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Abstract: The behavior of hybrid systems is described by interacting discrete and continuous
variables. In this paper, we suggest a modeling and analysis approach based on the discrete-time
representation of the continuous dynamics of hybrid systems. Initially, the hybrid system is
modeled using a discrete-time hybrid automaton. Starting from this model, by the analysis
approach an equivalent timed automaton model is obtained. The approach that we propose here is
a generalization of the “Clock Translation” method developed by Henzinger for a particular class
of hybrid systems. This model, representing the result of our analysis approach, is built in the aim
of a further supervisory control synthesis .
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1. INTRODUCTION

The behavior of hybrid systems is described by
interacting discrete and continuous variables.
Recently, the hybrid systems have attracted
considerable research attention in the control
and computer theory communities. The major
motivation for the study of hybrid systems is
given by the inadequacy of models based on
continuous mathematics for describing certain
classes of complex systems. There were
attempts of mathematical formalization but in all
these attempts, the interaction between the
continuous and discrete dynamics were
represented as differential equations with
discontinuities. The reason for this is given by
the existence of a rich theory of continuous

systems and the lack of similar theory in the
discrete side.

A look at the literature lets us to say that there
are a number of theoretical frameworks
developed: 1) to model hybrid systems ([1],[8]),
2) analyze their behaviors ([2],[4],[6]) and, 3)
synthesize controllers such that the closed loop
system satisfies certain specifications ([3], [5]).
The major parts of these frameworks treat the
case of hybrid systems having uncoupled
continuous dynamics.

By our work, we address a class of hybrid
systems having any continuous dynamics.

In this paper we propose an approach for
modeling and analysis of hybrid systems in view
of supervisory control synthesis. The approach
is based on the use of discrete-time
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representation for the continuous and hybrid
automaton modeling the interactions between
discrete and continuous dynamics of the hybrid
system.

The steps that will be followed in order to obtain
the timed equivalent model of the initial hybrid
automaton are the following: (1) the continuous
dynamics of the systems are sampled in order to
obtain a discrete-time representation for this
ones; the resulting model is called discrete-time
hybrid automaton and (2) in order to ensure that
the modeled system has specified the
appropriate transition guards, some verifications
must be performed, representing the goal of the
analysis approach.

Generally, the hybrid systems analysis, modeled
by hybrid automaton, is based on the reachable
state space regions computation starting from a
given initial condition. Hence, firstly, we must
check if all the evolutions modeled by the
hybrid model are actually possible in the system.
To answer at this question implies to perform a
reachability analysis of all the locations of the
model.

The reachability problem can be formulated as
follows: having a hybrid system and an initial
state space region, find the state space regions
that can be reached by the system evolution
starting from this initial condition. In the case of
hybrid automaton models, this problem can be
restricted to check the reachability of guard
conditions associated with the transitions of the
model. The results of this analysis will be used
in order to perform modifications in the initial
model. Namely, if there are some guard
conditions that are never reached (i.e.,
transitions that are never fired) by the system
evolution, then the initial model can be
simplified deleting all the transitions labeled by
these guards. The resulting model is given by a
reachable automaton modeling only the possible
evolutions of the system starting from a given
initial condition.

Therefore, the reachability analysis states the
existence problem of one trajectory, which drive
the system from a given initial region R0 into a
final region RF by the system dynamics.

The analysis approach that we propose here is a
generalization of an analytical method named
“clock translation”, which can be used only for a
very restricted class of hybrid systems. Given
the complexity of the continuous dynamics, in
our case, only a numerical resolution is possible.
Therefore, the generalization that we propose

make possible to build an equivalent timed
model of initial hybrid automaton model,
passing trough numerical computation.

The rest of the paper is organized as follows: in
section 2, we introduce the minimally necessary
definitions concerning discrete and continuous
behaviors and hybrid automata and we introduce
the discrete-time hybrid automaton model. In
section 3, the proposed generalization of the
Clock Translation method is presented. In
section 4, we present our analysis method.
Throughout all these sections, theoretical
examples illustrate the steps of our approach.

2. DISCRETE-TIME HYBRID SYSTEMS

Generally, hybrid systems are systems having
theirs evolutions determined by interacting
discrete and continuous dynamics. There are
many approaches to modeling, analysis and
synthesis of hybrid systems. Approaches differ
with respect to emphasis on the complexity of
the continuous and discrete dynamics.

