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Abstract: The multi-objective control for a rigid spacecraft maneuver is designed in this paper, which 
contains disturbances rejection, decay rate, and input constraint. Firstly, the rigid spacecraft model 
consisting of the dynamic and kinematics equation are provided. This nonlinear system is converted into 
a Takagi-Sugeno fuzzy model. And based on the parallel distributed compensation (PDC) scheme, a 
fuzzy state feedback controller is designed, which guarantees the closed-loop system to meet the multi-
objective design requirements. Furthermore, the problem is reduced to a convex optimization involving 
linear matrix inequalities (LMIs). The simulation results demonstrate that the proposed controller can 
guarantee the stability of control system and good disturbance attenuation. 
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1. INTRODUCTION 

The attitude maneuver control of spacecraft has important 
applications, such as the spacecraft surveillance and 
communication. This attitude maneuver often needs to 
achieve the highly accurate pointing and fast slewing in the 
presence of large environmental disturbances, large 
uncertainties and so on. Therefore, the attitude control of 
spacecraft is becoming more and more sophisticated and it is 
important to find new and more efficient ways to control the 
spacecraft attitude maneuver. It has attracted considerable 
attentions and many results have been reported in recent 
decades (Wen et al., 1991; Xu et al., 1991; Wang et al., 1996; 
Krstic et al., 1999; Marcu, 2011). 

More recently, fuzzy control has been proposed as an 
alternative approach to conventional control techniques for 
the complex nonlinear systems (Tsai et al., 2008; Chen, 2009; 
Wang et al., 2009; Chen, 2010; Lee et al., 2010; Lendek et al., 
2010). The primary advantage of the fuzzy controller is the 
ability to easily incorporate heuristic rule-based knowledge 
from experts in the control strategy. In aerospace 
engineering, fuzzy control has become one of the most 
favourable research topics. Wang (2009) proposes a novel 
fuzzy tracking control method, which is used for the attitude 
tracking problem of a reusable launch vehicle. Chiang and 
Jang (1991) develop a fuzzy logic attitude controller for 
Cassini spacecraft. They show that the fuzzy controller can 
track the reference command better than the conventional 
controller for the attitude control system. Pedrycz and 
Ramanna (1997) present a hierarchical architecture of fuzzy 
neural attitude control for the satellite based on fuzzy gain 

scheduling concept. They show that the nonlinear 
characteristics of the controllers contribute to better control 
characteristics of the overall system. Therefore, T-S fuzzy 
control has become powerful engineering tools for modelling 
and control of complex dynamic systems. Recent researches 
on fuzzy control have been devoted to model based fuzzy 
control systems that guarantee not only stability, but also 
performances of closed-loop fuzzy control systems (Song et 
al., 2006; Du et al., 2009). 

Due to the limited power of actuator, the actual control input 
should be considered in practical attitude control system. At 
present, many researchers have paid great attention to the 
analysis and synthesis of control systems with input 
constraint (Park et al., 2004). The means utilized to treat with 
input constraint include designing low gain control laws, 
estimating the domain of attraction and so on (Cao et al., 
2003). But, it is still a challenge to develop an appropriate 
control strategy for dealing with the highly nonlinear 
dynamics of spacecraft attitude. In addition, the 
asymptotically stable of closed-loop system under large 
environmental disturbances and rapid target retargeting 
maneuver should be considered at the same time. However, 
during the past decades, the most attentions for attitude 
control have been paid to many single objective control. 
Therefore, it seems that how to design a multi-objective 
control of the rigid spacecraft by the T-S fuzzy control, which 
motivates our research in this paper. 

Following the above discussions, the problem of multi-
objective control for a three-axis rigid spacecraft maneuver is 
investigated. Firstly, the rigid spacecraft model consisting of 
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dynamic and kinematics equation are provided. This 
nonlinear model is converted into a Takagi-Sugeno fuzzy 
model. And based on the parallel distributed compensation 
scheme, a fuzzy state feedback controller is designed based 
on the obtained T-S fuzzy model, which guarantees the multi-
objective design requirements of the closed-loop control 
system. The sufficient conditions for the existence of such a 
controller are derived in the form of linear matrix inequalities 
(LMIs) which can be solved efficiently via the Matlab Linear 
Matrix Inequalities Toolbox. 

