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Abstract: The paper develops a study on the evaluation of right bounds for the eigenvalue ranges of 
interval matrices. Given an arbitrary interval matrix  , a right bound approximates the right end point of 
the eigenvalue range - defined as an exact value, denoted by ( )I  , which, generally speaking, is not 

directly calculable. We consider two classes of methods providing right bounds: (i) ( )I   is 

approximated by a value ( )eI   (with ( ) ( )eI I  ), which is calculable from a mathematical 

expression, especially constructed as an estimation of ( )I   by majorization; (ii) ( )I   is approximated 

by a value ( )cI   which is computable as the solution of a global optimization problem with constraints 

given by the interval coefficients of  . For our study on right bounds, we use three estimation 
principles, based on different majorization approaches – corresponding to the class of methods (i), and a 
genetic-algorithm-based optimizer that masters non-smooth cost functions – corresponding to the class of 
methods (ii). The tests performed on a relevant collection of interval matrices (most of them selected 
from literature) yield a thorough comparative analysis revealing drawbacks and advantages equally 
unexpected at a first glance. 

Keywords: interval matrices, (bounds of) eigenvalues, eigenvalue estimation by majorization, global 
optimization, genetic-algorithm-based optimization. 

 

1. INTRODUCTION 

The current paper considers interval matrices and interval 
systems defined as follows.  

A family (set) of real square matrices 

0[ , ] [ , ]    A A A R R , 0, , , n n  A A A R  , (1) 

where  A A , 0R , are componentwise inequalities, is 
called an “interval matrix”. The notation   preserves this 
meaning throughout the paper. 

A continuous-time linear system with parameter 
uncertainties, of the form 

( ) ( )t tx Ax , A  , 0 0( )t x x , 0,t t  , 0t t , (2) 

is called an “interval system”, “interval matrix system” or 
“dynamical interval system”. The usage of an interval system 
(2) assumes that the entries of A are fixed (not time-varying), 
but the knowledge of their values is limited to intervals, 
instead of precise numbers. 

For applications, the eigenvalue range of the interval matrix 
  (1) presents a great interest, since it creates an algebraic 
portrait corresponding to the different dynamics that may be 

exhibited by the interval system (2). In guaranteeing the 
stability of the interval system (2), the crucial role is played 
by the right end-point of the eigenvalue range of the interval 
matrix   (1), defined as 

1, ,
( ) max max Re{ ( )}k

k n
I 

 


A
A





, (3) 

where ( )k A , 1, ,k n  , denote the eigenvalues of A . 

Obviously, for any interval dynamic system of form (2) with 
( ) 0I  , the positive quantity ( )I   represents the 

stability margin. 

Taking the importance of the information offered by ( )I   

into account, papers such as (Juang and Shao, 1989), (Wang 
and Lin, 1991), (Rohn, 1992), (Rohn, 1998), (Kolev and 
Petrakieva, 2005), (Leng et al., 2008), (Hladík et al., 2010), 
(Pastravanu and Matcovschi, 2010) (Matcovschi et al., 2010), 
proposed techniques for computing approximations of ( )I  , 

since, generally speaking, ( )I   is not directly calculable.  

Given an arbitrary interval matrix  , any approximation of a 
( )I   represents a right bound of the eigenvalue range of  . 

The objective of the current paper consists in developing a 
study on the evaluation of right bounds for the eigenvalue 
ranges of interval matrices with general structure. In this 
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paper we do not discuss particular types of interval matrices 
(such as symmetric, skew-symmetric, etc) for which there 
exist specialized results that allow the exploration of the 
eigenvalue ranges. 

We consider two classes of methods providing right bounds, 
as detailed below by (i) and (ii).  

(i) ( )I   is approximated by a value ( )eI   that satisfies the 

inequality 

( ) ( )eI I  , (4) 

and is calculable from a mathematical expression, especially 
constructed as an estimation of ( )I   by majorization. 

Therefore ( )eI   is a right outer bound of the eigenvalue 

range. 

(ii) ( )I   is approximated by a value ( )cI   which is 

computable as the solution of a global optimization problem 
with constraints given by the interval coefficients of  . 

Corresponding to the class of methods (i), our paper 
considers three estimation principles that result from three 
articles frequently cited in literature, namely (Rohn, 1998), 
(Kolev and Petrakieva, 2005), and (Hladík et al., 2010). 
These estimation principles provide different expressions for 
the calculation of a right outer bound ( )eI  , reason for 

which we use a supplementary subscript to specify the 
paternity. Thus, the estimations , ( )e RI  , , ( )e KPI   and 

, ( )e HDTI   correspond, respectively, to the three articles 

mentioned above, preserving the citation order.  

Corresponding to the class of methods (ii), our paper 
considers the use of the ga function from the Global 
Optimization Toolbox (The MathWorks. Inc. 2010a). This is 
a genetic-algorithm-based optimizer which is able to handle 
the nonsmooth cost function defined by the greatest real part 
of the eigenvalues of A   and performs a global search for 
the extremum within the range defined by the interval-type 
coefficients. When referring to the approximation ( )cI   

computed via the ga solver, we include the information about 
the optimizer in our notations, by placing “ga” as a second 
subscript, i.e. , ( )c gaI  . 

