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Abstract: Myolectric control is nowadays the most used approach for electrically-powered upper limb 
prostheses. The myoelectric controllers use electromyographic (EMG) signals as inputs. These signals, 
collected from the surface of the skin, have to be preprocessed before being used as inputs for the 
controller. In this paper we present a classifier for surface electromyographical signals based on an 
autoregressive (AR) model representation and a neural network, and two myoelectric control strategies 
based on Finite State Machine. The results have shown that combining a low-order AR model with a 
feed-forward neural network, a rate of classification ranging from 91% to 98% can be achieved, while 
keeping the computational cost low. One of the main advantages of the proposed strategy is the reduced 
effort required to the patient for controlling the prosthetic device. 
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1. INTRODUCTION 

The noninvasive detection of the signal on skin surface, with 
no need of surgery for the patient, and the relatively small 
muscle activity required to provide control signals are 
benefits that make myoelectric control the most widely used 
approach for the control of upper limb prostheses (Huang et 
al.,2005), (Ping et al., 2006), (Chan et al., 2005), (Light et al., 
2002). In order to detect the movement intention of the 
patient, many devices can be used such as: surface 
electromyographic (SEMG) sensors, cortical and peripheral 
nerve implants, implantable myoelectric sensors, etc. The 
easiest way to detect the movement intention is to use SEMG 
sensors.  

Although the myoelectric prosthesis uses biological signals to 
control its movements, a great mental effort is required 
especially during the first months after fitting (Soares et al., 
2002). This happens because the prosthesis control is very 
unnatural; signals collected from a reduced number of 
muscles are used to activate movements that are normally 
controlled by other nervous signals. Moreover, the effort 
required to control myoelectric prostheses increases with the 
level of amputation.   

We propose two myoelectric control strategies capable of 
reducing the required effort. Our control strategies are based 
on a hierarchical controller. The higher level of the controller, 
implemented using Finite State Machine, is presented in this 
paper.   

In the case of the first control strategy four elementary 
motions of the prosthesis: open hand, close hand, rotate 
inside and rotate outside, can be initiated directly by the 
patient using SEMG signals collected from sensors mounted 

on extensor communis digitorum and flexor carpi radialis 
muscles.   

In the case of the second control strategy six motions of the 
prosthesis: lower arm flexion, lower arm extension, rotate 
hand inside, rotate hand outside, close hand, and open hand, 
can be initiated by the patient using SEMG signals collected 
from biceps, triceps and pectoralis major muscles.  

The first control strategy can be used for patients with an 
amputation at wrist level and the second control strategy for 
patients with an amputation at the lower arm level.  For both 
strategies the lower level of the controller finalizes these 
motions using a local closed loop. Since the patient must only 
initiate a movement, the effort required to control the 
prosthesis will decrease. As the following sections will show, 
the proposed strategies can be applied to patients with a 
reduced muscular activity.  

In designing myoelectric controllers, two main approaches 
are used: the non-pattern recognition- and the pattern-
recognition based approach (Oskoei et al., 2007).  

In the category of non-pattern recognition-based methods are 
included, among others, proportional control (Parker et 
al.,2006), finite state machines (Moon et al., 2005), (Felzer et 
al., 2002), or threshold control (Sun et al., 2005).   

Proportional control uses the level of contraction of a muscle 
to alter the speed or force of a prosthetic limb. Due to the 
complexity of SEMG signal it is mandatory to preprocess the 
signal acquired by sensors before using it as input for the 
proportional controller. Even if it is easy to implement, it 
requires a great effort for the patient to permanently control 
the prosthesis. Therefore, this type of control is not suitable 
for patient with low muscular activity.  Proportional control  
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is typically used in conjunction with other non-pattern 
recognition-based or pattern recognition-based methods to 
increase the accuracy of positioning. 