The rest of this paper is organized as follows. The T-S fuzzy 
modelling and problem formation are introduced in Section 
2. The controller design is considered in Section 3. An 
illustrative example shows the effectiveness of the proposed 
control design method in Section 4 and the paper is 
concluded in Section 5. 

Notations: The notation used throughout the paper is fairly 
standard. The superscript “T” stands for matrix transposition; 
Rn denotes the n-dimensional Euclidean space and mnR   
denotes the set of all n×m real matrices; In symmetric block 
matrices or complex matrix expressions, an asterisk (*) 
represents a term that is induced by symmetry. I and 0 denote 
the identity matrix and zero matrix with compatible 
dimensions, respectively. Matrices, if their dimensions are 
not explicitly stated, are assumed to be compatible for 
algebraic operations. 

2. TAKAGI-SUGENO FUZZY MODELLING AND 
PROBLEM FORMULATION 

In this section, a three-axis rigid spacecraft model is 
considered based on the T-S fuzzy model for spacecraft 
dynamics and kinematics. The spacecraft is assumed to be a 
rigid body by using the three reaction wheels that provide 
torques about three mutually perpendicular axes. The 
dynamics of rigid spacecraft (Park et al., 2001) can be written 
as 

( ) ,c dJ J T T       (1) 

where some physical parameters, 33RJ represents the 
positive definite, symmetric spacecraft inertia matrix and 

01  JJ , 3R  represents the rigid body angular 

velocity, 3RTc  is the control torque. dT  is an external 

disturbance torque (solar radiation, interaction with other 

bodies in space, etc.), 33)(  R  is a 3×3 skew-

symmetric matrix: 
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The kinematics equation of the rigid spacecraft expressed by 
the Cayley-Rodrigues parameters vector: 

( )H   , (3) 

3R   is the Cayley-Rodrigues parameters vector describing 

the body attitude, the matrix-valued function H denotes the 
kinematics Jacobian matrix for the Cayley-Rodrigues 
parameters given by  

3( ) 1 / 2( ( ) )TH I      . (4) 

It is known that the T-S fuzzy system is one of the most 
popular fuzzy systems in model-based fuzzy control. The 
fuzzy model proposed by Takagi and Sugeno is described by 
fuzzy IF-THEN rules which represent local linear input and 
output relations of a nonlinear system. The continuous T-S 
fuzzy system can be expressed as 

If 
1 1( ) iZ t M  and … and ( )n inZ t M , then 
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where 
ijM is the fuzzy set, j=1…n, )(tZn  is the premise 

variable, ( )x t  is the state vector, ( )u t  is the control input, r is 

the number of model rules, n is the number of premise 
variable.  

The T-S fuzzy model is then constructed according to the 
weighting of each linear model given as follows 
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where the membership functions ith local model are 
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)]([ tzM jij
 is the grade of membership of )(tz j

 in the fuzzy set 

ijM . The [ ( )], 1, ,ih z t i r  , hold a convex sum property: 
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To employ the model-based fuzzy control, a T-S fuzzy model 
is constructed according to the nonlinear equations (1), (3). In 
this study, the angular velocity and the Cayley-Rodrigues 
parameter are selected as the fuzzy premise variables. We are 
defining follows: 

1 1x  , 2 2x  , 3 3x  , 4 4x  , 5 5x  , 6 6x  ,

1 2 3[ ]Tx x x x  , Txxxx ][ 654 , [ ]T T Tx x x  . 

In order to reduce the complicacy of system, we try to use as 
few rules as possible and choose the nine operating points, 
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[ ]i ix x  = [0 0], [0 0.15], [0 -0.15], [0.1 0], [0.1 0.15], [0.1 -

0.15], [-0.1 0], [-0.1 0.15], [-0.1 -0.15]. 

Therefore, the T-S fuzzy model in (6) can be written into the 
following form 
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The membership functions of fuzzy sets
ijM are defined as in 

Fig.1, 2. 