For a set of relevant interval matrices (most of them selected 
from literature), we compare the results provided by the 

estimation principles (i.e. , ( )e RI  , , ( )e KPI  , , ( )e HDTI  ) 

with the solutions of the global optimization approach (i.e. 

, ( )c gaI  ). Both estimation principles and numerical 

optimization present advantages and drawbacks. Briefly 
speaking, the estimation principles rely on relatively simple 
mathematical expressions and the effects of the 
computational errors are rather low. However the degree of 
approximation introduced by these expressions (without any 
computational error) may be significant, meaning that  

 

, ( )e RI  , , ( )e KPI  , , ( )e HDTI  ( )eI   are rough majorants of 

( )I   (unknown). On the other hand, the global optimization 

may find precise values for the right end points ( )I   of 

many interval matrices, but, in general, the accuracy is highly 
dependent on the software performance. Under such 
circumstances, we consider that our construction (founded on 
estimation principles versus global optimization) is able to 
support a fruitful comparative analysis.  

It is worth saying that we have found a strong motivation for 
this research in some comments formulated by paper (Hladík 
et al., 2010). The authors try to develop a comparison 
between their approach and Rohn’s work, with respect to the 
bounds of real eigenvalues of interval matrices. Finally, the 
comparison cannot decide on a “winner”, since Rohn’s 
results are better for some examples, whereas, for other 
examples, the estimations obtained in accordance with 
(Hladík et al., 2010) are superior. 

Unlike the comparative study in (Hladík et al., 2010), we 
focus on the right bounds (meaning both real and complex 
eigenvalues). The interest for the right bounds has already 
been explained above, as offering quantitative information 
about the stability margin in the case of Hurwitz stability 
investigation. In our analysis we also include the estimation 
principle proposed by (Kolev and Petrakieva, 2005), because 
the mathematical background is totally different from (Rohn, 
1998) and (Hladík et al., 2010). Further details on these 
differences will be pointed out after some brief presentations 
of the three methods. 

The remainder of the text is organized in seven sections 
playing the roles described below. Sections 2 - 4 offer brief 
overviews of the estimation principles of the right outer 

bounds , ( )e RI  , , ( )e KPI  , , ( )e HDTI  , derived from the 

articles (Rohn, 1998), (Kolev and Petrakieva, 2005), (Hladík 
et al., 2010), respectively. Section 5 presents the numerical 
computation of , ( )c gaI   via global optimization. Section 6 

develops a comparative analysis of the results provided by 

the estimation principles ( , ( )e RI  , , ( )e KPI  , , ( )e HDTI  ) 

versus the solutions of the global optimization approach 
( , ( )c gaI  ), for an illustrative set of interval matrices. Section 

7 formulates some concluding remarks on the importance of 
our work. 

2. ESTIMATION PRINCIPLE FOR , ( )e RI   

The procedure proposed in the paper (Rohn, 1998) refers to 
interval matrices with general structure. No additional 
assumption is requested for the use of this procedure (unlike 
the procedure presented by the following section, whose 
applicability is restricted by the fulfillment of some specific 
assumptions).  

For any matrix A  , 0 A A U , with   R U R , the 
real parts of the eigenvalues are upper bounded as shown 
below: 
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Since the matrix U  satisfies the componentwise inequality 
| | U R , we can write 

   
2 2

1 1
2 2|| || 1 || || 1

max [ ] max [ ] .T T T T

x 
  

x
x U U x x R R x  (6) 

Thus we get the majorization 

 
 

2

2

0 01
2|| || 1

1
2|| || 1

Re{ ( )} max [ ( ) ]

max [ ] , 1,..., .

T T
k

T T

x
k n






  

  
x

A x A A x

x R R x
 (7) 

Denote by  0 01
max 2 [ ( ) ]T A A  and  1

max 2 [ ]T R R  the 

greatest eigenvalue of the symmetrical matrix 0 01
2 [ ( ) ]TA A  

and, respectively, 1
2 [ ]TR R . In accordance with the 

Courant-Fischer theorem, these two notations have the 
following meaning: 

   
   

2

2

0 0 0 01 1
max 2 2|| || 1

1 1
max 2 2|| || 1

[ ( ) ] max [ ( ) ] ,

[ ] max [ ] .

T T T

T T T

x








  

  
x

A A x A A x

R R x R R x
 (8) 

Thus, relying on paper (Rohn, 1998), we have: 

 

Theorem 1. 
The value 

   0 01 1
, max max2 2( ) [ ( ) ] [ ]T T

e RI     A A R R  (9) 

is a right outer bound of the eigenvalue range of the interval 
matrix   defined by (1).  

3. ESTIMATION PRINCIPLE FOR , ( )e KPI    

The procedure in (Kolev and Petrakieva, 2005) relies on two 
assumptions, which limit the range of applicability as 
commented below. 

Assumption 1. 

