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Abstract: This paper contains a new manner to simplifying nonlinear system models. The problem 
is to find a linear model so that the square error between the output of the nonlinear model and the 
output of the linear model is minimum for all considered time. To solve this problem, in the present 
paper, is suggested to use the potential capabilities of the parameter deviations and the sensitivity 
functions to compute the square error. Using sensitivity equations (models) with respect to the 
linearize parameters, it is possible, generally speaking, to obtain the sensitivity functions with 
respect to linearize parameters. Then, using a space-parameter diagram and an grapho-analytic 
method the parameters working point are funded. A particular application of the proposed 
solution is analyzed in later sections. It is about a mechanical well-known system. It is also 
suggested how this method can be combined with certain aspects of control design. 
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1. INTRODUCTION 

Nonlinear systems are more likely to be used as 
models for real-life systems. The linear models 
of nonlinear plants, around the stationary point, 
have a wide variety of applications (for example 
to analyze some properties of the stationary 
point or to design a control system for a 
nonlinear plant).  

The main goals of the present paper are:  

(i) to use sensitivities to develop a theoretical 
method to find an optimal stationary point 
(in a certain least-squares sense). This 

stationary point will be used to linearize a 
nonlinear system model. 

(ii) to apply this theoretical procedure to a class 
of affine models (a single-input plant with a 
cvasicanonical form in state-space model).  

To achieve the goals, section 2 describes 
mathematical details of two blocks of the 
structure presented in fig. 1.  

Section 3 develops a representation of the output 
block such that a quadratic index of performance 
is minimized. 

Section 4 shows how to obtain all the sensitivity 
functions with respect to parameters 
linearization.  

mailto:dpopescu@aut.utt.ro


36 CONTROL ENGINEERING AND APPLIED INFORMATICS 

 

u                     x      ξ

                      xL

Sensitivity
model

Linear
model

Nonlinear
system

COMPUTATI
ON

xo

 L
o

x
xS

 

Fig.1. The block structure to compute the values of 
the linearization point parameters. 

The manner to apply the theory above by a 
concrete case study will be explained in 
section 5.  

In section 6, conclusions and future directions 
are summarized.  

2. NONLINEAR AND TANGENT-LINEAR 
MODELS  

This section presents the nonlinear system 
model, the tangent-linear model linearized 
around the stationary point. Also, a performance 
index will be defined. 

2.1. Nonlinear system model 

Consider a system described by the nonlinear 
state-space equation 

oo )()),(),(()( xtxtutxftx ==&  (1) 

where x(t) is an n-vector representing the state 
of the system at time t, u(t) is an m-vector 
representing the control input and the n-vector 
function f depends upon u and x. Suppose that 
Λo(uo, xo) is the stationary point (at this point the 
system will not move). It is obvious that 
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A particular case of a stationary point, (m=n=1 
and output is x) is illustrated in fig.2. The input 
u(t) is constrained to have values in a certain set 
u(t) ∈ [umin, umax] for all t ∈ [to, tf]. The state of 
the system is constrained in the same manner 
x(t) ∈ [xmin, xmax], see [1]. 

Next, the main idea is to approximate a 
nonlinear system by a tangent-linear one in the 
neighborhood of Λo point. 
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Fig.2. The stationary point Λo(uo, xo) in a single 
input-output representation. 

2.2. Tangent-linear model 

A linearized model around the stationary point 
Λo(uo, xo) is obtained applying the tangent 
linearization technique to expression (1). Then 
we can write the first form of the linearized 
model 
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This model (3) can be represented in the form  
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It is relevant to remark that (xo)T can be regarded 
as a parameter-vector for the linear model (5). It 
is required to find the best nominal value for xo. 
This problem can be approached in many 
different ways. In the case under consideration 
the desired value of xo can be determined in such 
a manner that the performance index to be 
minimized. 
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3. THE COMPUTATION ALGORITHM  

The computation algorithm of xo from fig.1 is 
based on a performance index minimization 
method. 

3.1. The performance index of the quadratic 
errors  

It is convenient to call the error between the 
nonlinear and the linear models, the difference 

)();();( oLo txxtxxtξ −= .  (7) 

Both model (1) and model (5) have the same 
initial conditions. Then 

0)();();( oooLoo =−=ξ txxtxxt . (8) 

Consider now the performance index of the 
quadratic errors  
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Note that (9) is in the form of a linear functional 
and [2-3] can therefore consider it as the square 
of the norm in the Hilbert space L 2 (to, tf) or the 
inner product (dot product) between two 
identical vectors, ξξ, .  

We shall seek for a connection between the 
performance index and the sensitivity functions.  

3.2. The minimum necessary condition  

The ideal goal is to minimize the performance 
index (9) with respect to the parameter vector xo. 

The minimum condition for (9) is 
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It follows from (9) and (6) that  
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In this case equation (10) becomes  
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Because xo is an n-vector 
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It is difficult to solve the equation (11) for xo. 
This means that a more careful approach is 
needed. These operations are discussed in more 
detail in the particular case illustrated in fig.2.  