Finite State Machine-based myoelectric control was applied 
by many researchers to drive rehabilitation devices like 
wheelchairs (Moon et al., 2005), (Felzer et al., 2002), upper 
and lower limb prostheses, assistance robots (Zhang et al., 
2009), etc.  Using the finite state machine method, the 
controller is described by a finite number of pre-defined 
states, transitions between them, and commands. The main 
drawback of this approach is the reduced number of actions 
that can be implemented. However, the reduced number of 
motions performed by upper-limb prosthesis makes this 
approach suitable for implementation. 

In threshold control, a signal level is used to discriminate 
between two states. If the amplitude of the surface EMG 
signal is over a threshold, a command will be generated. Fig. 
1 illustrates this mechanism.  

     

(a)  

 

(b) 

Fig. 1. (a) SEMG signal recorded,  
(b) Threshold control command generated 

The performance of this type of controller can be affected by 
many factors  like the characteristics of the acquisition 
system used to detect and process the electromyographic 
signals, the anatomical and physiological properties of 
muscles, the position of the sensors on the skin and the 
muscle fatigue (De Luca, 1997) etc.  

The classification of EMG signals is a very important 
problem to be addressed for any myoelectric controller. It has 
the role of achieving a certain class label for each input (e.g. 
flexion, extension, etc.). Many classification algorithms 
based on pattern-recognition methods were proposed in 
recent years. The greatest success in myoelectric control has 
been realized by pattern recognition based controllers using 
neural networks (NN) (Engelhart et al., 1999), fuzzy logic 
(Micera et al, 2000) and neural-fuzzy systems (Karlik et 
al.,2003).  

Because the real-time constraints are an important issue, there 
is a trade-off between the robustness, required time for 
classification and the computational power required.  

The remainder of this paper is organized as follows. Section 2 
describes the architecture and the functionality of the control 
system proposed. The data acquisition system and the  

procedures used to acquire the surface EMG signals are 
presented in Section 3. The implemented classifiers used in 
our control architectures are presented in Section 4. Section 5 
will present the high-level controller’s architectures. The 
performance of our approaches is analyzed in Section 6, and 
the final conclusions are presented in Section 7. 

2. THE ARCHITECTURE OF THE MYOELECTRIC 
CONTROLLER 

Our control strategies are implemented using the myoelectric 
control system architecture presented in Fig.2. 

 
    
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 2. Myoelectric control  system architecture 

The data acquisition system comprises SEMG sensors, an 
amplifier and a converter. The SEMG signals are collected 
using single differential SEMG sensors. The signals are 
amplified, filtered and converted from analog to digital.  
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Because of the complexity of  SEMG signal, it is not feasible 
to identify a movement directly from the acquired signal. 
Therefore, first a dimensionality reduction has to be applied, 
using the feature extraction module of the classifier. The 
purpose of this module is to extract a set of features 
characterizing the signal. They are further used as inputs for 
the feature processing module that will discriminate four 
classes of signals. A detailed description of these classes will 
be presented in Section 4.  

In the case of the first control strategy the four outputs of the 
classification block are applied to the high level module of 
the controller.  In the case of the second strategy additionally 
to the four outputs of the classification block, an output from 
the pectoralis major muscle is applied to the high level 
module of the controller. Then, the high level controller 
computes commands for the low level controller. The low 
level controller will control according with the patient 
intention, the movements of the prosthesis device using a 
closed loop control scheme. 

3. DATA ACQUISITION SYSTEM 

Fig. 3 illustrates the components of the Bagnoli 4 data 
acquisition system (www.delsys.com) used in our work. 

 
Fig. 3. Bagnoli 4 acquisition system for SEMG signals: 
-top right: the main amplifier; -bottom left; the input module; 
-top left: the converter. 

 The amplifier unit (Fig. 3, top right) has a gain factor 
adjustable from 0 to 10000 and a bandwidth between 20 and 
450 Hz ±10%. The single-differential SEMG sensors, 
illustrated in Fig.4, were connected to the amplifier using an 
input module (Figure 3, bottom left) which is an interface 
between sensors and the amplifier. The amplified signals are 
fielded into the converter represented by a NI USB-6009 
DAQ card (Figure 3, top left) from NATIONAL 
INSTRUMENTS. The DAQ was set to use a 1000 Hz 
sampling frequency.  