Any matrix A belonging to the interval matrix   (1) has a 
real (simple or multiple) eigenvalue, denoted by max( ) A , 

that dominates the spectrum of A, i.e.  

maxRe{ ( )} ( )k A A , 1,...,k n .  (10) 

The second assumption will be presented after the following 
paragraph that introduces some notations, with the same 
meaning as in (Kolev and Petrakieva, 2005). 

The procedures starts with the computation of the pair 
0 0( , ) x , where 0 0

max( )  A  is the dominant eigenvalue 

of 0A , and 0x  is its associated eigenvector, i.e. 0 0 A x  
0 0 x . The eigenvector 0 0 0

1 ...
T

nx x   x  is taken normalized 

(scaled), such that one of its components is 1. Consider the 

last component normalized, i.e. 0 1nx  . 

Assumption 2. 
The normalization of the last component applies to each 

eigenvector ( ) nx A   associated with max( ) A , for all 

A  .  

For arbitrary A  , 
, 1,ij i j n

a


   A , introduce the vector 

 1... T n
ny y y  , with ( )i iy x A , 1, , 1i n  , and 

max( )ny  A . Thus, the equality 

max( ) ( ) ( )  A x A A x A , (11) 

which defines max( ) A  and its associated eigenvector ( )x A , 

can be written as 

1

1
1

1

0, 1, , 1 ,

0 ,

n

ij j n i in
j
n

nj j n nn
j

a y y y a i n

a y y a








    

  






 (12) 

where 

0 , , , 1, ,ij ij ij ij ij ija a u R u R i j n       , (13) 

and 

0

0 0 0 0 0 0 0 0
1 1 1 1

, , 1, , ,

/ , , / , .

i i i i i i

n n n n n

y y v v v v i n

y x x y x x y 

 

 

    

  




 (14) 

In (13), the values 0
ija , ijR , , 1, ,i j n  , are known as the 

entries of the constant matrices 0, n nA R   used in 

defining the interval matrix (1). In (14), the values 0
iy , 

1, ,i n  , are known (as explained by the second row), but 

the margins iv , iv , 1, ,i n  , are unknown. 

Now, it is obvious that the knowledge of the precise value for 

nv  would allow the computation of the right end point of the 

eigenvalue range as 

0 0( ) n n nI y v v     . (15) 
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Paper (Kolev and Petrakieva, 2005) aims to find a majorant 

nV   of nv  ( n nV v  ) such that the value 0
n ny V   represents 

an outer estimation of ( )I  . 

Consider the matrix n nU   and the vector nv  , with 
the elements iju , , 1, ,i j n  , and iv , 1, ,i n  . Then 

system (12) where ija , iy  are explicitly written by the help 

of (13) and, respectively (14), becomes a nonlinear system 
with the compact form 

0 ( , )A v b U v . (16) 

In (16), the elements of the vector nv   are variables 

(unknowns), the elements of matrix n nU   are 
constrained parameters 

ij ij ijR u R   , , 1, ,i j n  ,  (17) 

and ( , ) : n n n n  b U v     is a vector valued function. 
0 n nA   is a constant matrix whose elements are 

0

0 0
0

0

, for 1,..., , 1,..., 1, ,

, for , 1,..., 1, ,

, for 1,..., 1, ,

1, for .

ij

ii n
ij

i

a i n j n j i

a y i j n j i
a

y i n j n

i j n

    

     
   

  

  (18) 

If matrix 0A  is nonsingular, system (16) is equivalent to the 

system 1
0( ) ( , )v A b U v . Let 1[ ]T n

nr r r   , 0ir  , 

1, ,i n  , be an arbitrary positive vector. If   r v r , then 

the components of the vector 1
0( ) ( , )   A b U v  

1[ ]T n
n     have their absolute values majorized by: 

1 1

1 1

| | , 1,
n n

i i ij j n ij j
j j

d r r c r i n 
 

 
      . (19) 

In inequalities (19), the coefficients i , ijd , ijc , 

, 1, ,i j n  , have non-negative values that are calculated 

from the known values 0
ija , ijR , , 1, ,i j n  , and 0

iy , 

1,i n  , in accordance with relations (15) – (19) in (Kolev 
and Petrakieva, 2005). 

Majorizations (19) hold for any values of the parameters iju  

satisfying constraints (17). Starting from (19), let us 
constructs the nonlinear system 

1 1

1 1

, 1,
n n

i i ij j n ij j
j j

r d r r c r i n
 

 
      , (20) 

which has the same right-hand side as (19) and ir , 

1, ,i n  , are unknowns. The vector form of system (20) is  

( )  r D r C g r  (21) 

with 

 

0 1
, 1,

0
1

, 1,

| ( ) |,

... | |,

,

ij i j n
T

n

ij i j n

c

d

 






   

 
   

C A

CR x

D CR



  (22) 

where matrix R


 is the same as R  except for the last column 
whose elements are zeros. The components of the nonlinear 
function ( )g r  are ( )i i ng r rr , 1,..., 1i n  , and ( ) 0ng r . 