The hybrid systems of interest in this paper are
represented by systems having the evolutions
limited by theirs continuous specifications.

2.1. Generalities

The plant: Throughout our approach, we
address a class of applications represented by
hybrid systems in which the continuous
dynamics are described by differential equations

( ) ( )( )ttutxfx ,,=
•

, where ( ) ntx ℜ∈ denotes
the vector of the continuous state space variables
for the considered system and u(t) is the vector
of external inputs.
The dynamical evolution of hybrid system is
made by commutations between their discrete
states and/or between their continuous
dynamics. These commutations represent the
discrete aspect of the behavior of hybrid systems
and theirs are generated by occurrence of
external or internal discrete events whose nature
can be controllable or not.

The specifications introduce restrictions on the
plant dynamics. In the case of hybrid systems,
the specifications can be divided in two parts:
specifications for the continuous part and
specifications for the discrete part.
The continuous specification is introduced as
constraints for the continuous variables x(.)
which restrict theirs evolutions to stay in a
specified state space region, named desired
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region. Any outgoing evolution from this region
is not desirable.
The discrete part can be viewed as a finite state
machine. Usually, the discrete specifications are
given as a logical condition describing for
example the order of occurrence for the events
in the plant, during its functioning.

The hybrid automaton represents the modeling
tool that lets us to take in account all these
aspects in the same structure. In the further
paragraph of this paper, this formalism will be
introduced.

2.2. Hybrid automaton

Generally, a hybrid system can be modeled by a
set of systems with a continuous dynamic,
which interacts, with one or several discrete
event systems. Alur et al. (1993) introduce the
framework of hybrid automata as a model and
specification language for hybrid systems. In
this model, at a given instant, the system can be
in one of several discrete states in each of which
its behavior is governed by a distinct continuous
dynamical law.

The hybrid automaton can be viewed as an
extension of a discrete automaton augmented
with continuous variables whose dynamics in
each discrete state are defined by differential
equations. Transitions between the states are
enabled by conditions on the values of these
variables.

In order to define formally the hybrid
automaton, an adaptation of definitions
presented in [1], [8] and [9] is made, in the aim
to relate these definitions to those used in the
control literature. The result of this
interpretation is presented below:

Definition 1. A hybrid automaton is a tuple
Α = (Q, X, flow, inv, guard, Aff, init) such that:

- Q ={q1, q2, ..., qm} a finite set of discrete states;
- nX ℜ⊆ is the continuous state-space.

Elements of X are written x = [x1 x2... xn]T;
- flow(q) is a function that assigns a continuous

evolution to each discrete state. While the
hybrid automaton stays in the discrete state q,
the evolution of the continuous variables is
governed by the differential equation

),,()(:)( tuxftxqflow =
•

(1)
- inv(q) is a function that assigns with each

location q, a condition that must be satisfied by
the continuous variables if the automaton is to
stay in the discrete state. The system can stay

in the discrete state as long as the invariant
associated with it is satisfied;

- guard(T) is a transition labeling function that
assigns firing conditions with the transitions of
the automaton;

-  Aff(T ) is a function that associates with each
transition of the automaton one relation that
allows to actualize the value of the continuous
state space variables after the firing of a
transition T. This function is specified as
simple predicates such xi: =ci | xi ∈ X, where ci
is a constant value from X;

-  init is a function which assign an initial state
x0∈ X with the initial discrete state qin∈Q.

At any time, the state of the hybrid system
specifies a location and values for all continuous
variables. The state can change in two ways: by
an instantaneous transition that changes the
entire state and by elapse of time that changes
only the values of continuous variables in a
continuous manner according to the dynamic
f(q) of the current location. The system can
evolve in a discrete state q only if the current
continuous state satisfies the invariant condition
associated with this state. These conditions can
arise from constraints imposed by the physical
systems or decisions in system design.

Intuitively, the states of the hybrid automaton
allow differentiating the continuous dynamics of
the system. The state of a hybrid system is
characterized at any time instant by the couple
(qi, x) representing the global state of the
system.

Definition 2. The global state of the system at
the time instant t is given by the current discrete
state qi ∈ Q and the current value of the state
vector nx ℜ∈ at the considered time instant.