 

Fig. 4 Single-differential SEMG sensor 

Due to the small amplitude of the SEMG signal (μV to mV), 
the acquired signal is affected by noise. In order to increase 
as much as possible the accuracy of the signals acquired the 
noise was carefully considered.  A 2nd order notch filter was 
implemented for suppressing the 50 Hz frequency noise 
generated by the main line. The distance between the 
electrodes can also affect the quality of the signal detected 
(Merletti et al., 2004). To eliminate this problem, the sensors’ 
manufacturer used a fixed distance of 10 mm between 
electrodes. The SEMG signals were amplified by a factor of 
1000.  

3.1 The SEMG signal acquisition for the first control strategy 

The positions of the sensors on the upper limb are illustrated 
in Fig. 5 and Fig. 6. 

 

Fig. 5. Position of the sensors (outside view of the 
forearm): 1- SEMG sensor 1, 2-small goniometer, 3- 
large goniometer. 

 

Fig. 6. Position of the sensors (inside view of the 
forearm): 1- reference electrode , 2- SEMG  sensor 2 

One SEMG sensor was placed at a distance of 40 mm from 
the elbow, on the external side of the forearm (Fig. 5) in 
order to detect myoelectrical signal from extensor communis 
digitorum. The second SEMG sensor was positioned on the 
internal face of the forearm at a distance of 70 mm from the 
elbow (Fig. 6) and was used to collect signal from flexor 
carpi radialis.  

We chose these two muscles after many trials, because they 
are the most important contributors to the flexion-extension 
movements of the hand. In order to differentially detect the 
SEMG signals, a reference electrode was necessary. This 
electrode is recommended to be placed away from the SEMG 
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sensors. Therefore, we placed the reference electrode away 
from the two EMG sensors, on the joint of the hand (Fig. 6).  

Because surface electromyographic signals are affected by 
many disturbances it is very important to know when a 
movement is initiated, in order to know the starting point for 
the acquired signal considered for classification. There are 
several methods used nowadays for this reason. The simplest 
one is the use of a threshold. Unfortunately, the value of the 
threshold is chosen empirically; therefore that value cannot 
work in all cases. Other methods, like video detection of the 
movement, or the use of a pushbutton that has to be pressed 
when the patient intend to make a movement, can also be 
applied. 

We used two additional goniometers to detect the beginning 
of a movement. Using the goniometers, the information from 
these devices can be used for the implementation of the 
closed-loop low-level controller too. 

One of them was placed on the joint of the hand in order to 
detect flexion-extension movements. The second goniometer 
was placed along the small finger in order to detect the 
closing of the hand.  

As Fig. 5 illustrates we placed the goniometers on the same 
hand on which we placed the SEMG sensors, because we 
collected data from able-bodies subjects. In the case of the 
persons with amputations at the wrist level, the goniometers 
will be mounted on the other hand. During the data collection 
session the patient will simultaneously make the requested 
movement with both the healthy and the ill hand. We 
consider that using this strategy the patient will be 
encouraged to control both hands.    

For the implementation of the first control strategy, we used 
data collected from five able-bodied subjects, after receiving 
their informed consent.  

Three movements (hand flexion, hand extension and tight 
closing of the hand) were used during the acquisition of the 
signals, in order to discriminate three states: both muscles 
contracted, one contracted, the other relaxed and vice versa. 
The acquired signals plus the signals recorded from the two 
muscles when none of the three movements was performed 
(the repose state) were used to control four movements of the 
prosthetic device: rotate inside; rotate outside, close hand, 
open hand.  

Each of the three movements was performed 75 times by 
each subject. Also, 75 data sets were recorded from each 
subject in the case when no movement was performed. A 
total of 1500 movements resulted ((3 movements x 75 times 
+75 data sets corresponding to the case when no movement 
was performed) x 5 subjects). Because for each movement, 
data were collected from two muscles, a total of 3000 signals 
were processed by the classifier.  

During the acquisition session the subject sat down with the 
elbow leaning on a chair arm in order to better isolate the 
contractions of the muscles for each motion. 

