
CEAI, Vol.13, No.4, pp. 64-73, 2011 Printed in Romania

Tuning and Implementation of PID Controllers using Rapid Control Prototyping

Radu Duma, Mirela Trusca, Petru Dobra

Automatic Control Department, Technical University of Cluj–Napoca
(e-mail: radu.duma@aut.utcluj.ro, mirela.trusca@aut.utcluj.ro, dobra@aut.utcluj.ro)

Abstract: The paper presents a Rapid Control Prototyping (RCP) toolbox for Scilab/Scicos, which
generates real-time C code using RTAI-Lab. The toolbox contains three main blocks: PID controller,
Fractional Order PID (FOPID) controller and Least Mean Square (LMS) adaptive filter. Using the
implemented toolbox two closed loop control systems using a PID and a FOPID controller are
implemented. For tuning the PID controller the relay feedback tuning method and a robust experimental
tuning method are used. For the FOPID controller tuning an experimental tuning method is implemented.
Keywords: rapid control prototyping, PID controller, fractional order PID controller, controller tuning,
closed loop, relay feedback.

1. INTRODUCTION

Rapid Control Prototyping (RCP) refers to the use of rapid
prototyping for the implementation and testing of control
algorithms in a real-time environment. It is a usual
application for engineers which model and simulate control
systems. RCP requires two components: a Computer Aided
Control System Design (CACSD) software and a dedicated
hardware, capable of running tasks in real-time. Using Linux-
RTAI (Bucher et al., 2004) the CPU of the PC becomes the
RCP destination. An acquisition card can be used as an
input/output interface with the process to be controlled

CACSD tools are extensively used to generate real-time code
automatically. The graphical programming approach removes
the need to write software by hand and allows the engineer to
focus instead on improving functionality and performance.
Complete system design is carried out within the simulation
environment. An RCP toolbox has as its main feature the
concept of automated code generation, which refers to the
translation of the model of a control algorithm into source
code. Automated code generation is considered to be the fifth
generation in software evolution (Erkkinen, 2003).

We have implemented an RCP toolbox for Scilab/Scicos,
which generates real-time C code for Linux-RTAI, using
RTAI-Lab. The toolbox can be used for system identification
and control and has the abbreviation SIC. The code generated
from the blocks of the toolbox is not dependent on the
acquisition card used for the input/output related
functionality. In order to test the implemented toolbox two
experimental PID controller tuning methods and a Fractional
Order PID (FOPID) experimental tuning method are
implemented. The closed loop performances obtained with
the three controllers are compared. Using RCP the engineer
does not have to write code by hand, but can concentrate on
improving the performance and the efficiency of the control
algorithm.

In the industry control loops of PI and PID type are
extensively used. The reason for which the PID controller is
so widely used is its simple structure which has proved to be

very robust with regard to many commonly control problems.
The experimental tuning methods used for the PID controller
are: the relay feedback method (Astrom and Hagglund, 1984)
and a robust experimental tuning method (Chen and More,
2005).

Fractional order calculus is used in a wide range of science
and engineering fields, especially for fractional-order
systems. Fractional controllers are a research topic also in the
field of control systems (Machado, 1997; Petras et al., 1998;
Podlubny, 1999). Xue et al., (2006) presented a case study for
FOPID control of a DC motor with elastic shaft. Barbosa et
al. (2008) investigated several types of FOPID controllers for
a laboratory servo system. Feliu et al. (2008) used a robust
FOPID controller for a main irrigation canal pool. All the
above mentioned papers do not offer a practical
implementation of the fractional order PID controller and of
the closed loop control algorithm, presenting only simulation
results. This paper presents a practical implementation of a
FOPID controller and the control of a process implemented
on an analog computer.

The structure of the paper is presented below. In section 2
some of the relevant work related to RCP is presented.
Section 3 describes the implemented RCP toolbox, presents
the hardware test setup used for testing the toolbox and
describes the translation process from block diagram to
source code. In this section the transfer function of a DC
motor is defined. This transfer function is implemented on an
analog computer and is the process for which the PID and
FOPID controllers are tuned. In section 4 the PID block of
the implemented toolbox is described. The equations used for
the implementation of the computation function of the block
are presented. In section 5 the relay feedback method is used
for tuning a PID controller for the process defined in section
3, while in section 6 a robust experimental tuning method for
PID controllers is presented and used for the same process. In
section 7 the FOPID block implemented in the RCP toolbox
is presented and the discrete equations used for the
implementation of the computation equation of the block are
described. In this section also a FOPID controller is tuned for

CONTROL ENGINEERING AND APPLIED INFORMATICS 65

the process defined in section 3. Section 8 presents
conclusions and final remarks.