Graphically, the hybrid automaton can be
represented by a directed graph whose vertices
represent the locations and arcs represent the
transitions (Fig. 1).
The invariant conditions and the differential
equations, which model the continuous
evolutions, can be written inside the vertices.
With the arcs are associated guards and
transition relations.

q1 q2
init (q1) inv (q1) inv (q2)

flow (q1) flow (q2)

guard (T1) / Aff (T1)
T1

T2

guard (T2) / Aff (T2)

Fig. 1. Hybrid automaton model.
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The function describing the continuous
dynamics of each location is given by the linear
differential equation:

uxx BA +=
•

, (where nx ℜ∈ ) (2)
which represents the state space representation
for the continuous dynamics and where

nx ℜ∈ denotes the vector of the continuous
state space variables.

2.3. Discrete-time hybrid automaton

In order to compute the trajectories generated by
systems modeled as a hybrid automaton
numerical computation are performed using the
computation of digital processors. Therefore, the
computation is performed using a digitized
model of the continuous dynamic. The digitized
model is obtained by discretization into fixed
intervals of the original continuous one. The
sampling period is chosen so that the Shannon’s
theorem is satisfied.

In the aim of a reduced complexity of the
calculus, in all steps of our approach we use a
discrete-time representation for the continuous
dynamics of the system. Therefore, the
continuous dynamics are modeled by the
equation:

);,0(1 Ν∈=+=+ knkuBxAx kdkdk (3)

where: xk represents the vector of continuous
variables at kth sampling time, Ad and Bd
represent the discrete equivalent of matrix A and
vector B used in the continuous state
representation for the continuous dynamics. The
sampling period is dictated by the nature of the
continuous dynamics and can be chosen
respecting the conditions imposed by the
Shannon theorem.

Let us to define now the discrete-time hybrid
automaton.

Definition 3. The definition of the discrete-
time hybrid automaton is similar to the
definition of the hybrid automaton (Def. 2),
except that a discrete-time model (relation 3)
gives the evolution of the continuous variables.

In the discrete-time hybrid automaton, the
discrete-state transitions can occur only at valid
sampling times. We assume that the transitions
occur immediately when a guard condition is
satisfied. We have transformed an
asynchronous-synchronous model given by the
continuous-time hybrid automaton into a
synchronous model given by the discrete-time

hybrid automaton. We suppose that the
modeling errors carried by this transformation
are sufficiently small and negligible. This
problem does not constitute the goal of this
paper and is well studied in [11].

In the further steps, the discrete-time hybrid
model will be is used

3. GENERALISATION OF THE “CLOCK
TRANSLATION” METHOD

The “Clock Translation” method proposed in [9]
can be used for a restricted class of hybrid
systems. The method consists in the construction
of a timed bisimilar equivalent of the hybrid
automaton, by replacing all the continuous
variables by clocks.

For a hybrid automaton A, the variable t is a
clock if t is linear and all flow conditions of A

imply 1=
⋅
t . We can replace a continuous

variable x by a clock tx if at any time the value
of x can be determined uniquely from the value
of tx.

3.1. Clock Translation

In order to apply the method proposed in
(Henzinger et al., 1998), the variable x must
satisfy some solvability conditions:

• the variable x must be independent of the
other variables in flow, jump, initial and final
conditions;

• the variable x follows a unique flow from any
starting point;

• in order to determine the truth of predicates
such as cx ≥ , for any constant ℜ∈c , from
the value of tx, the flows of x must be strictly
monotone;

• the initial value of the current flow of x and
the elapsed time must be known at any
instant.

If all these conditions are satisfied, the
construction of the bisimilar hybrid automaton
can be realised. The construction technique is
illustrated throughout the following example:

Example 1. Consider the hybrid automaton
model illustrated in Figure 2.a., modeling the
functioning of a thermostat. From this model,
we want to obtain a bisimilar timed automaton
applying the steps of the “clock translation”
method.
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The timed equivalent of the initial hybrid
automaton is obtained by analytical resolution of
the differential equation describing the
continuous evolution of the system in each
discrete state. The obtained model is illustrated
in the Figure 2.b.

(a)

x ≤ 22
x = 5 - 0,1 x
.

q1

x ≥ 18
x = - 0,1 x
.

q2T1

T2

x = 22

x = 18

x = 10

tx ≤ -10 ln(0,7)

q1 q2

T11

T2

tx = -10 ln(0,7) / tx := 0

tx = -10 ln(0,818) /
tx := 0

tx=0 tx= 1
.

q1

tx= 1
.

tx= 1
.

tx = -10 ln(0,875) /
tx := 0

T12

tx ≤ -10 ln(0,818)

tx ≤ -10 ln(0,875)

(b)

Fig.2. Hybrid automaton modeling a thermostat:
(a) hybrid model and (b) timed model.