3.2 The SEMG signal acquisition for the second control 
strategy 

The positions of the sensors on the arm are illustrated in Fig. 
7 (the sensor on triceps not visible in the picture). 

One SEMG sensor was placed at a distance of 80 mm from 
the elbow joint over the biceps muscle.  The second SEMG 
sensor was positioned on the triceps at a distance about 110 
mm from the elbow. The third SEMG sensor was positioned 
over the pectoralis major muscle.  

We chose the biceps and triceps muscle because they are the 
most important contributors to the flexion-extension 
movements of the forearm. Also the pectoralis major muscle 
was chosen because it is a large muscle, meaning that even 
small contractions will be detected by the sensor reducing the 
patient’s effort. The reference electrode was placed on the 
joint of the hand. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 7. Position of the sensors on the upper limb:  
1-reference electrode, 2-the goniometer for pronation-
supination, 3-the goniometer for flexion-extension, 4-
SEMG sensor on biceps, 5-SEMG sensor on pectoralis 
major 

Like for the first control strategy, as illustrated by Fig. 7, the 
two goniometers were placed on the same upper limb as the 
SEMG sensors, because we collected data from able-bodies 
subjects.   

For the second control strategy, data were collected, like for 
the first control strategy, from five able-bodied subjects after 
receiving their informed consent.  

Four movements of the forearm (flexion, extension, pronation 
and supination) were performed during the acquisition of the 
signals.  

For the flexion and extension movements, the subject sat 
down with the upper arm in a position that makes an angle of 
about 30 degree with the longitudinal axis of the body. The 
elbow was leaned on a chair arm in order to isolate better the 
contractions of the muscles for the motions. The flexion 
movement was around ninety degrees and the extension 
movement was made as much as was possible by the subject.  

For pronation and supination the subject stood up with the 
arm near the body in an anatomical position. The pronation 
and supination movements were about ninety degrees toward 
and outward the body, respectively.  
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During the acquisition of the SEMG, the subjects were 
encouraged to make movements in a way which was 
comfortable for them. 

Each of the four movements was performed 77 times by each 
subject. A total of 1540 movements resulted ((4 movements x 
77 times) x 5 subjects). Performing a large number of 
motions for each movement type results in collecting signals 
even where muscles become fatigue, which correspond better 
to the latter use of a real prosthesis. Because for each 
movement, data were collected from two muscles, a total of 
3080 signals were processed by the classifier.  

4. THE ELECTROMYOGRAPHIC CLASSIFIER  

As Fig. 2 illustrates, the electromyographic classifier has two 
modules: the feature extraction module and the feature 
processing module.  

In order to reduce the processing time it is important to 
extract relevant features from the raw signals, a task that is 
performed by the feature extraction module. This step is 
necessary because feeding the SEMG signal as a time 
sequence, directly into the classifier, excessively increases 
the processing time. The feature extraction algorithms 
attempt to preserve from the raw signal only the information 
that is relevant for classification and to remove redundant 
information.  

The feature processing module is used to classify the features 
extracted by the first module, into distinctive classes that 
correspond to the desired motion patterns. 

4.1 Feature extraction module 

When developing a control system for a prosthetic device an 
important factor is the real-time implementation. The 
generally accepted delay between initiating a move command 
at the mental level and the start of that movement is approx. 
300 ms. (Oskoei et al, 2007). In order to respect this 
constraint, acquired data have to be segmented, and then 
segments will be processed one by one. The length of the 
time segment depends on the sampling frequency used in 
acquisition and on the computational power of the system. 
We tested the performance of the classification algorithm 
when using segments ranging from 32 to 256 data set values. 
We observed that the classification performance is directly 
related to the length of the segment, the 256 values data sets 
yielding the lowest error rate in classification. Based on this 
observation we choose to work on 256 ms time segments 
corresponding to 256 data set values, since we used a 
sampling frequency of 1000 Hz.  