 

Fig. 1. Membership functions for fuzzy set
ijM , j=1,2,3 

 

Fig. 2. Membership functions for fuzzy set
ijM , j=4,5,6 

Remark 1. In this paper, the case of T-S fuzzy system with a 
common input matrix (B1 = … = B9 = B=D) is considered 
only. 

The maneuver process can be described by the transformation 
of state vector ( ), ( )t t  from nonzero initial state )0( , (0) to 

the terminal state )( rt , ( )rt rt is the maneuver time. 

In this study, the following important aspects need be taken 
into consideration simultaneously: 

(1) The closed-loop system is asymptotically stable 
and 

zwT . 

(2) Decay rate. From a practical point of view, the spacecraft 
requires an attitude control system which provides rapid 
target retargeting maneuver. 

(3) Input constraint. In view of the limited power of actuator, 
the actual control torque should be confined into a certain 
range, which means that 

,)( max2
utu                                                                        (11) 

where 
maxu  denotes the maximum input torque. 

3. CONTROLLER DESIGN 

In this section, the multi-objective state-feedback controller is 
investigated. The design requirements in Section 2 will be 
analyzed separately, and the obtained results will be utilized 
for the controller design. 

The fuzzy controller for T-S model (10) is carried out based 
on the PDC scheme. For the T-S fuzzy model (10), the fuzzy 
state feedback controller is constructed as follows, 

9
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where Ki is the state feedback gain matrix to be designed. 

Note that the T-S fuzzy controller shares the same fuzzy set 
with the T-S fuzzy model (10), where hi is the same as the 
defined in (10). The parameters Ki in (12) should be designed 
to meet the stability and other performance requirements. 

By substituting (12) into (10), the close-loop system is 
obtained as 
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The equation (13) can be rewritten as 
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where, 
jiiji KBAG  . 

Here, the angular velocitys and Cayley-Rodrigues parameters 
are chosen as the control output, 

9

1
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i

Z t h Z t C x t i

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The design requirements mentioned above will be analyzed 
separately, and the obtained results will be utilized for the 
controller design. First, we recall the following results which 
will be used in our later development, and their proofs can be 
found in (Tanaka et al., 2001, Du et al., 2009). 
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Lemma 1. Assume that the number of rules that fire for all t 
is less than or equal to s, where1 s r  . The equilibrium of 
continuous fuzzy control system described by (14) is globally 
asymptotically stable if there exists a common positive 
definite matrix P and a common positive semi-definite matrix 
Q such that. 
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where s>1. 

Furthermore, for practical engineering, the spacecraft 
requires the attitude control system can provide rapidly 
maneuver capabilities. Thus, besides the Lemma 1, the decay 
rate fuzzy controller is further considered at the same time. 

Lemma 2. The condition for all trajectories is equivalent to 
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where 0a  .Therefore, the largest lower bound on the decay 
rate can be found by solving the following GEVP in X and a 

max
, , ,...,1X Y M Mr


 

subject to 0,0  YX , 
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where X=P-1, Mi=KiX, Y=XQX. The feedback gains Ki, a 
common P and a common Q can be obtained as 

1 1, ,i iP X K M X Q PYP    ,  

from the solution X, Y , Mi. 

At last, in order to design attitude control system to perform 
adequately in external disturbance environments, the L2 gain 
of the stable assumed system (10) with (15) is chosen as the 
performance measure, which is defined as 
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is taken over all nonzero trajectories of the system (10) with 
0)0( x . Our goal is to design a fuzzy controller (12) such 

that the fuzzy system (10) with controller (12) is 
quadratically stable and the L2 gain (22) is minimized. 

Lemma 3. The feedback gains 
iK  that stabilize the fuzzy 

model and minimize  can be obtained by solving the 

following minimization problem based on LMIs. 
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hold, where X=P-1, Mi = KiX. 

The lemmas 1-4 formulate the conditions under which the 
closed-loop system meets the multi-objectives. Based on 
these Lemmas, the following theorem presents a controller 
design method via convex optimization. 