2. RELATED WORK

In this section the most significant work related to RCP is
presented.

Matlab/Simulink/Realtime-Workshop is a powerful but
expensive CACSD tool. MathWork’s developed toolboxes
for some wildly used targets: Motorola MPC555, Infinion
C166, C2000 and C6000 DSP families from Texas
Instruments. Rebeschiess (1999) developed the MICROS
toolbox for standard 80C166 micrcontrollers. A low cost
DSP based RCP system for engineering education and
research using as CACSD tool Matlab/Simulink is presented
in (Hercog et al., 2006). Microchip (2009) developed a
Matlab RCP toolbox for the dsPIC33 Digital Signal
Controllers (DSC), while Kerhuel (2009) developed a
toolbox which offers support for several Microchip
microcontrollers and DSCs. Duma and Dobra implemented a
RCP toolbox for the Renesas M32C87 microcontroller
(Duma et al., 2010)

A free, open source, solution is based on Scilab/Scicos
(Campbell et al., 2009) and Linux-RTAI, which uses the
processor of a general purpose computer for executing real-
time tasks. A real-time patch is applied to the standard Linux
kernel. A modified version of the Scicos code generator,
RTAI-Lab generates hard real-time code compatible with
Linux-RTAI.

Ravn (2006) implemented an adaptive control toolbox, for
Scilab/Scicos, which can be used for RCP. A target supported
in Scilab/Scicos is the Microchip dsPIC DSC microcontroller
([Evidence]).

National Instruments LabVIEW graphical code can be used
to develop ARM microcontroller embedded applications for
the Stellaris LM3S88962 using the LabVIEW Embedded
Module for ARM Microcontrollers (National Instruments,
2010).

3. RCP TOOLBOX FOR SCILAB/SCICOS AND LINUX-
RTAI

The software tool chain used for the implemented RCP
toolbox presented in this paper is an open-source community
work, so no license is required. Scilab/Scicos is a free
CACASD software developed by INRIA (Institut National de
Recherche on Informatique et on Automatique) and ENPEC
(Ecole Nationale des Ponts et Chaussee). RTAI and the Linux
distribution are also „open-source” softwares.

An RCP system must have the capability of running tasks in
real-time. The standard Linux distributions like: Fedora,
Ubuntu, Debian are not real-time operating systems (OS),
mainly due to: time-sharing, the lack of preemption of the
kernel, virtual memory and cache problems. In order to make
Linux a real-time OS a hard real-time patch, Linux-RTAI,
must be applied to the standard Linux kernel. Linux-RTAI
was developed at the Dipartimento di Ingeneria Aerospaziale
del Politecnico di Milano. The COMEDI project provides
drivers, library functions and an application programming

interface to interact with signal acquisition hardware.
Hundreds of devices are supported.

The SIC toolbox (Fig. 1) can be used for system control and
identification and consists of three main blocks: PID
controller, Fractional Order PID controller and Least Mean
Square adaptive filter. The toolbox also has blocks for the
generation of Pseudo Random Binary Sequences (PRBS), for
dead band generation and for the generation of a constant
signal.

Fig. 1. The System Identification and Control RCP toolbox

A hardware test setup (Fig. 2) is implemented in order to test
the RCP toolbox. The computer used is not a powerful one. It
has a CPU speed of 700MHz, so hardly could it be used for
other purposes. The real-time patch is applied to a Fedora 8
Linux distribution. An AT-MIO-16E-10 acquisition card
from National Instruments is used. The board has to be
connected on the ISA bus of the PC.

All the aspects presented above make of this RCP solution a
low cost but flexible and powerful real-time environment for
testing and implementing control algorithms.

Fig. 2. The hardware test setup

66 CONTROL ENGINEERING AND APPLIED INFORMATICS

The control model is implemented in Scilab/Scicos. The
automatic code generation is performed directly from the
Scicos scheme through the RTAI codegen menu option. This
option leads to a binary executable which is a real-time
implementation of the control algorithm and which can be
monitored using a virtual oscilloscope, Xrtailab. Xrtailab
allows changing different parameters of the control scheme
online, without a new compilation.

