the negativity of -δ, we need only 0det >M , i.e.

( ) .0
11~~

11det
11~~det
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As condition (ii) is already satisfied from the
above discussion, the positivity of detM brings a
single supplementary condition, namely:

(iii) γδ > .

The final results should be formulated in terms
of ραα ~and,~,~

21 . Thus, because 1
~α  was not

involved in any condition, the only request for
1

~~αρ refers to the location of the equilibrium
point, and 2

~~αρ refers to (ii), (iii). The complete
set of conditions for the componentwise
absolute stability of the transformed system is
given below:
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5. CONCLUDING REMARKS

The main result (Theorem 2) shows that by
satisfying one of the equivalent conditions
1o ÷ 5o from Theorem 1 there exist classes of
endemic epidemic systems which may be
CWABSV, i.e. with a symmetric exponentially
time-dependent hyperinterval (included in V) as
flow-invariant set for an entire class of endemic
epidemic systems. The premise of the symmetry
of this hyperinterval with respect to the endemic
point x = 0 is relatively strong, taking into
account the polyhedron represented by V and the
position of the endemic point x = 0 in V. In order
to enlarge the approachable classes of endemic
epidemic systems one may consider sets
resulting from bijective transformations of the
original coordinates. Such a case is analyzed for
an illustrative example, where a nonsingular

linear transformation of the state variables was
used to define the new set, with respect to which
the componentwise absolute stability is
explored. Considering nonsymmetrical
exponentially time-dependent hyperintervals
represents another possibility to enlarge the
applicability of componentwise absolute
stability to the study of endemic, epidemic
systems, which creates new opportunities for
future research.
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