Therefore, the bisimilar model of the initial
hybrid automaton, obtained following the steps
of the before presented Clock Translation
method, is given as a timed automaton.

It can be concluded that the presented approach
is efficient but applies only for a restricted class
of continuous variables. This is an analytical
method, so the solvability of the continuous
variables is always requested.

3.2. Generalization

The method that we propose is dedicated to
obtain an equivalent timed automaton starting
from an initial hybrid. The hybrid systems of
interest has any linear continuous dynamics, so
the constraints which must be satisfied by the
continuous variable x in the case of the Clock
Translation method presented before, are not
verified.

The principle of our method is illustrated in the
Figure 3.

Starting from a hybrid automaton having any
dynamics, we propose a reachability analysis
approach based on the discrete-time

representation of the continuous dynamics of the
hybrid systems.

Hybrid automaton

( ) ( )tutxx BA +=
•

(any dynamics)

Timed model

1=
•

xt

(clock variables)

Reachability
analysis

NNuummeerriiccaall  rreessoolluuttiioonn
  OOuurr  aapppprrooaacchh

AA  ddiissccrreettee--ttiimmee  aannaallyyssiiss
aapppprrooaacchh

  SSuuppeerrvviissoorryy
CCoonnttrrooll  ssyynntthheessiiss

Fig. 3. Generalized “Clock Translation” method.

The approach is based on the numerical
computation of trajectory for continuous
variables in each location of the hybrid
automaton in order to test the reachability of the
guard associated with its output transitions.
Once the output transition is firable (i.e., when
the guard condition is satisfied), the current
discrete-time instant is retained as the minimal
duration of staying in the current location. The
transitions guards are given as continuous state-
space regions. So, once the guard is reached by
the continuous dynamics, the trajectory of the
system in the current location is computed until
it becomes no longer reachable or the invariant
associated with the current location is no longer
satisfied.

The reachability method and the technique
letting us to build the equivalent timed model
will be detailed in the following section of this
paper. The timed model will represent the
starting model for supervisory control synthesis.

4. ANALYSIS APPROACH

Having a formal model for hybrid systems and
their behaviors, we need methods to check all
the possible evolutions of the system. We will
adopt an algorithmic verification methodology.

In this paper, we concentrate our interest on
finding all trajectories of the system, which
reach the state space regions representing the
transition labeling conditions. In order to do this,
we develop a forward reachability method for
the discrete-time hybrid automaton, which
models the studied system.

4.1. Reachable state space computation

The reachability analysis problem for any
discrete systems can be solved since the
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transition functions, the initial set, the target set
and the reachable states accumulated over the
execution are finite and can be represented
explicitly. Now, if extended to hybrid systems,
the reachability analysis involve the
computation of following functions over subsets
of the state space of hybrid systems: successors
computation, union of sets in order to
accumulate the reachable state space regions and
intersection in order to check the emptiness or
whether the system reaches the target region.

In order to be able to compute these functions,
the first ingredient we need is a finite syntactic
representation of the state space regions
encountered during the reachability analysis.

The continuous state space X of hybrid automata
is in nℜ . Hence, unlike the finite-state systems,
subsets of X do not admit an enumerative
representation and can only be represented
symbolically, such us by formulas of some
logic.

The polyhedral sets as symbolic representation
of state space regions of nℜ are geometrical
objects that, from computational point of view,
are easier to describe and manipulate. One major
characteristic of these objects is stated in the
following property:
Property 1. Any polyhedron in nℜ can be
uniquely defined by an ordered list of its
vertices.

Example 2. In order to illustrate this property, let
us to consider a state space region, like
illustrates the Figure 4.

x1

x2

a1 b1 c1 d1 e1 f1

a2

b2

c2

d2

e2

f2

Fig.4. Polyhedral state space region in 
2ℜ .

The considered region is represented in 2ℜ  and
can be described by the ordered set of its
vertices. Each element of the set represents a
grid point. Therefore, the region can be entirely
described by the ordered set: {(a1, e2), (d1, f2),
(f1, f2), (f1, d2), (e1, a2), (b1, b2), (c1, c2)}. Hence,
we can conclude that this description gives an
unique representation for the considered state
space region.