Theorem 1. For the spacecraft maneuver control system in 
(14), a given scalar  and 0a  , 1 s r   under the 

constraint input in (11), the closed loop system is 
asymptotically stable with disturbance attenuation and the 
decay rate, if there exist s matrices iX , iY , iM satisfying 
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where, 0,0  YX , 1 1, ,i iP X K M X Q PYP    . 

Furthermore, the desired state feedback control law is given 

by 
9
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( ) ( ( )) ( )i i
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u t h z t K x t

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Proof: we can see that all the conditions listed in Lemma 1-4 
can be ensured by (26)-(30), which means that the controller 
design requirements can be guaranteed by these inequality 
constraints. And it is obvious that the desired controller can 
be calculated by 1( 1 9)i iK M X i   . The proof is 

completed.  □ 
Remark 2. The scalar  can be included as an optimization 

variable to obtain a reduction of the H disturbance 
attenuation level bound. Then, the minimum H disturbance 
attention level bound in terms of the feasibility of admissible 
controllers can be readily found by solving the following 
convex optimization problem: 

Minimize subject to the LMIs in Theorem 1. 

4. ILLUSTRATIVE EXAMPLE 

In this section, an example to illustrate the effectiveness of 
the proposed multi-objective controller design method is 
provided. 

Here, the maneuver of rigid spacecraft is considered. The 
initial condition is (0) [0.08,-0.05,0.1,0.12,0.06,-0.08]T  .The 

moment inertia I of spacecraft is [127 1.8 -3.4; 1.8 117 -2.3; -
3.4 -2.3 210] kg·m2. Then purpose is to design a state 
feedback controller, such that the closed-loop system satisfies 
requirements in Section 2. Assume that the maximum input 
control torque is 0.01N·m. 

At first, the situation with external perturbations is 
considered. The disturbance is considered as follows, 

5
0

5
0 0

5
0

1.2 10 (3cos 1)

1.5 10 (1.5sin 3cos )

1.2 10 (3sin 1)

dx

dx
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  

   

  

, 

where srad /001.00   is the orbit angular velocity.  

Applying the controller in Theorem 1 to the original system 
(1), (3), and then solving the convex optimization problem, 
we can obtain the minimum guaranteed closed-loop 

H performance 0.1338  . The time response of angular 

velocity and the Cayley-Rodrigues parameters are depicted 
respectively in Fig.3, 4. From the simulation results, it can be 
obtained that the design controller can make the system 
stable in a short time under the large disturbance. In practical 
design, due to the limited power of actuator, the actual 
control input torque should be considered. The variations of 

control input torque in three axes are depicted in Fig.5. From 
the Fig.5, it can be concluded that the input torque 
component in T1 is the largest, which is obvious due to the 
initial state (the angular velocity 

1  is the largest when t=0). 

At the same time, even the largest input torque of T3 is too 
bellow the maximum allowed torque, which means that the 
input constraint can be guaranteed by the designed controller. 
Therefore, it can be concluded that the control strategy is 
reasonable and can effectively restrain the external 
disturbances. 

 

Fig. 3. Angular velocity response 

 

Fig. 4. Cayley-Rodrigues parameters response 

 

Fig. 5. Control input response 
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5. CONCLUSIONS 

A new multi-objective state-feedback controller for 
spacecraft attitude control subject to external perturbation and 
input constraint has been proposed. Firstly, the nonlinear 
dynamic and kinematics of the three-axis rigid spacecraft 
have been represented as a T-S fuzzy model based on the 
parallel distributed compensation scheme. By using 
Lyapunov method and linear matrix inequality techniques, 
the controller design problem has been transformed into a 
convex optimization problem with linear matrix inequality 
constraint. An illustrative example has demonstrated that the 
proposed controller can guarantee the stability of control 
system and good disturbance attenuation. But, due to the 
measure errors or perturbations among the objects in space, 
the angular velocity   can not be ascertained online 
accurately. On the other hand, there also exist inevitable 
inertia matrix uncertainties. Therefore, the future research 
direction is that the system model should be considered with 
these modelling uncertainties, so as to improve the robustness. 
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