If nr  , 0r , is a positive solution of system (21), then 
the symmetrical rectangular set   r v r  permits the usage 
of Brouwer’s fixed point theorem for the function 

( ) : [ , ] [ , ]  Uf v r r r r , 1
0( ) ( ) ( , )Uf v A b U v , for any 

values of the parameters iju  satisfying constraints (17). Thus, 

all the solutions nv   of system (12) (equivalent to the 

system 1
0( ) ( , )v A b U v ) are fixed points of ( )Uf v . 

Thus, relying on paper (Kolev and Petrakieva, 2005), we 
have: 

 

Theorem 2. 
If Assumptions 1, 2 are satisfied, and the nonlinear system 

(21) has a positive solution 1[ ]T
nr rr  , 0ir  , 1, ,i n  , 

then the value 

0 0
, ( )e KP n n nI y r r     (23) 

is a right outer bound of the eigenvalue range of the interval 
matrix   defined by (1).  

4. ESTIMATION PRINCIPLE FOR , ( )e HDTI   

From the results presented in (Hladík et al., 2010) we derive 
a procedure for calculating the right outer bound of the 
eigenvalues of an interval matrix with general form. An 
arbitrary matrix belonging to the interval A   is regarded 

as 0A  perturbed by an additive perturbation 0 U A A . 
This perturbation satisfies the componentwise inequality 
| |U R , which implies 2 max|| || ( )U R , where 

max 2( ) || || R R  denotes the greatest singular value of the 

matrix R . 

We first consider the case when the matrix 0A  is 

diagonalizable on  , i.e. there exists n nV   such that 

1 0 0 0
1diag{ ( ), , ( )}n  V A V A A .  (24) 

Denote by   1
2 2 2|| || || || V V V  the condition number 

with respect to the quadratic norm of the matrix n nV  . In 
accordance with Proposition 2.2 and 2.3 in (Hladík et al., 
2010), for every eigenvalue of A  , generically denoted 
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as ( ) A , there exists a subscript 1, ,k n  , such that 

0 0
2 2 2 max| ( ) ( ) | ( ) || || ( ) ( )k       A A V A A V R . (25) 

If the matrix 0A  is not diagonalizable on  , we consider its 

Jordan canonical form J, i.e. there exists n nV   satisfying 

1 0 V A V J . (26) 

Let p be the maximal dimension of the Jordan’s blocks in J. 
Introduce the following two positive quantities 

 
2 2 max

1/
2 2

( 1)
( ) ( ),

2
max , .p

p p 

  


 



V R
 (27) 

In accordance with Proposition 2.4 and 2.5 in (Hladík et al., 
2010), for every eigenvalue of A  , generically denoted 
as ( ) A , there exists a subscript 1, ,k n  , such that 

0| ( ) ( ) |k   A A . (28) 

It is obvious that for 1p   (i.e. 0A  has a diagonal canonical 

form), inequality (28) is equivalent to inequality (25). In 
other words, inequality (28) with 1p   incorporates 

inequality (25) as a particular case corresponding to 1p  . 

Thus, relying on paper (Hladík et al., 2010), we have: 

 
Theorem 3. 
The value 

, 0
1, ,

( ) max {Re( ( ))}e HDT k
k n

I  


 A


 (29) 

is a right outer bound of the eigenvalue range of the interval 
matrix   defined by (1).  

5. NONLINEAR OPTIMIZATION APPROACH AS AN 
ALTERNATIVE TO THE ESTIMATION PRINCIPLES 

As already mentioned in the introductory section, even if we 
calculate the estimations , ( )e RI  , , ( )e KPI  , , ( )e HDTI   for a 

given interval matrix, the right end point ( )I   still remains 

unknown. For some interval matrices, the knowledge of one 
or several estimations can be sufficient for supporting an 
application (as for instance the negative value of an 
estimation guarantees the Hurwitz stability). Generally 
speaking, as resulting from Sections 2 – 4, the mathematical 
expressions of , ( )e RI  , , ( )e KPI  , , ( )e HDTI   are obtained as 

majorizations of the unknown quantity ( )I  . Therefore we 

propose the numerical computation of ( )I   as an alternative 

to the values calculable by the aforementioned methods. 

The computational approach to the right end point ( )I   can 

be stated as a global optimization problem that maximizes the 
cost function 

0

1, ,
( ) max Re{ ( )}k

k n
J 


 U A U


, (30) 

with iju   U , , 1, ,i j n  , subject to the interval-type 

constraints (17). The implementation needs a solver able to 
cope with the nonsmooth dependence of the cost function 
(30) on the variables iju  , , 1, ,i j n  . This requirement 

is not satisfied by most of the numerical software packages 
that provide high quality optimization routines relying on 
standard / conventional minimization algorithms. Therefore 
we oriented towards genetic-algorithm-based optimizers that, 
at least at the theoretical level, are insensitive with respect to 
the discontinuities of the derivatives. Moreover the 
theoretical support of this class of algorithms also ensures a 
global search of the extremum. This point of view was also 
encouraged by the following remark of D. Hertz in (Hertz, 
2009) “Genetic algorithms are promising for solving such 
type of problems.“. 