In consequence, all the operations on the real
state space regions are replaced by operations on
their polyhedral representations. Therefore, a
polyhedral region will represent the continuous
successor at t time instant. Hence, the reached
region by the hybrid system evolution starting
from a given initial region will be obtained by
the union of its continuous successors.

Polyhedral sets can be divided into two types:
convex and non-convex. The former is simpler
and allows efficient implementation of
intersection, membership and equivalence
testing. However, the limitation to use only
convex polyhedra, is very restrictive because
whenever we make unions of continuous
successors in order to obtain the reachable state
space region the result is non-convex polyhedra.
The approximation of this result by a convex
polyhedron might result in a too coarse
approximation. Consequently, the use of non-
convex polyhedra is necessary in the aim to
describe more precisely the reachable state
space by the evolution of the system.

In the following, we suppose that convex state
space regions give the initial regions and the
target regions representing the guard conditions
of the hybrid automaton model. We want to
build the real trajectory of the systems based on
the continuous successors computation.

4.2. Continuous successors computation

In the computation of the continuous successors
we are based on an important property of linear
systems which is stated and proved in the
following lines.

Consider a continuous linear system C= (X , f )
where X ⊆ nℜ . The continuous dynamic of C is
given by

)(B)(A)( tutxtx +=
•

(4)
where: A∈ nn×ℜ , u(t)∈ mℜ  and B∈ mn×ℜ . Let
us to state the fundamental property of linear
systems:

Lemma 1 If F ⊆ X is a convex region then for
every t ≥ 0 the image of this region by a linear
application f at any time instant t is convex.

Proof:  Let ξ x be the trajectory of C starting
from a point x∈ X. By solution of equation (4),
we have:

( ) ( ) ττξ τ duexe
t

tt
x ∫ Β+= −ΑΑ

0
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Let us consider f (t,F) the set of states reachable
from F in t time units. Therefore, this set can be
written as:

( ) ( ) ( ) τττ dueFeFtf
t

tt ∫ Β+= −ΑΑ

0

,

The matrix exponential function eAt is a linear
operator. Hence, preserve convexity, which
implies that f (t,F) is convex.

We suppose further that convex polyhedral
regions represent the initial region and the
transition labeling guards conditions. Therefore,
based on the Property 1, we can conclude that
the continuous successor computation is
resumed to the computation of trajectories
generated by each vertex of the initial region.

The use of discrete-time representation for the
continuous dynamics of hybrid systems let us to
reduce the complexity of the calculus. Based on
the property stated in Lemma 1, for each
sampling time a convex region will be obtained
by continuous successor computation.

Figure 5 illustrates the continuous successor
computation in two dimensions, starting from an
initial state space region R0. Rk denotes the
continuous successor region reached in k
sampling periods from R0. This region is
completely described by its four vertices.

The vertices of Rk are denoted as succk(si),
where 4 ,1=i . The vertex succk(si) is obtained
by computing the trajectory of the initial vertex
si. The trajectory of the system satisfies the
dynamic described by discrete-time flow
equation, kdkdk uBxAx +=+1  in k sampling
periods and for x0 = si. In this way, all the
vertices of the continuous successor region Rk

are computed.

R0

Rk

s1

s2 s3

s4

succk(s1)

succk(s4)

succk(s3)
succk(s2)

Fig. 5. Successors computation starting from R0.

The following algorithm synthesizes the steps of
the continuous successor computation:

Algorithm 1: Continuous Successors computation

Step 1: Initialize the successor region succ0 by R0;
Step 2: Initialize the counter k:=0;
Step 3: REPEAT

3.1. For each vertex of the current region, compute
the continuous successor reached by

kdkdk uBxAx +=+1  in one sampling period.
Symbolically, we denote the continuous
successor of the region Rk as )(:1 kk RR ϕ=+ ,
where )( kRϕ  is the function allowing to
compute the continuous successors of all the
vertices of Rk reached by the elapse of one
sampling period.

3.2. Actualize the counter k:= k+1.
UNTIL kk RR =+1 .

We can observe that the computation of all the
continuous successors of an initial region ends
when the convergence of the continuous
dynamic in one hybrid location is achieved.