The bock diagram for a closed loop control algorithm is
presented in Fig. 3.

Fig. 3. Block diagram of a closed loop control system

Corresponding to the diagram presented in Fig. 3, a Scicos
closed loop control model is presented in Fig. 4.

Fig. 4. Scicos model for closed loop control with PID
controller

The reference rectangular signal is applied on the reference
input port of the PID block, implemented in the toolbox
presented in this paper. The PID block is described in section
4. The output of the process is acquired using the Comedi
A/D Scicos block, for analog to digital conversion, and is
applied on the feedback port of the PID block. The PID block
computes a new value for the control signal, which is applied
at the input of the controlled process using a Comedi D/A
block. Using a Scope block the rectangular reference input
signal and the response of the process can be visualized.

From the model implemented in Fig. 4, using the Scicos
RTAI Codegen menu, real-time code is generated. The code
runs on the processor of the PC and the acquisition card is
used as an input/output interface with the process through the
Comedi A/D and Comedi D/A Scicos blocks.

The generic transfer function of an electric motor, used in a
positioning system, is implemented on the analog computer
(Meda 43HA):

)1)(1(

1)(
++

=
sTsTs

sH
me

 (1)

where 005.0=eT s is the electrical time constant and

5.0=mT s is the mechanical time constant, which is the
ration between the moment of inertia and the viscous friction
coefficient BJ . The integral component of the transfer
function is typical for a positioning system, being the relation
from angular velocity to angular position of the rotor.

Corresponding to the block diagram presented in Fig. 3, the
process used in this paper is the one defined in equation (1).
For this process the two experimental PID tuning methods
and the FOPID tuning method are implemented.

4. PID CONTROLLER

In this section is described the PID block implemented in the
RCP toolbox presented in this paper. This block is used for
the implementation of closed loop control Scicos model with
PID algorithm (Fig. 4). The parameters of the PID controller
are determined using the methods presented in sections 5 and
6.

The standard equation of a PID controller is presented below:









++= ∫

t

d
i

p dt
tdeTde

T
teKtu

0

)()(1)()(ττ (2)

where)()()(tytyte ref −= is the error signal refy is the
set point and y is the output of the process.

During years of research several modifications have been
done to the standard PID controller structure. A pure
derivative gives a very large amplification of measurement
noise. The gain of the derivative must thus be limited, by
low-pass filtering the derivative term, resulting in a limited
gain N at high frequencies. N is typically in the range of 3-20.
Only a fraction β of the reference signal acts on the
proportional part, while the derivative component acts only
on the output of the process, not on the error signal.

If the derivative operator
dt
dp = is introduced, equation (2)

becomes:









+

−+−=)(
1

)(1))()(()(ty
NTp

pTte
pT

tytyKtu
d

d

i
refp β (3)

In order to obtain a discrete form of equation (3) the rules
presented below are used.

The proportional part))()(()(tytyKtP refp −= β requires
no transformation since it is purely static.

In the case of the integral part ∫=
t

ip deTKtI
0

)()(ττ the

integration can be approximated using:

∫∫∫∫ +≅+=
++ t

s

Tt

t

tTt
teTdededede ss

000
)()()()()(ττττττττ

which gives the forward time discretization rule:

)()()(teTTKtITtI isps +=+ .

CONTROL ENGINEERING AND APPLIED INFORMATICS 67

The derivative component:

dt
tdyTKtD

dt
tdD

N
T

dp
d)()()(

−=+

is approximated using backward differences:

s

s
dp

s

sd

T
TtytyTKtD

T
TtDtD

N
T)()()()()(−−

−=+
−−

which gives the approximation:

))()(()()(s
sd

dp
s

sd

d Ttyty
NTT
NTK

TtD
NTT

TtD −−
+

−−
+

=

The structure of the PID controller with integrator anti-
windup is shown in Fig. 5.

Fig. 5. The structure of the PID controller with anti-windup

Taking into consideration the above remarks, the PID
algorithm can be described by the following equations:

))()(()(nynyKnP refp −= β
))()1(()1()(nynynDnD dd −−+−= βα (4)

)()()()(nDnInPnv ++=
))()(())()(()()1(nvnunynynInI trefi −+−+=+ ββ

where ()sddd NTTT +=α , () ()sddpd NTTNTK +=β ,

ispi TTK=β and tst TT=β .

In the above realations Kp is the proportional gain, Ti is the
integration time, Td is the derivative time, Tt is the integral
correction time and Ts is the sampling time.