We denote by xo
* the point at which the 

functional J(xo) has a minimum. 

In order to achieve this, it is necessary to 
evaluate the definite integrals I1(xo), I2(xo) of the 
both sides of equation (12), at each given point 
xo from an infinite interval xo є [xmin, ..., xmax]. To 
make the calculation easier, it is convenient to 
replace this interval by an ordinate fixed set of k 
possible stationary (nominal) points, closely 
spaced  
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and then to use numerical computation. After all 
integrals have been evaluated we are now in a 
position to determine the solution of the 
equation (12). If it exists, this is the value xo

* for 
which the two functions I1(xo), I2(xo) coincide 
(as in fig.5 from the study case). 

3.3. Summary of sequence of calculations  

The sequence of computations for determining 
xo

* are summarized in the following steps: 

1. Describe the nonlinear system model (1) and 
the stationary point (literal). 

2. Compute (6) to find the linearize system 
model (5). 

3. Settle the possible k stationary points (14). 
Set  j = 1 and fix ε. The value of ε is a default 
tolerance. 

4. Determine the sensitivity models with 
respect to all the linearization parameters 
(see section 4). 

5. Simulate nonlinear model, linear model and 
sensitivity models for xo=xo

j. 

6. Compute I1(xo
j) and I2(xo

j), then j = j + 1. 

7. If j ≤ k, then repeat 5 and 6, else continue 
with 8. 

8. For j = 1, k 
 d =│ I1(xo

j) - I2(xo
j) │; 

 if  d ≤ ε then the desired value of xo
 is 

 xo
*

 = xo
j ;  

 else, we shall say that equation (12) has 
 no solution. 
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4. SENSITIVITY FUNCTIONS AND 
MODELS WITH RESPECT TO 
LINEARIZATION PARAMETERS 

This section presents the simplest manner to 
obtain the sensitivity functions needed to solve 
the equation (12). 

4.1. The sensitivity functions matrix with 
respect to linearization parameters  

Generally, it is relevant to remark that to solve 
xo from (12) it is necessary to compute  
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for all kjj ,1, = . In fact, (15) corresponds to the 
n×n matrix of the state-space sensitivity 
functions with respect to parameters of xo, with 
nominal values xo

j. We shall call this matrix: the 
sensitivity functions matrix with respect to 
linearization parameters (at the nominal point 
xo

j). The column i of (15) represents the 
sensitivity vector with respect to the i - 
component of the parameter vector xo
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It is obtained as state-variables (or even output-
variables) of the i-th linearization sensitivity 
model at nominal point xo

j. That will be shown 
as follows. 

4.2. The linearization sensitivity model 

Relation (13) implies that there are necessary n 
sensitivity models of the system (5) to compute 
all the n sensitivity vectors with respect to 
linearization parameter xo at nominal value xo

j. 

Since kj ,1= , then k set of n sensitivity models 
may be used to obtain all the k×n set of the 
sensitivity vectors, that means k×n×n 
linearization sensitivity functions.  

The simplest method to obtain a set of n 
sensitivity functions, presented in [4-6] is to 
obtain differential equations for the trajectory 
sensitivity functions, which may then be solved 
by computer simulation. The system of the 
differential equations for the trajectory 
sensitivity functions of the system (5) with 
respect to xo,i at nominal point xo

j will be named 
the i-th linearization sensitivity model at 
nominal point xo

j.  

Differentiating (5) with respect to xo,i (assuming 
such derivatives exist), and interchanging the xo,i 
and t partials on the left-hand side (assuming 
this is permissible), we obtain 
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To obtain the desired sensitivity functions it is 
necessary to simulate together models (17) and 
(18). Then k x n number of simulations are 
required to estimate in the best possible manner 
the value xo

* of xo that solve (12). 

4.3. The lowest number of the linearization 
sensitivity models 

It is of considerable practical and theoretical 
interest to obtain the linearize sensitivity 
functions by using the lowest number of 
simulations possible.  

In this section, we shall restrict our attention to 
the simplest form of nonlinear system model. 
This is the particular case of the single-input 
nonlinear system with a cvasicanonical form 
(later we explain this term) in state-space model 
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In this case it is easy to remark that xo can be 
regarded as a scalar. Then, the stationary point 
Λo has the coordinates (uo, xo, 0,...,0), where uo 
fulfils the condition 

( ) )(,0,0,,0, oooon tuuuxf ==K . (22) 

For (20), around the stationary point Λo, the 
linear model can be described by (5) with initial 
conditions (4), rewritten in the form  
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The companion canonic form of the matrix 
A(xo) explains the term cvasicanonical form 
previously used. For convenience, let us 
introduce the (28) notation. 
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Then relations (24) become 
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The initial conditions for (23) are given by 
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Following the above reasoning, only a single 
linearization sensitivity model has to be 
obtained for each nominal value xo
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where I1 is a n×1 -vector and 
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The term  needed as input in (28) may 
be obtained from (23), and (24) making x

);( j
oL xtx

o = xo
j. 