Formally, the convergence of the continuous
dynamics is checked by the evaluation of the
distance between two continuous successor
regions Rk and Rk+1 of a given initial region. This
distance is obtained by the computation for each
vertex of Rk+1 the gap between its vertices and
the vertices of Rk. Therefore, we can define the
convergence of two regions as follows:

Definition 4. The continuous dynamic in a
location of a discrete-time hybrid automaton
converge in k sampling periods, if for a given ε,
the maximum of distances between the region Rk
and all its continuous successors verifies the
relation (5) for any kjj ≥Ν∈  , .

ε)),δ(max( 1 ≤+kk RR (5)

The computation of continuous successors in a
hybrid location is illustrated throughout the
following example.

Example 3. Let us to consider the hybrid
location given in Figure 6.

The invariant inv(qi) associated with this
location limits the evolution of the continuous
dynamics in this location.

qi

xk+1= ϕ (xk)
inv (qi) :(x1∈[1,6]
      & x2∈[1,10])

     R0:
   (x1∈[1,3]
& x2∈[1,7])

guard (Ti)
Ti

Fig.6. Hybrid location.
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Fig. 7. Continuous successors of R0.

The discret-time continuous dynamics is given
by

dkdkk BxAxx +==+ )(1 ϕ , where







=

9,017,0
081,0

dA  and 





=

9,0
9,0

dB .

The initial region is represented by R0. The
ordered set of the initial region is {(1,1), (3,1),
(3,7), (1, 7)}.

The continuous successors of the initial region
R0 are illustrated in the Figure 7. It can be
observed that the convergence of continuous
dynamics is done into the point (5, 10). Hence,
all continuous successors of the initial state
space region was computed.

4.3. Transition enabling analysis

In this section we are interested in the study of
firability conditions for the transitions of
discrete-time hybrid automaton model.

The hybrid automaton evolution is determined
by interacting continuous and discrete dynamics.

The difficulty in the analysis is given by this
interaction. Therefore, the instants of the
commutations must be determined taking into
account the continuous evolution of continuous
state space variables. Hence, the enabling of a
discrete transition is an important property that
must be studied.

The principle of verification if an output
transition of a currently analyzed location is
enabled or not is illustrated in Figure 8. When
the intersection between the currently reached
region and the target region (transition guard) is
not empty, the transition is enabled. The
invariant limits the continuous evolution of the
system and is used as a stop condition for the
continuous successors computation.

Generally, two situations can be encountered:

x1

x2

RD

R0

. .
 .

R1

Rk

inv (q)

Convex region in R2

  Target region
(transition guard)

Initial region

Validation region

Continuous
  evolution

Fig. 8. Continuous dynamics in one hybrid location.

1. The target region is reached and the invariant
is also satisfied. Therefore, the transition is
can be fired.

2. The target region is not reached but the
invariant is no longer satisfied. There is
incoherence at the modeling level.

In order to illustrate the transition enabling
analysis, let us to consider a hybrid location like
illustrates Figure 9, corresponding with the
simplest case that can be encountered in a
hybrid automaton model. Namely, the case of
one hybrid location with a single input and a
single output transitions (SI&SOT – Single
Input & Single Output Transitions).

Ro
i RD

i
qi

flow (qi):
Rk+1= ϕi(Rk)
Inv(qi) ≡RI

Ti Tj

Fig. 9. Single Input Single Output Transitions.

The continuous evolution of the system in the
considered location is governed by the equation

)(1 kik RR ϕ=+ , where the region Rk+1

represents the continuous successor of Rk and it
will be computed as it was shown above. The
invariant associated with this location is is
denoted by Inv( qj ) ≡ RD. The initial region is
represented by the guard associated with the
input transition iR0  and the region for which the
reachability must be checked, is given by the
guard associated with the output transition i

ER .

Definition 4. For any hybrid automaton A, the
staying time iδ  in one hybrid location Qqi ∈
is given by the duration of stays of the system in
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the location until the output transition is
enabled.

Property 2. For any location Qqi ∈ , an output
transition Tj is enabled only if there existe a
finite value +ℜ∈iδ  for which the target region
is reached.

The value of +ℜ∈iδ depends on the initial
condition (i.e., initial region), the enabling
condition of the output transition Tj and the
trajectory defined by the flow equations in the
current location.

Property 3. If the output transition Tj is never
enabled and the invariant is always satisfied,
then the evolution of the system stays
indefinitely in the location qi (i.e., ∞→iδ ).