Our final choice was the function ga from the Global 
Optimization Toolbox for MATLAB (The MathWorks. Inc. 
2010a), whose most recent version (namely 3.1) was released 
in 2010. This choice ensures full compatibility (in the sense 
of computation accuracy) with the calculation of the 
estimations , ( )e RI  , , ( )e KPI   and , ( )e HDTI  , whose 

mathematical expressions were implemented in MATLAB 
too. In the introductory section, we proposed the notation 

, ( )c gaI   for the approximation of ( )I   obtained by using 

the ga solver. 

6. COMMENTED EXAMPLES - COMPARATIVE 
ANALYSIS 

The current section aims to create a relevant comparative 
analysis of the right bounds calculated by the two classes of 
methods previously discussed. Most of the tested interval 
matrices have been selected from publications with similar 
research topics. We have also devised our own tests for 
addressing aspects insufficiently investigated by other works. 

The first subsection briefly presents the software tools used 
for developing the proposed comparative study, the second 
subsection focuses on illustrative tests and the third discusses 
the meaning of the numerical results.  

6.1. Software tools 

Besides the approach to global optimization via the ga solver 
(commented in Section 5), we have to consider some 
supplementary computational tasks, requiring specialized 
tools, as detailed below. 

(a) Test the validity of Assumptions 1, 2 associated with 
Theorem 2. We have developed an instrument with visual 
facilities that portraits the location of the eigenvalues in the 
complex plane for a large number of concrete matrices 

A  . For a given interval matrix [ , ]  A A  we 
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randomly generate 100,000 matrices, uniformly distributed in 
  and we plot their eigenvalues. This graphical 
representation allows testing the validity of Assumption 1. If 
Assumption 1 is satisfied, the eigenvectors corresponding to 
the dominant eigenvalues of the randomly generated matrices 
are further used for testing Assumption 2. 

(b) Find a reasonable approximation of ( )I   from the 

direct computation of the eigenvalues for a large number of 
concrete matrices randomly generated rnd A  . The tool 

presented at (a) calculates the value 

,
1, ,

( ) max max Re{ ( )}
rnd

c rnd k rnd
k n

I 
 


A

A


  (31) 

which represents a right inner bound of the eigenvalue range 
of  , since the inequality 

, ( ) ( )c rndI I   (32) 

is satisfied regardless of the concrete matrices randomly 
generated. For 100,000 matrices uniformly distributed in  , 
the approximation , ( )c rndI   is accurate enough to draw the 

attention on a (rather unlikely) failure or poor result of the ga 
solver. 

(c) Find the solution(s) to the nonlinear algebraic system 
(19) associated with Theorem 2. We use the fsolve solver 
from the Optimization Toolbox for MATLAB (The 
MathWorks. Inc. 2010b), with adequate initial guesses. 

(d) Investigate the diagonal / Jordan canonical form of the 

center matrix 0A  before applying Theorem 3. Whenever 

matrix 0A  is diagonalizable, we use the eigenvectors 
provided by the eig function from the MATLAB kernel. If 

0A  has eigenvalues with algebraic multiplicity 2q   (e.g. 

Example 5, Subsection 6.2), we get the Jordan form by using 
the jordan function from the Symbolic Math Toolbox for 
MATLAB (The MathWorks. Inc. 2010c). Since the Jordan 
form of a numerical matrix is extremely sensitive to 
numerical errors, we have represented the elements of each 

matrix 0A  by ratios of small integers. 

6.2. Illustrative Tests 

This subsection considers seven examples we have chosen as 
very relevant from the large set of tests performed during the 
research period. For each example, the interval matrix is 
labelled with the number of the example, i.e. k  for 

1,...,7k  . Thus, k  is defined by the matrices 0, n n
k k

A R   

as shown in equation (1). 

For each interval matrix k , 1,...,7k  : 

● the following information is provided: the portrait of the 
eigenvalues of k  generated randomly by the tool described 

in 6.1(a) is presented in Figure k; the value of the eigenvalues  

of 0A , which are also marked by the symbol “ ” in the 
associated graphical representation; the right inner bound 

, ( )c rnd kI   calculated by the tool described in 6.1(b). 

● the global optimization method (described in Section 5) is 
applied, yielding the value , ( )c ga kI  . 

● the three estimation principles (described in Sections 2 - 5) 
are applied, yielding the right out bounds , ( )e R kI  , 

, ( )e KP kI   (if the estimation principle works), , ( )e HDT kI  . 

 

In each example we comment only on the usage of Theorems 
2 and 3, since their applicability depends on the fulfillment of 
some conditions. In all tested examples there was no failure 
of the ga optimizer. The other numerical elements presented 

by our study (eigenvalues of 0A ; the portrait of the 
eigenvalues of   generated randomly by the tool described 
in 6.1(a); the right inner bound ,c rndI  calculated by the tool 

described in 6.1(b); the right outer bound ,e RI  calculated by 

Theorem1) do not require discussions on the computational 
aspects. 

Table 1 collects the values ,c rndI , ,c gaI , ,e RI , ,e KPI  (if the 

estimation principle works), ,e HDTI  for all the considered 

examples. Each row of this table is associated with a tested 
interval matrix and contains a value written in bold placed in 
one of the three last columns; this value represents the best 
(i.e. the smallest) right outer bound provided by the 
estimation principles.  