Each Scicos basic block is defined by two functions: a
computational function, normally written in C, and a function
which handles the interactions with the editor. Equations (4)
were used to implement the discrete PID controller
computational function in C.

For the PID controller the following parameters have to be
chosen: Kp, proportional gain; Ti integration time; Td
derivative time; β fraction of control signal; N high frequency

limiter of derivative action; umin minimum saturation value;
umax maximum saturation value; and Ts sampling time. In
Fig. 6 is presented the Set Block properties window for
setting the parameters of the PID controller.

Fig. 6. Window for setting the parameters of the PID
controller

5. RELAY FEEDBACK METHOD

Astrom and Hagglund (1984) proposed an extension of the
Ziegler-Nichols method. In order to obtain the limit cycle the
process must not be brought at the stability limit, but a
nonlinear feedback of relay type is introduced in the control
loop (Fig. 7). Results using the relay feedback method are
presented in (Besancon-Voda, 2002).

Fig. 7. Block diagram of the relay feedback method

The relay feedback causes the process to oscillate with
controlled amplitude. From the limit cycle the period of
oscillation, also known as ultimate period uT is read. Based
on the describing function of the relay, the relation for the
ultimate gain uK is determined:

a
dKu π

4
= (5)

where a is the amplitude of the limit cycle, and d is the
amplitude of the output signal of the relay. In order to obtain
the limit cycle the amplitude of the output signal of the relay,
d, has to be changed. After determining the ultimate period

uT and the ultimate gain uK based on the Ziegler-Nichols
table for the ultimate period method the parmeters of the PID
controller are computed. The relations for determinng the
paramenters of the controller are: up KK 6.0= , 2ui TT =

and 8ud TT = . The computed paramters are introduced in
the graphical user interface presented in Fig. 6.

The Scicos model implemented for the relay feedback
method is presented in Fig. 8. From this model using the
Scicos RTAI Codegen menu, real-time code is generated.
Using the Scope Scicos block, the reference rectangular

68 CONTROL ENGINEERING AND APPLIED INFORMATICS

signal and the response of the system can be logged and
visualized with the virtual Xrtailab oscilloscope (Fig. 9).

Fig. 8. Scicos diagram for relay feedback method

Fig. 9. The controlled oscillation of the process using the
relay feedback method

From Fig. 9 it can be observed that the system oscillates both
at the low and high levels of the reference rectangular input
signal. The Xrtailab software has an option which allows the
user to save the displayed data to a file. Using this feature the
limit cycle which is the output of the process implemented on
the analog computer and acquired using a Comedi A/D block,
is stored to a file and processed in Scilab in order to compute
the parameters of the PID controller. The limit cycle obtained
when the reference signal is at the low level is presented in
Fig. 10.

Fig. 10. Limit cycle obtained using the relay feedback
method

From Fig. 10 the critical period Tu is determined and the
ultimate gain Ku

In order to prove the correctness of the implemented
algorithms for controller tuning and for closed loop control,
snapshots are taken with an oscilloscope. Using the probes of
the oscilloscope, signals are measured on the expansion pad
of the acquisition card. For the two algorithms, the signal

generated from the PC using the digital to analog converter of
the acquisition card and the output of the process
implemented on the analog computer are measured. In Fig.
11, corresponding to the Scicos model presented in Fig. 8, are
shown in the upper part of the snapshot the output of the
relay generated with the Comedi D/A block and in the lower
part of the snapshot the obtained limit cycle, which represents
the output of the process implemented on the analog
computer.

 is computed using (5). The same procedure
is applied for the limit cycle obtained when the reference
signal is high. An average between the ultimate gain and the
ultimate period obtained for the two limit cycles is computed.

Fig. 11. The control signal (the output of the relay) and the
output of the process when using the relay feedback method

Using the Ziegler Nichols relations the parameters of the
controller are determined and the step response is shown in
Fig. 12. The data is logged using the Xrtailab virtual
oscilloscope.

Fig. 12. The response of the closed loop system using a PID
controller tuned using the relay feedback method

In Fig. 13, corresponding to the Scicos model presented in
Fig. 4, are shown in the upper part of the snapshot the output
of the PID controller which represents the control signal and
in the lower part of the snapshot the closed loop response of
the process to a rectangular reference signal.

The response time of the closed loop system is 12 seconds
and the overshoot is 35%. The performances obtained with
the extended Ziegler-Nichols method are acceptable for the
presented example.