Remark 1. The reached region is the image of
the continuous evolution of the system in one
hybrid location, until the output transition is
enabled or the invariant conditions associated to
the location are not verified.

The reachability analysis, in the case of one
hybrid location having more than one output
transitions ends when one of its output
transitions is enabled or if the invariant
conditions associated with this location are no
longer verified. The case of hybrid locations
having multiple input and multiple output
transitions can be reduced always to the
reachability analysis for one hybrid location
having single input and multiple output
transitions. The analysis method for such
situations is presented in [10] and it will be not
detailed here.

4.4. Reachable automaton

In general, it is not possible to represent, much
less to compute, the set of all reachable states
required to build a finite transition system for a
hybrid system.

Here, we present the approach, which lets us to
obtain the hybrid automaton model in which all
the transitions are reachable by the system
evolution. This model is called the reachable
hybrid automaton. In order to be able to build
this model, the transition enabling analysis, must
be performed for the entire hybrid automaton.
We have shown that the transition enabling
analysis is in fact a reachability analysis of the
transitions guards by the system evolution.

The reachability analysis represents the central

problem in the verification of properties of
hybrid systems. This allows better knowing of
the global system evolution. Consequently, the
information concerning the hybrid system
behavior obtained by analysis will be used
further for control synthesis. Therefore, it is
necessary to retain the complete evolution of the
system. In this aim, during the reachable
automaton construction, the continuous
evolution of the system in each hybrid location
will be stored. Therefore, a trace vector is
associated with each location of the hybrid
automaton. In this vector, the initial input
condition as well as the complete evolution of
the system will be retained.

Example 4. In order to illustrate this, let us to
consider a hybrid location with one output
transition (Fig.10.a.). The output transition
drives the system state into a forbidden state
(where the specifications are no longer verified).
The initial conditions are represented by the
region R0: [1,3]x[1,7]. The continuous dynamics
are the same that in example 3. Therefore, the
continuous successors computations results in
the evolution represented in Figure 7. By
reachability analysis we can conclude that the
output transition is enabled after 3 sampling
periods and once this transition enabled, the
forbidden state can be reached.

qi

xk+1= ϕ (xk)
inv (qi) :(x1∈[1,4]
     & x2∈[1,8])

x1∉[1,4] or
x2∉[1,8] f x1∈[1,3]

& x2∈[1,7]

(a)

qi

fk := 0 k≥ 4k = 1
.

k = 0
k = 1

k = 2
k = 3

(b)

Fig. 10. Construction of reachable automaton.

In the reachable automaton, this result will be
represented by a timed location in which the
continuous evolution of the system is also stored
(Fig. 10.b.).

Usually, real systems have a cyclical evolution
in the means that the system starts from a
specified initial discrete state and after a
sequence of other discrete states, visited during
the system functioning, the system returns in the
initial state. Hence, we can conclude that each
discrete state is visited several times during the
system functioning.
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Property 3 The reachable region associated with
one discrete state is given as a union of regions
reached, by the continuous evolution of the
system, at each visit in this state.

Remark 2. Given the evolutions of the
continuous variables of the systems, the initial
condition for ne visit in a hybrid location of the
automaton is generally different from that
obtained for a previous visit.

The reachable state space for a hybrid
automaton A is determined by the union of the
continuous successors after the execution.
Therefore, the successors computation, and
consequently, the reachable state space
computation is stopped when convergence of
dynamics. However, the convergence can never
occurs explained by the fact that the reacable
state space computation is a non-decidable
problem for hybrid automaton [7]. Hence, the
global stability of the system can not be a priori
checked. Therefore, the construction of
reachable automaton is stoped when the gap
between the initials input conditions in one
hybrid location are less then a fixed precision ε.
This value impose the precision of the resulting
model.

The complete algorithm that let us to build the
reachable automaton given as a timed model
starting from an initial discrete-time hybrid
automaton is given in [10] and it will not be
detailed here.

5. CONCLUSIONS

In this paper an approach for modeling and
analyzing hybrid systems in view of supervisory
control synthesis was presented. The analysis
approach represents a generalization of the
analytical method “Clock Translation” in the
mean that propose a technique for the
construction of a reachable automaton given as a
timed model, which models only the possible
trajectories of the system. For this model the
classical theory of supervisory control can be
suitably applied and therefore the optimality of
the control results can be guaranteed.
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