It is interesting to observe that in the case under 
consideration there are necessary k simulations 
to obtain all the k×n sensitivity functions 
required to solve equation (12). 

It is necessary an example to appreciate the 
quantitative aspect of the theoretical approach 
described above.  
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5. CASE STUDY 

In this section, a numerical example will be 
presented in detail.  

5.1. Analytical models 

Consider the second order nonlinear system 
described in [7-8] by the following equation 
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were y(t) is the measured output variable, 
y∈[1·10-3m  3·10-2m], Fe(t) is the input function 
Fe∈[300,45N   3000N] and α = [m, Ka, a, b ]T = 

= [300kg, 6·104 N·s/m, 3157,2 N, 100 m-1] is the 
parameter vector, well known. 

Define states x1, x2 such that 
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The stationary point Λo(Fe,o, xo, 0), fulfils the 
condition 
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The real nonlinear system (33), (34) may be 
approximated around the stationary point Λo by 
the tangent-linear model  
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Consider now that the linear model (37) ha
single parameter,  xo,  xo є Xo , 
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The output responses, y = x1 and xL,1, for an 
input step function are shown in figure 3.  

 

Fig.3. The nonlinear and linearized systems time 
responses. 

The linearization sensitivity model (28) takes 
the form (after combining similar terms) 
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It is necessary to simulate together models (40) 
and (37), obviously for each  xo є Xo, to compute 
and plot the two functions I1(xo), I2(xo) of the 
two sides of (12). 

5.2. Simulations and results 

As has been shown above, six number of 
simulations are required to estimate in the best 
possible manner the value xo= xo

* that solve (12). 
In fact this number is double. Two simulations 
for each xo

j are necessary, to touch the lower 
limit xmin and the upper limit xmax of x(t). (
37)
38) 

s a 

Those simulations can be performed with the aid 
of MATLAB - SIMULINK computer programs. 
All the simulations were performed with the 
step-input functions. The time interval of 
simulations [to=0, tf ] is fixed in such a way that 
all (and only) the transient responses are 
included. 
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The numerical results obtained by simulations 
are presented in table 1 and the graphical results 
are shown in figures 4 and 5. Thus, figure 4 
illustrates the variations of the two functions 
I1(xo) and I2(xo), with respect to xo and figure 5 
gives the performance index J(xo).  

 

Fig.4. The I1, I2 dependencies with respect to xo. 

Table 1. The computed values by simulations.  

xo

[m] 

I1

[ms] 

I2

[ms] 

J 

[m2s] 

0.001 5.4752·10-2 3.0852·10-2 2.5258·10-4

0.005 4.6860·10-2 3.4403·10-2 1.6302·10-4

0.010 3.9651·10-2 4.2642·10-2 3.9241·10-4

0.015 3.0799·10-2 5.3125·10-2 1.0218·10-3

0.020 2.1897·10-2 6.0808·10-2 1.7820·10-3

0.025 1.5120·10-2 6.1546·10-2 2.4746·10-3

We are now in a position to determine the value 
of xo

*. We observe that in this example, the 
equality I1(xo) = I2(xo) is satisfied for xo

*. Since 
both I1(xo) and I2(xo) are monotonic a faster 
interpolation was used to find xo

*. 

Therefore, the function J(xo) reaches its 
minimum at 

xo
* ≈ 9.0318·10-3 m,  J(xo

*) ≈ 3.2320·10-4. (41) 

In this case the solution was unique. 

Accuracy is limited by the number of the initial 
data set Xo and by the tolerance of computer 
calculations. 

The values of J and the figure 5 have been made 
only to confirm the correctness of the procedure 
above and to verify that xo

* is the desired 
solution.  

It should be observed that a small number of 
simulations and computations are necessary to 
find xo

* by using the procedure specified above 
in this paper then in an elementary manner from 
J(xo). 

The most general conclusions and how the 
method described above can be extended are 
shown as follows. 

 

Fig.5. The performance index J with respect to xo. 

6. CONCLUSIONS AND FUTURE 
DEVELOPEMENTS 

The method developed provides a promising 
tool for a variety of problems, including linear 
or nonlinear systems optimization. An 
application to a composite system, whether it is 
linear or nonlinear, is straightforward. The 
effectiveness of the method is illustrated by 
examining a typical example. Since the 
procedure is completely systematic, it can 
efficiently be used in a computer-programmed 
computation. 

MATLAB is the best interactive program to help 
us with numeric computation. As an extension 
of MATLAB, Simulink is a tool for modeling, 
analyzing and simulating mathematical system 
models, linear and nonlinear. Those are the 
reasons that recommend them to be used in this 
paper. 

To appreciate the main advantages of the theory 
here developed, it suffices to observe that for a 
controllable single input linear model (system) 
described by the state equations (1) a 
nonsingular transformation in almost cases 
(always for linear systems) exists such that a 
cvasicanonical model (20) can be made. It is 
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clear that the theory is valid for the most general 
nonlinear systems of interest. 

Several other linear functionals, very useful 
from the practical point of view, can be 
considered as well as performance index in 
further approach, in a way analogous to that. 
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