CONTROL ENGINEERING AND APPLIED INFORMATICS 69

Fig. 13. The control signal and the output of the process for a
closed loop system with a PID controller tuned with the relay
feedback method

6. ROBUST EXPERIMENTAL TUNING METHOD

Chen and More (2005) proposed for controller tuning a
robust tuning method. The method is based on the condition
that the phase Bode plot at a specified frequency cω (referred
to as “tangent frequency”) at the point where sensitivity circle
touches Nyquist curve is locally flat which implies that the
system will be more robust to gain variations. Their paper
presents a new tuning rule which gives a new relationship
between Ti and Td instead of the equation Ti = 4Td

The PID controller determined using this tuning method
yields a faster closed loop system only if a higher frequency
of oscillation (that in the case of the previous tuning method)
can be determined. Also this frequency has to be invariant
with respect to the introduced dead time.

, proposed
in the modified Ziegler-Nichols methods ((Hagglund and
Astrom, 1995), (Hang et al., 1991)).

After the initial selection of the tangent frequency cω and of

the tangent phase mγ using an iterative algorithm the

phase)(cjP ω∠ and the module)(cjP ω of the process
can be estimated. The derivative of the phase of the open
loop system)(cps ω can be approximated by Bode’s Integral
(Karimi et al., 2002):

|])(|ln||[ln2)()(cgccp jPKjPs ω
π

ωω −+∠≈ (6)

where)0(PKg = is the static gain of the process.

The equations for determining the parameters of the PID
controller, as described in Chen and More (2005), are
presented below:

()
() ()()cmc

m
p

jPjP
K

ωγω

γ

∠−+
=

2tan1

cos

() ()











Φ+






Φ+

−
=

cpcpc

i

ss
T

ωωω
^

2
^

tantan

2
 (7)

iccp

cpci

Ts
sT

Td 2)(2
)(2

ωω
ωω ∆++−

=

where: ()cm jP ωγ ∠−=Φ
^

 and

)(4)(8 22222
cpcicicpci sTTsT ωωωωω −−=∆

In order to estimate the phase and the module of the process
at the desired frequency a closed loop system with relay and
time delay has to be implemented (Fig. 14).

Fig. 14. Block diagram of a system with relay and dead time

The iterative algorithm described in detail in Chen and More
(2005) is implemented in order to tune the parameters of the
PID controller. The frequency of oscillation caused by the
relay can be changed by introducing an artificial dead time on
the direct path. Starting with the selected tangent frequency
and using an iterative method, the dead time corresponding to
the desired frequency is determined.

The selection of the value for cω depends on the dynamic of
the process for which the controller must be tuned. For the
majority of the processes there is an interval for the selection
of cω in order to realize the flat phase condition. If this

interval is not known the initial selection for cω can be the
cuttoff frequency. In order to tune a controller for the process
defined in (1) are considered 42.2=cω rad/s and

45=mγ .

The desired frequency is computed using the
relation: un Tπω 2= , where uT represent the ultimate
period, which is determined from the limit cycle. The module
of the process is estimated using the
relation: un KjP 1)(=ω , where uK is the ultimate gain
determined using (5). The phase is computed using the
relation θωπω nnjP +−=∠)(, where θ represents the
dead time for which the desired frequency is obtained.

In order to determine the parameters of the controller, the
Scicos model presented in Fig. 15, corresponding to the block
diagram presented in Fig. 14 is implemented. The output of
the process is acquired using a Comedi A/D Scicos block. The
difference between the reference signal and the output of the
process is applied at the input port of a relay with hysteresis

70 CONTROL ENGINEERING AND APPLIED INFORMATICS

Scicos block. After the relay a Variable delay Scicos block is
used for the implementation of the dead time.

Fig. 15. Scicos model for the closed loop system with relay
and dead time

The rectangular reference signal and the output of the process
are logged and visualized with the virtual oscilloscope
Xrtailab (Fig. 16).

Fig. 16. The controlled oscillation of the closed loop system
with relay and dead time

As in the case of the relay feedback method an average
between the ultimate gain and the ultimate period obtained
for the two limit cycles are computed and the average values
are used for computing the parameters of the PID controller.
The limit cycle corresponding to the desired frequency,
obtained for a low reference signal, is presented in Fig. 17.