As the structure of the electromyographic signal is a complex 
one (Oskoei et al, 2007) and the signal is strongly related to 
the subject’s muscle and tissue structure, a simple threshold 
based algorithm does not offer sufficient information for the 
classification of the signal in different movement classes. 
Different approaches (time domain, frequency domain and 
time-scale domain analysis) were used previously for feature 
selection (Hudgins et al., 1993), (Herle et al., 2008), 
(Karlsson et al., 1999), (Karlsson et al., 2000).  

In this paper we used an autoregressive based algorithm for 
feature extraction. The autoregressive (AR) modeling of the 
SEMG offers very good performances in myoelectric signals 
classification. One of the main advantages is that it combines 
two stages: feature extraction and dimensionality reduction.  

This leads to a small size feature vector, and in addition, to a 
reduction of the processing time.  

Equation (1) describes the AR model: 

1..0),()()(
1

 Nnneinxanx
M

i                             (1)       

where ai are the AR coefficients, N is the dimension of the 
time segment,  M is the model order, x(n) are the samples of 

the signal,  and )(nx are the samples of the modeled signal. 
Studies have shown that an autoregressive model of a finite 
order (sufficiently large) can approximate any system with a 
specified degree of accuracy (Parker et al, 2006). The 
algorithm for the autoregressive coefficients calculation 
suggested by (Soares et al.,2002) follows the steps bellow: 

i. initialize the coefficients 
ii. calculate the predicted value of the signal 

)()(
1
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M

i                                     (2) 

iii. estimate the error 

)()()( nxnxne                                          (3) 
 

iv. update the coefficients  

)()(2)()1( inxnenana ii                            (4) 

Using this short algorithm for the n values of the signal, we 
find the coefficients a of an Mth order model. The term μ is 
the convergence coefficient. Based on multiple trials we used 
a value μ=0.01. The appropriate model order cannot be found 
analytically. Farrina and Merletti (Farina et al., 2007) found 
that a model of order 10 works for most of the segment 
lengths considered, and Soares et al. (Soares et al., 2003) 
showed that a fourth model order can adequately represent 
the structure of the EMG signal. We searched for the best 
approximation in models with orders between 2 and 12 and 
found that a fifth order model offers the best classification 
performance.  

AR modeling provides us with two main advantages 
concerning the classification problem.  The first advantage in 
using the autoregressive model is the dimension of the feature 
vector that is feed into the neural network based classifier. In 
our case, the 2x256 data points had been replaced by 2x5 
values. This allows the classifier to perform much faster and 
with a higher degree of accuracy.  The second advantage, the 
robustness is necessary due to the complexity of the EMG 
signal. As mentioned above, the EMG signal is directly 
dependent of the muscle structure, the skin thickness and the 
fatigue of the muscle. An amplitude based feature like a 
threshold value or a mean value is not necessarily directly 
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related to the level of contraction (Oskoei et al., 2007) and 
therefore cannot reflect the structural properties of the EMG.  

Once the features were extracted, they were classified using 
the feature processing module, in order to discriminate the 
upper limb movements.  

4.2 Feature processing module 

A. The feature processing module for the first control 
strategy 

The features extracted using the above mentioned algorithm 
(i.e. the coefficients of the autoregressive model) were used 
in training a classifier to discriminate between 4 different 
classes: (i) flexor contracted and extensor relaxed, (ii) flexor 
relaxed and extensor contracted, (iii) both muscles 
contracted, and (iv) no movement. The outputs patterns of the 
classifier are 1000, 0100, 0010, and 0001 corresponding to 
the four classes A two layer neural feed-forward network 
classifier was used for classifying the autoregressive 
coefficients into these four classes of movement. In training 
the classifier, a set of 200 of patterns (from the total of 300) 
was used for each subject. The rest of 100 patterns for each 
subject (a total of 500 patterns for the five subjects) were 
used for testing the classifier. We tuned the number of 
neurons in the hidden layer. After multiple tries, we 
concluded that a layer with 13 neurons offers the best 
classification and still avoids the phenomenon of 
overtraining, which would lead to a worse classification rate 
on unseen data.  