Example 1. (Kolev and Petrakieva, 2005, Example 1) 

The first interval matrix we consider, denoted by 1 , is 

given by (1) with 

0
1

3.8 1.6
0.6 4.2
    

A , 1
0.17 0.17
0.17 0.17
    

R . (33) 

The eigenvalues of the center matrix 0
1A  are 0

1 3    and 

0
2 5   . By computations we verify that Assumptions 1 and 

2 in Theorem 2 are satisfied. The general form of the 
nonlinear system (21) yields the second order system 

1 1 1 2

2 1 1 2

0.765 0.255 0.5 ,
0.357 0.119 0.3 ,

r r r r
r r r r
  
  

 (34) 

that has only one pair of positive solutions, 1 0.741743r   

and 2 0.572708r  . According to Theorem 2, we estimate the 

outer bound of the eigenvalue range of the interval matrix 

1  as 0
, 1 1 1 2( ) ( )e KPI r A 2.427292  . 

Since matrix 0
1A  in (33) is diagonalizable, for computing the 

estimation , 1( )e HDTI   we apply Theorem 3 with 1p  . 
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Example 2. (Kolev and Petrakieva, 2005, Example 3) 

The second interval matrix we consider, denoted by 2 , is 

given by (1) with 0 8 8
2 2, A R   having the values of the 

nonzero elements given in relations (35a) and (35b), 
respectively. The eigenvalues of randomly selected matrices 
from 2  are represented graphically in Figure 2(a) with a 

zoom on the region containing the dominant eigenvalues of 

2  presented in Figure 2(b). The eigenvalues of the center 

matrix 0
2A  given by (35a) are 0

1 12.555999   , 

0
2,3 21.991 469.27j    , 0

4,5 69.115 13823j    , 0
6   

564.94  and 0
7,8 1256.6 25103j    . 

By computations we verify that Assumptions 1 and 2 in 
Theorem 2 are satisfied. The general form of the nonlinear 
system (21) yields the system 

4
1 1 2 1 8

4
2 8

4
2 1 2 1 8

4
2 8

6
3 3 4 3 8

4
4 8

4 4
4 3 4 3 8

7
4

0.0501 0.0191 1.628 10

22.783 10

0.0014 0.0505 22.783 10

0.65 10

0.1 0.00631 0.658 10

0.723 10

0.9083 10 0.1 0.723 10

0.658 10

r r r r r

r r

r r r r r

r r

r r r r r

r r

r r r r r

r r













 



   

 

   

 

   

 

    

  8

5
5 5 6 5 8

4
6 8

4 4
6 5 6 5 8

7
6 8

7 7 7 8

4
8 1 2 3 4

4
5 6 7

0.05 0.052 0.396 10

0.398 10

0.25 10 0.05 0.398 10

0.199 10

0.588 0.0018

1.353 0.011 0.071 2.09 10 0.338

20.643 10 11.582 12.784 0.0

r r r r r

r r

r r r r r

r r

r r r r

r r r r r

r r r





 







   

 

    

 
 

     

     1 8

4 4 6
2 8 3 8 4 8

5
5 8 6 8 7 8

013

0.4 10 1.665 10 0.151 10

0.0033 0.164 10 0.0297 .

r r

r r r r r r

r r r r r r

  



     

   
 (36) 

System (34) has positive solutions with 8 1.35300r  . 

According to Theorem 2, we estimate the outer bound of the 
eigenvalue range of the interval matrix 2  as , 2( )e KPI   

0
1 2 8( ) 11.202999r   A . 

Since matrix 0
2A  is diagonalizable, for computing the 

estimation , 2( )e HDTI   we apply Theorem 3 with 1p  . 

Example 3. (Hladik et al., 2010, Example 2.7) 

The third interval matrix we consider, denoted by 3 , is 

given by (1) with 

0
3

4.5 8.5 14.5 4.8 1.1
17.5 17.5 1.5 4.5 10.5
17.1 3.1 2.0 12.5 6.2
18.5 2.5 18.5 5.5 6.5
13.5 18.5 9.5 17.5 10.5

   
 
   
 
  

A , 

3

0.5 0.5 0.5 0.2 0.1
0.5 0.5 0.5 0.5 0.5
0.1 0.4 0.1 0.5 0.2
0.5 0.5 0.5 0.5 0.5
0.5 0.5 0.5 0.5 0.5

 
 
   
 
  

R . (37) 

The eigenvalues of the center matrix 0
3A  in (37) are 

0
1 20.7214  , 0

2,3 15.1215 15.9556j   , 0
4 4.0671    and 

0
5 15.8973   . 