Fig. 17. Limit cycle obtained using the closed loop system
with relay and dead time

As in the case of the relay feedback method, in order to prove
the correctness of the implemented method the signal
generated from the PC using the digital to analog converter of
the acquisition card and the output of the process are captured
using an oscilloscope. In Fig. 18, corresponding to the Scicos
model presented in Fig. 15, are shown in the upper part of the
snapshot the output of the relay generated with the Comedi
D/A block and in the lower part of the snapshot the limit
cycle corresponding to the desired frequency, which

represents the output of the process implemented on the
analog computer.

Fig. 18. The control signal (the output of the relay) and the
output of the process for a closed loop system with relay and
dead time

From the obtained limit cycle the phase and the module of the
process are estimated and ps is computed using (6). The
parameters of the controller are computed using (7). The
response of the closed loop system with the determined PID
controller, at a rectangular reference signal is presented in
Fig. 19.

Fig. 19. The response of the closed loop system using a PID
controller tuned with the robust tuning method

In Fig. 20, corresponding to the closed loop Scicos model
presented in Fig. 4, are shown in the upper part of the
snapshot the output of the PID controller which represents the
control signal and in the lower part of the snapshot the closed
loop response of the process to a rectangular reference signal.

The response time of the closed loop system is 7 seconds, and
the overshoot is 37%. Using this method the response time
decreases and the overshot slightly increases. The robust
tuning method assures a faster response time compared to the
relay feedback tuning method.

7. FOPID CONTROLLER

This section describes the FOPID block implemented in the
RCP toolbox presented in this paper.

CONTROL ENGINEERING AND APPLIED INFORMATICS 71

Fig. 20. The control signal and the output of the process for a
closed loop system with a PID controller tuned with the
robust tuning method

In the literature there are very few papers which present
practical implementation of fractional order PID controllers
and the control of a real process using such a controller. This
difficulty is caused by the mathematical nature of the
fractional order operators which are defined by convolution
and require “unlimited” memory. The paper (Petras et al.,
2003) presents some practical aspects of the implementation
of a FOPID controller on a microcontroller.

In the case of the FOPID controller implemented in this
paper, due to the fact that the generated real-time executable
runs on the processor of a PC, the memory constraints are not
so critical, and thus an optimal implementation of the
fractional order PID controller is possible.

7.1 FOPID controller implementation

Fractional calculus is a generalization of integration and
differentiation to non-integer order fundamental operator

α
ta D , ℜ∈α , where a and t are the limits of the operation.

Podlubny (1999) proposed the differential equation for PIλ Dµ

ααµλ
ttatdtip DDteDKteDKteKtu 0),()()()(≡++= −

FOPID:

where pK is the proportional gain, ipi TKK = is the

integration gain, iT is the integration time, dpd TKK = is

the derivative gain, dT is the derivative time, λ and µ are
the integral and the derivative orders respectively.

For an accurate implementation of a FOPID algorithm all the
past errors should be memorized. There are two discretization
methods used for FOPID controllers: direct discretization and
indirect discretization. In indirect discretization methods,
frequency domain fitting in continuous time domain is
performed first and afterwards the fit s-transfer function is
discretized. Several direct discretization methods by finite

differences or differential equations were proposed in recent
researches, such as: Short memory principle, Tustin
Expansion, Lagrange function interpolation method (Chen
and More, 2002). Derived from Grunwald-Letnikov
definition, the numerical calculation formula for fractional
derivative can be achieved as:

 ∑
=

− −≈
]/[

0
)()(

TsL

j
sistLt jTtxcTtxDα (8)

where L is the length of the memory and sT is the sampling

time. The weighting coefficient jc can be calculated
recursively by:
 ()() 111 −+−= jj cjc λ (9)

Using (8) the discrete equation for the FOPID controller is
obtained:

∑ ∑
= =

−
−

− ++=
n

j

n

j
jnjsdjnjsinpn edTKeqTKeKu

0 0

µλ (10)

where the weighting coefficients jq and jd are calculated
using (9).

For the FOPID controller the following parameters have to be
chosen: pK proportional gain; iT integration time; dT

derivative time; minu minimum saturation value; maxu

maximum saturation value; λ fractional integral coefficient;
µ fractional derivative coefficient; and sT sampling time. In
Fig. 21 is presented the Set Block properties window for
setting the parameters of the FOPID controller.

Fig. 21. Window for setting the parameters of the FOPID
controller

Equation (10) is used for the implementation of the
computation function of the FOPID controller block.