After training, a testing set of signals was presented to the 
neural network. A 91% recognition rate was achieved for the 
four movement classes, ranging from 90% to 95% depending 
on the movement. Fig. 8 illustrates the expected results and 
the classifier’s output. 

 

Fig. 8. Comparition between the expected and the obtained 
results 

B. The feature processing module for the second control 
strategy 

For the biceps and triceps muscles, the coefficients of the 
autoregressive model were used in training a classifier to 
discriminate between 4 different classes: (i) flexion, (ii) 
extension, (iii) pronation, and (iv) supination, based on a two 
layer feed-forward neural network. 

The classifier was trained using a set of 216 patterns (from 
the total of 308) for each subject. Thus, a total number of 
1080 patterns were involved in the training action. The rest of 
92 patterns for each subject (a total of 460 patterns for the 
five subjects) were involved in testing the classifier. After 
multiple tests, we concluded that a hidden layer of the neural 
network, with 14 neurons offers the best classification and 
still avoids the phenomenon of overtraining, which would 
lead to a worse classification rate on unseen data. The output 
patterns of the classifier (neural network) are 1000, 0100, 
0010, and 0001 corresponding to the four classes: flexion, 
extension, pronation and supination. The testing sets of 
signals were presented to the neural network after training. A 
98% recognition rate was achieved for the four movement 
classes. Fig. 9 illustrates the expected results and the 
classifier’s output. 

 
 
Fig. 9. The classifier outputs. Comparison between 
the expected and the obtained results 

Though we need to know if the pectoralis major muscle is 
contracted or not, a special classifier is not required for this 
purpose. A threshold was used in this case. 

5. THE HIERARCHICAL CONTROLLER  

As Fig. 2 already illustrated, the controller has two levels. 
The purpose of the high level controller is to transform the 
classes discriminated by the classifier into the inputs for the 
low-level controller. The high level module is implemented 
using finite state machine.  

5.1 The high-level controller used in the first control strategy 

In Fig. 10 is illustrated the state transition diagram that 
describes the controller functions, where  f stands for flexor 
carpi radialis and e for extensor communis digitorum. The 
indicator 1 codes the presence of a contraction, and 0 its 
absence. 

Flexor contracted 

    Extensor contracted                                   Data set 

Simultaneous contracted                           Data set 

  No contraction (inactivity)                         Data set 

                                                            Data set 
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The motions controlled are: open hand, close hand, rotate 
inside, and rotate outside. The signal from flexor carpi 
radialis muscle is used to commands two motions close hand 
and rotates inside. The signal from extensor communis 
digitorum is used to command the open hand and the rotate 
outside motions. Because each muscle commands two 

movements, it is necessary to discriminate between these 
movements. Therefore two modes are used. In mode 1 open 
and close motion are executed.  In mode 2, rotate inside and 
rotate outside motions are executed. In order to switch 
between the two modes, both muscles have to be 
simultaneously contracted. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 

Fig.10 State transition diagram of  finite state machine based controller for hand prosthesis  

5.2 The high-level controller used in the second control 
strategy 

For the second control strategy the high level controller 
transform the classes discriminated by the classifier (flexion, 
extension, pronation, and supination) into actual six 
movements of the prosthesis. Because the finite state machine 
used to implement the high level controller needs a condition 
to keep a state, and because the classifier implemented can 
not offer such a condition we tried to modify the classifier 
using a threshold instead of a goniometer for detection of the 
start of the movements.  The recognition rate of the classifier 
was around 81% as fig. 11 shows.  

 
Fig. 11. Comparison between the expected and the 
obtained results of the classifier when a threshold was 
used 

Moreover, an increased number of data were necessary for 
the classifier since a threshold was used to identify a 
movement. Therefore we decided to preserve the 

performance of the original classifier for the four movements 
of the forearm and to consider the signal from the pectoralis 
major muscle as a conditional signal to jump from one state 
to another.  

Figure 12 illustrates the state transition diagram that 
describes the controller functions, where the conditions to 
switch from one state to another are coded in the following 
way: 

 if   f=1 and pm=1 then a 

 if  e=1 and pm=1 then b 

 if  pm=0 then c 

 if  p=1 and pm=1 then d  

 if  s=1 and  pm=1 then e 

where f stands for flexion, e for extension, p  for pronation, s 
for supination, and pm  for pectoralis major.  