By computations we verify that Assumptions 1 and 2 in 
Theorem 2 are satisfied. The general form of the nonlinear 
system (21) yields the system 

1

1 2 3 4

1 5 2 5 3 5 4 5

2

1 2 3 4

1 5 2 5 3 5 4 5

3

1

0.1017+

+0.0455 0.0493 0.0455 0.0399

0.0355 0.0077 0.0126 0.0249

0.1542+

0.0659 0.0814 0.0659 0.0670

0.0654 0.0486 0.0516 0.0006

0.0646+

0.0239

r

r r r r

r r r r r r r r

r

r r r r

r r r r r r r r

r

r


  

   


   

   


  2 3 4

1 5 2 5 3 5 4 5

4

1 2 3 4

1 5 2 5 3 5 4 5

5

1 2 3

0.0307 0.0239 0.0310

0.0068 0.0066 0.0230 0.0266

0.1186+

0.0484 0.0646 0.0484 0.0550

0.0500 0.0047 0.0540 0.0002

3.3356

1.4236 1.5430 1.4236 1.

r r r

r r r r r r r r

r

r r r r

r r r r r r r r

r

r r r

 

   


   

   
 

    4

1 5 2 5 3 5 4 5

3578

0.7497 0.8130 0.3978 0.5746 .

r

r r r r r r r r   

 (38) 

0 0 0 0 0
12 21 22 34 43
0 0 0 0 0
44 56 65 66 77
0 0 0 0 0 0
81 82 84 86 87 88

439.82 439.82 43.983 13823 13823

138.23 25133 25133 2513.3 565.49

0.00115 0.5750 2.3010 82.637 16.427 12.556;

a a a a a

a a a a a

a a a a a a

       
        
       

          (35a) 

0 0 0 0 0
12 21 22 34 43
0 0 0 0 0
44 56 65 66 77
0 4 0 0 0 0 0

81 82 84 86 87 88

21.99 21.991 6.8170 1382.3 1382.3

74.644 1256.6 1256.6 1181.2 325.16

2.449 10 0.0419 0.5680 15.716 3.1240 1.3530.

r r r r r

r r r r r

r r r r r r

    
    
      

           (35b) 
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System (38) has a positive solution with 5 5.708225r  . 

According to Theorem 2, we estimate the outer bound of the 
eigenvalue range of the interval matrix 3  defined by (1) 

&(37) as 0
, 3 1 3 5( ) ( ) 26.4296e KPI r  A . 

Since matrix 0
3A  is diagonalizable, for computing the 

estimation , 3( )e HDTI   we apply Theorem 3 with 1p  . 

Example 4. (Hladik et al., 2010, Example 2.8 for 0.01  ) 

The fourth interval matrix we consider, denoted by 4 , is 

given by (1) with 

0
4

4 6 13 1
4 5 16 4

1 2 6 1
0 2 10 1

 
    

  
 

   

A , 4

1 1 1 1
1 1 1 1

0.01
1 1 1 1
1 1 1 1

 
 

   
 
 

R . (39) 

The eigenvalues of the center matrix 0
4A  from (39) are 

0 0
1 2 1 2 j     and 0 0

3 4 1 2 j    . 

The analysis of Figure 4 leads to the conclusion that 4  does 

not satisfy Assumption 1, therefore Theorem 2 cannot be 
applied. 

The Jordan form of matrix 0
4A  consists of two 2 2  blocks, 

therefore for computing the estimation , 4( )e HDTI   we apply 

Theorem 3 with 2p  . 

Example 5. (Hladik et al., 2010, Example 2.8 for 1  ) 

The fifth interval matrix we consider, denoted by 5 , is 

given by (1) with 

0 0
5 4A A , 5

1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1

 
 

  
 
 

R . (40) 

The analysis of Figure 5 leads to the conclusion that 5  does 

not satisfy Assumption 1, therefore Theorem 2 cannot be 
applied. 

Since the center matrix 0
5A  coincides with 0

4A , the same as 

in Example 4, for computing the estimation , 5( )e HDTI   we 

apply Theorem 3 with 2p  . 

Example 6. (Ahn and Chen, 2007) 

The next interval matrix we consider, denoted by 6 , is 

given by (1) with 

0
6

1.50 0.01 3.40
7.10 3.40 1.30
2.10 0.01 7.00

 
   
  

A , 6

0.075 0.005 1.70
3.550 1.700 0.65
1.050 0.005 3.50

 
 
 
 

R . (41) 

The eigenvalues of the center matrix 0
6A  are 0

1 2.2632  , 

0
2 3.4031    and 0

3 7.7601   . 

By computations we verify that Assumptions 1 and 2 in 
Theorem 2 are satisfied. The general form of the nonlinear 
system (21) yields the system 

1 1 2 1 3

2 3

2 1 2 1 3

2 3

3 1 2 1 3

2 3

3.7794 0.4691 0.0043 0.1006

0.0009

9.5992 1.2787 0.3020 0.0698

0.1756

1.0678 0.0979 0.0018 0.2106

0.0002

r r r r r

r r

r r r r r

r r

r r r r r

r r

   



   


   



 (42) 

Since no positive solution to (42) can be found, Theorem 2 
cannot be applied. 

Since matrix 0
6A  is diagonalizable, for computing the 

estimation , 6( )e HDTI   we apply Theorem 3 with 1p  . 

Example 7. 