7.2 FOPID controller tuning

The FOPID controller, has five parameters which can be used
to tune the controller, thus a higher flexibility can be
achieved, than in the case of a classical PID controller. Due
to this reason we expect to obtain with the FOPID controller
better closed loop performances that the ones obtained with
the two previously determined PID controllers.

72 CONTROL ENGINEERING AND APPLIED INFORMATICS

A FOPID controller is tuned for the process defined in (1).
Many papers related to tuning methods for FOPID controllers
are published in the literature. Although a simple tuning rule,
as in the case of PID controllers, does not exists. Barbosa
(Barbosa et al., 2008) proposed an experimental method for
tuning FOPID controllers. The starting point are the
parameters determined by using Ziegler-Nichols methods.
The parameters of the controller are varied until a satisfactory
system response is obtained. In order to tune the parameters
of the FOPID controller this method is used and the closed
loop Scicos model presented in Fig. 22 is implemented.

Fig. 22. Scicos model for closed loop control using FOPID
controller

The step response of the closed loop system, with the
determined FOPID controller, is shown in Fig. 23. The data
is logged using the virtual oscilloscope.

Fig. 23. Closed loop step response using the determined
FOPID controller

In Fig. 24 are measured using a digital oscilloscope the
output of the FOPID controller, which represents the control
signal, in the upper part of the snapshot and in the lower part
of the snapshot the closed loop response of the process to a
rectangular reference signal.

The response time of the closed loop system is 5.5 seconds,
and the overshoot is 22%. With the FOPID controller both
the response time and the overshot decreased. Thus the
FOPID controller outperforms the two PID controllers tuned
in the previous sections of this paper.

8. CONCLUSIONS

The paper presented the practical implementation of three
tuning methods. The process is implemented on an analog
computer and for the implementation of the control system
rapid control prototyping is used. The generated code runs in

real-time on the processor of a PC. An AT-MIO-16E-10
acquisition card is used as input/output interface with the
controlled process.

Fig. 24. The control signal and the measured output signal for
a closed loop system with FOPID controller

A contribution of this paper is the implementation of a rapid
control prototyping toolbox for Scilab/Scicos which
generates real-time C code for Linux-RTAI. The real-time
generated code is not dependent on the acquisition card used
for input/output interface. A discrete implementation for PID
and FOPID controllers is presented. This toolbox is a low
cost and flexible RCP solution. The main disadvantage of this
RCP approach is that the process of compiling a new Linux
kernel and installing all the necessary software packages
requires advanced Linux operating system knowledge.

Another contribution is the implementation of a Scicos block
for the FOPID controller which is used for automatic code
generation. Since the real-time generated executable runs on
the processor of a PC, the memory constrains are not so
critical, and thus an efficient implementation of the fractional
order PID algorithm was possible.

Since the process used for controller tuning and closed loop
control is implemented on an analog computer the solution
presented in this paper is similar to the concept of Processor-
In-the-Loop (PIL). In the case of PIL the process is simulated
on the PC, using a software like Simulink, and the code runs
on the target processor. In the case presented in this paper the
real-time code runs on the processor of the PC and for
input/output related functionality an acquisition card is used.
There are two main advantages of this solution with respect
to the classical PIL concept. The first one is the analog
implementation of the process which is not numerically
simulated. The second one is that the performance of the
closed loop control algorithm is not affected by the
quantization effect of the analog to digital and digital to
analog converters and quantization effect of finite word
length.

The implementation effort in the case of the robust tuning
method was reduced by using RCP. The obtained practical

CONTROL ENGINEERING AND APPLIED INFORMATICS 73

results outline the advantages of this tuning method despite
the implementation effort.

The process of tuning the parameters of the FOPID controller
and the practical implementation of the controller was done
using RCP. Taking in to consideration the practical obtained
performances we will continue our research work in order to
implement a FOPID controller on a microcontroller.

ACKNOWLEDGMENT

This paper was supported by the project “Progress and
development through post-doctoral research and innovation
in engineering and applied sciences– PRiDE - Contract no.
POSDRU/89/1.5/S/57083", project co-funded from European
Social Fund through Sectorial Operational Program Human
Resources 2007-2013.

REFERENCES

Astrom, K. and Hagglund, T. (1984). Automatic tuning of
simple regulators with specifications on phase and
amplitude margins. Automatica, 20, 9, 2555−2562.