The indicator 1 encodes the presence of a contraction, and 0 
its absence. For each joint of the prosthesis one mode is 
defined. The suffixes ls and hs stand for low speed, and high 
speed. 

The motions controlled are: forearm flexion, forearm 
extension, hand pronation, hand supination, close hand, and 
open hand. 

From mode 1 the flexion and extension of the elbow joint can 
be controlled using the flexion and extension movements 

Close 
hand 

Open 
hand

Mode 
1

Mode 
2

Rotate 
inside 

Rotate 
outside 

f=1,e=0 
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detected by the classifier and the signal from the pectoralis 
major.  

In mode 2, the flexion and extension commands from the 
classifier are used in conjunction with the signal from the 
pectoralis major to control the pronation and supination 
movements of the prosthetic hand.  

In mode 3, the flexion and extension outputs of the classifier 
are used in conjunction with the signal from the pectoralis 

major to control the close and open movements of the 
prosthetic hand.  

The pronation and supination outputs of the classifier are 
used in conjunction with the signal from the pectoralis major 
to switch between modes. Each of the six movements can be 
controlled using two levels of speed. In this way, if the 
patient desires to increase the speed of a movement he or she 
has to repeat once again the condition that allows the 
execution of that movement. 

6. DISCUSSION  

The recognition rate of 91% achieved by the first control 
strategy is smaller than in our previous study (Herle et al., 
2008). The additional signal recorded when no movement 
was performed altered the performances of the classifier, but 
this additional signal was necessary to maintain the finite 
state machine in a certain state. However, there is a trade of 
between the robustness, required time for classification and 
the rate of recognition. Using this approach the classification 
time was drastically reduced. The total time between the 
moment when the raw EMG signal was presented to the 
classifier and the moment when the high level controller 
released a command was around 16 ms, when the test were 
made on a PC Intel dual core at 2.66 GHz. In order to 
improve the performance of the classifier, without increasing 
the processing time we implemented the second control 
strategy that not only increase the recognition rate to 98% but 
allows also controlling a prosthetic device with more degrees 
of freedom using different levels of speed. The total time 
between the moment when the raw EMG signal was 
presented to the classifier and the moment when the high 
level controller released a command was around 19 ms, when 
the test were made on the same computer like that one used 
for the first control strategy.  

Since 300 ms is considered to be the maximum time between 
the intention of a movement and the start of it, and taking into 
account our results, we consider that our approach is feasible 
for implementation into a real prosthesis. Combining this 
classification strategy with a finite state machine based high 
level controller will reduce significantly the effort required to 
control a real prosthesis. The high-level controller allows the 
users with a reduced muscular activity to easily control the 
prosthesis, because the patient must only initiate or stop a 
movement and the low-level controller will effectively 
control that movement using information from the local 
sensors (e.g. force or pressure sensors). Using goniometers, 
instead of threshold-based methods, we ensured a high 
robustness of the classifier and a reduced computational time.  
 

7. CONCLUSIONS 

In this study we proposed an approach for SEMG signal 
classification and two hierarchical controllers for a prosthetic 
upper-limb. We used a classifier based on autoregressive 
model combined with a neural network to detect of 
movement intentions. By using goniometers, instead of 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.12 State transition diagram of a finite state machine based controller for  an upper-limb prosthesis 
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methods based on thresholds, we ensured a high robustness 
of the classifier.  

 Our future work will be focused on the implementation of 
the low level controller. Since we used goniometers we 
intend to extract not only information related to the start of 
the movement, but also information related to the speed.  
This information will be useful for the low level controller in 
order to adjust continuously the speed of the prosthetic device 
according to the intention of the wearer. This is an advantage 
with respect to most of the current commercial prostheses, 
which only perform movements with constant speed. 
Another improvement for the classifier will be the use of the 
online training of the neural network. This will increase the 
adaptability of the algorithm to each individual user. 
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