The last interval matrix we consider, denoted by 7 , is 

given by (1) with 

0
7

4.5 0 0
1.5 2 0
3 8 1.75

 
  
  

A , 7

0.5 0 0
0.5 1 0
2 2 0.25

 
 
 
 

R . (43) 

The eigenvalues of the center matrix 0
7A  are 0

1 1.75   , 

0
2 2    and 0

3 4.5   . 

Any matrix 
, 1,3ij i j

a


   A  in the interval matrix 7  is 

lower triangular, with the diagonal elements satisfying 

11 [ 5, 4]a    , 22 [ 3, 1]a     and 33 [ 2, 1.75]a    . Since the 

eigenvalues of a triangular matrix coincide with its diagonal 
elements, in this particular example, we can find the exact 
value of the right end-point of the eigenvalue range of the 
interval matrix 7  as 7( ) 1I   . 

By computations we verify that Assumptions 1 and 2 in 
Theorem 2 are satisfied. The general form of the nonlinear 
system (21) yields the system 

1 1 1 3

2 1 2 1 3 2 3

3 1 2 1 3 2 3

0.1818 0.3636 ,

3.0909 4 2.1818 4 ,

0.25 18 22 12 20 .

r r r r

r r r r r r r

r r r r r r r

 

   

    

 (44) 
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Table 1. Right bounds of the test interval matrices considered in Section 6. 

Interval matrix , ( )c rndI   , ( )c gaI   , ( )e RI   , ( )e KPI   , ( )e HDTI   

1  (33)  –2.645559 –2.645729 –2.541966 –2.427292 –2.449868 

2  (35) –11.203142 –11.201939 1.9790e+003 –11.202999 2.0685e+003 

3  (37) 22.840857 23.362817 35.499876 26.429629 29.310144 

4  (39) 1.259458 1.293722 13.844500 Ass. 1 not satisfied 2.061208 

5  (40) 8.450673 9.718839 17.804500 Ass. 1 not satisfied 107.120850 

6  (41) 3.703909 3. 779617 8.157379 
no positive 

solution to (42) 
18.552955 

7  (43) 7( ) 1I    –1.000001 3.204283 
no positive 

solution to (44) 
140.7023 

 
The only solution to system (44) that has nonnegative 
elements is 1 2 0r r  , 3 0.25r  . Since no solution with 

positive elements can be found for system (44), Theorem 2 
cannot be applied. 

6.3. Effectiveness of the approximation methods 

For the class of methods estimating right outer bounds, we 
can see that the best approximation is given by Theorem 1 for 
four examples, by Theorem 2 for two examples and by 
Theorem 3 for an example. In other words, there exists no 
method definitely superior to the others. Generally speaking 
each method seems to be more effective for a type of 
problems, as summarized below: Theorem 1 for matrices R 
with large entries, Theorem 2 for the special cases when the 
whole eigenvalue range is globally dominated by a simple 
real eigenvalue, Theorem 3 for matrices R with small entries. 
The use of Theorem 2 is drastically limited by the two 
associated assumptions, as well as by the hypothesis 
requesting positive solutions for a nonlinear algebraic system. 

For the approximation of the right end point of the eigenvalue 
range by global optimization, all our tests have shown that 
the ga function represented a good decision in choosing the 
optimization software. We have got no failure, and each 
reported solution was very close to the right inner bound 
calculated from a large set of randomly generated matrices. 

Finally it is worth mentioning the important role played by 
our instrument built to visualize the eigenvalue portrait based 
on the randomly generated matrices. First, it was 
indispensable for testing Assumptions 1, 2 associated with 
Theorem 2. Then it was helpful in understanding some 
correlations between the eigenvalue location and the 
performance of the estimation methods. It also provided 
reference values for assessing the results of the global 
optimization. 

 

CONCLUSIONS 

Our paper explores two classes of methods that provide 
approximations for the right end point of the eigenvalue 
ranges of interval matrices. We have performed a large 
number of tests and the most relevant ones have been 
discussed in the previous section of this article. 

Relying on these tests, we can say as an overall remark / 
recommendation: 
●   If the approximation is formulated / requested in the sense 

of the best right outer bound, then all three estimation 
principles have to be applied for selecting the minimum 
value. 

●   The most accurate approximation can be obtained via 
global optimization, by using the ga solver. Thus, running 
ga in mutual validation with the calculation of a right 
inner bound from randomly generated matrices may 
ensure a reliable computational approach. 

 

Figure 1. Eigenvalues of randomly selected matrices in the 
interval matrix 1  given by (33). 
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 (a) portrait of the eigenvalues 

 

(b) zoom in the region containing the dominant eigenvalues. 

 

Figure 2. Eigenvalues of randomly selected matrices in the 
interval matrix 2  given by (35). 

 

Figure 3. Eigenvalues of randomly selected matrices in the 
interval matrix 3  given by (37). 

 

Figure 4. Eigenvalues of randomly selected matrices in the 
interval matrix 4  given by (39). 

 

Figure 5. Eigenvalues of randomly selected matrices in the 
interval matrix 5  given by (40). 

 

Figure 6. Eigenvalues of randomly selected matrices in the 
interval matrix 6  given by (41). 
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Figure 7. Eigenvalues of randomly selected matrices in the 
interval matrix 7  given by (43). 
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