Barbosa, R. S., Machado, J. A. T., and Jesus, I. S. (2008). On
the Fractional PID Control of a Laboratory Servo
System. Proceedings of the 17th IFAC World Congress,
15273−15278.

Besancon-Voda, A. (2002). Periodic modes analysis in a two-
relay feedback system. Journal of Control Engineering
and Applied Informatics, 4, 3, 47-59.

Bucher, R., Dozio L. and Mantegazza P. (2004). Rapid
Control Prototyping with Scilab/Scicos and Linux RTAI.
Scilab Conference.

Chen, Y. Q. and Moore, K. L. (2002). Discretization
schemes for fractional-order differentiators and
integrators, IEEE Trans. on Circuits and Systems, vol.
49, no. 3, pp. 363-367.

Chen, Y. and Moore, K. L. (2005). Relay feedback tuning of
robust PID controllers with iso-damping property, IEEE
Transactions on Systems, Man, and Cybernetics, Part B,
35, 23-31.

Campbell, S. L., Chancelier, J. P., and Nikoukhah, R. (2009).
Modeling and simulation in Scilab/Scicos with ScicosLab
4.4, Springer.

Duma, R., Trusca, M., and Dobra, P. (2010). “BLDC Motor
Control using Rapid Control Prototyping,” in Journal of
Control Engineering and Applied Informatics, 12, 1, 55-
61.

Erkkinen, T. (2003). High-integrity production code
generation. AIAA GN&C Conference.

Feliu, B. V., Rivas, P. R., Sanchez, R. L., Castilio, G. F. J.,
and Linarez, S. A. (2008). Robust Fractional Order PI

Controller for a Main Irrigation Canal Pool. Proceedings
of the 17th IFAC World Congress, 15535−15540.

Hagglund, T., Astrom, K. J. (1995) PID Controllers: Theory,
Design, and Tuning. ISA -The Instrumentation, Systems,
and Automation Society, 2nd ed.

Hang, C. C., Astrom, K. J., and Ho, W. K. (1991),
Refinements of the Ziegler-Nicholstuning formula, IEEE
Proceedings D Control Theory and Applications, 138,
111-118.

Hercog, D., Curkovic, M., and Jezernik, K. (2006). DSP
Based Rapid Control Prototyping Systems for
Engineering Education and Research, Proceedings of the
2006 IEEE Conference on computer Aided Control
Systems Design, Munich, Germany, October 4-6.

Karimi, A., Garcia, D., and Longchamp, R. (2002). Iterative
controller tuning using Bode’s integrals. In Proceedings
of the 41st IEEE Conference on Decision and Control.
pages 4227–4232, Las Vegas, Nevada.

Kerhuel, L. (2009). Simulink - Embedded Target for PIC.
Machado, J. A. T. (1997). Analysis and Design of Fractional-

Order Digital Control Systems. SAMS Journal of
SystemsAnalysis, Modelling and Simulation 27,
107−122.

Microchip (2009), MATLAB/Simulink device blocksets for
dsPIC DSCs.

National Instruments (2010). Getting started with the NI
LabVIEW embedded module for ARM microcontrollers.

Petras, I., Dorcak, L., and Kostial, I. (1998). Control quality
enhancement by fractional order controllers. Acta
Montanistica Slovaca 2, 143−148.

Petras, I., Grega, S., and Dorcak, L.,(2003). Digital fractional
order controllers realized by PIC microprocessor:
Experimental results.

Podlubny, I. (1999). Fractional-Order Systems and PID
controllers. IEEE Transactions on Automatic Control 44
(1), 208−214.

Ravn, O. (2006). “Adaptive control using the adaptive
toolbox-TAT for Scilab/Scicos”, 14th IFAC Symposium
on System Identification, Newcastle, Australia.

Rebeschiess, S. (1999).”MIRCOS- microcontroller-based real
time control system toolbox for use with
Matlab/Simulink”. Proc. IEEE Int. Symp.Computer
Aided Control System Design, pp. 267-272.

Xue, D., Zhao, C., Chen, Y. Q. (2006). Fractional order PID
control of a DC motor with phase elastic shaft: a case
study. Proceedings of the 2006 American Control
Conference, 3182−3187.

Ziegler, J. and Nichols, N. (1942). Optimum settings for
automatic controllers. Trans. ASME, 759−768.

([Evidence]) Evidence. URL
http://www.comedi.org.www.evidence.eu.com/content/vi
ew/175/216/.

	ACKNOWLEDGMENT

