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Abstract: This paper addresses the problem of taking into account data imprecision in the
mixture model clustering of binned data. Binning (or grouping) data is common in data analysis
and machine learning. Recently, we developed an original method which fitted the binning data
procedure to imprecise data. The idea was to model imprecise data by multivariate uncertainty
zones and to assign each uncertainty zone to several bins with proportions proportional to
its overlapping volumes with the bins. The experimental results of this method when it was
associated with the binned-EM algorithm (mixture approach) were encouraging. However, the
binned-EM algorithm has the disadvantage of being sometimes computationally expensive. To
overcome this problem, we propose in this paper to apply our binning data procedure with the
classification approach based on bin-EM-CEM algorithm which is much faster than the binned-
EM algorithm. The paper concludes with a brief description of a flaw diagnosis application
using acoustic emission. The experimental results compare our binning data procedure with the
classical one (when applied to imprecise data) in the classification approach framework, and
with the int-EM-CEM algorithm, in the context of binned bivariate measurements of acoustic
emission event localization.
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1. INTRODUCTION

In this paper, we address the problem of taking into ac-
count data imprecision in the mixture model clustering of
binned data. Binning data is common in data analysis and
machine learning. Binned data are data collected or trans-
formed into frequencies located in disjoined areas of IRp

called bins. In other words, binned data correspond exactly
to a multidimensional histogram and data in this form are
also called grouped data. Such data occur systematically in
a variety of application when a measurement instrument
has finite resolution but it may also occur intentionally
when real-valued variables are quantized to simplify data
collection or to reduce data because of their large size.

Data in the form of histogram also play an important role
in a variety of pattern recognition and machine learning
problems. For example, in computer vision, color his-
tograms are used for object recognition (Swain and Bal-
lard, 1991). In image retrieval, many studies rely heavily
on the use of color and feature histograms (see Flickner
et al., 1995; Maybury, 1997, for instance). A number of
techniques in approximate querying of databases and in
data mining of massive data sets also use histogram rep-
resentations (see Poosala, 1997; Matias et al., 1998; Lee
et al., 1999, for instance).

More particularly, within the framework of a flaw diagnosis
problem by real time acoustic emission control, we had to
classify, under real time constraints, a set of points located

in the plane (see Figure 1). This plane represents a tank
(pressure equipment) and each point of the plane repre-
sents the localization of an acoustic emission event. The
clustering CEM algorithm (Celeux and Govaert, 1992)
applied using a diagonal Gaussian mixture model (Celeux
and Govaert, 1995), provides a satisfactory solution if
the positions of the acoustic emission events are quite
precise but cannot react in real time, when the size of
data becomes very large (e.g. more than 10000 points).
As data sets become larger, data processing becomes in-
creasingly complex and as a result, data analysis requires
more computation time. To take into account these real
time constraints, we propose to reduce and group data
(see Figure 2) before their treatment. However, sometimes,
the acoustic emission events can not be quite localized
and their positions are then imprecise. Although the use
of binned data in the form of histogram constitutes a
natural way of taking into account the localization im-
precision, Hamdan and Govaert (2004b) proposed an orig-
inal method which fitted the binning data procedure to
imprecise data. The idea was to model imprecise data by
uncertainty zones, i.e., to define uncertainty zones around
the imprecise points provided by the acquisition system
(the dimensions of each uncertainty zone are chosen ac-
cording to the importance of the localization uncertainty
which is also provided by the acquisition system), and
then to assign each uncertainty zone to several bins with
proportions proportional to its overlapping volumes (or
surfaces in IR2) with the bins. The preliminary results
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Fig. 1. Real data resulting from acoustic emission on the
unfolded surface of a cylindrical pressure equipment.
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Fig. 2. Binned data corresponding to acoustic emission
data of Figure 1.

of this method when it was associated with the binned-
EM algorithm (Cadez et al., 2002) (mixture approach)
were encouraging. However, the binned-EM algorithm has
the disadvantage of being computationally expensive. In
such cases and in this paper, we propose to apply our
binning data procedure with the classification approach
based on bin-EM-CEM algorithm (Samé, 2004) which is
much faster.

To illustrate our concept of uncertainty zone data (or
merely uncertain data), Figure 3 displays the uncertainty
zones corresponding to acoustic emission data of Figure 1.

This paper is structured as follows. Section 2 presents the
mixture model in two different contexts: that of binned
data and that of uncertain data. Section 3 explains the
classification approach in binned data mixture model clus-
tering. In this section, the bin-EM-CEM algorithm (Samé,
2004; Samé et al., 2006) is described and summarized. In
Section 4, we present the principle of fitting the binning
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Fig. 3. Uncertain data corresponding to acoustic emission
data of Figure 1.

data procedure to imprecise data, and we define the binned
uncertain data concept. Section 5 describes briefly an
application of this approach to flaw diagnosis, on pressure
equipments, using acoustic emission. The binned uncertain
data approach, associated with the bin-EM-CEM algo-
rithm, is then applied in the context of imprecise bivari-
ate measurements of acoustic emission event localization.
Comparisons to the classical binning data procedure (when
we group the original ‘raw’ measurements), and to the
int-EM-CEM algorithm (Hamdan and Govaert, 2004c,a),
are also done.

2. THE MODEL

In this work, we suppose that ((x1, z1), . . . , (xn, zn)) is a
sample resulting from the couple of random vectors (X,Z)
associated to a distributions mixture defined on IRp by:

f(x;Φ) =

K
∑

k=1

πkfk(x; θk) (1)

where Φ = (π1, . . . , πK , θ1, . . . , θK) and π1, . . . , πK are
the proportions of the mixture and θ1, . . . , θK the pa-
rameters of each component density ; zi (1 6 i 6 n)
indicates the origin component of xi (1 6 i 6 n) and
we note z = (z1, . . . , zn). We consider that every point
xi belongs to an uncertainty zone Ri of IRp and we
suppose that the only available knowledge of the sample
((x1, z1), . . . , (xn, zn)) is the set of uncertainty zones Ri

(1 6 i 6 n) as xi ∈ Ri (1 6 i 6 n). We note
R = (R1, . . . ,Rn) the vector of these zones. On the
other hand, we consider a partition (H1, . . . ,Hv) of the
space IRp in v bins and in the binned data framework, we
suppose that the only available knowledge of the sample
((x1, z1), . . . , (xn, zn)) is the set of the frequencies nr of
xi belonging to Hr. We note a = (n1, . . . , nv) the vector
of these frequencies (

∑v
r=1 nr = n). Since there is no

available information about the exact positions of the
points xi into the bins H1, . . . ,Hv, we assume that in
a same bin, observations have the same label, i.e., all the
observations of a given bin belong to the same cluster.
Thus, the labels zi (1 6 i 6 n) can be replaced by the
labels zr (1 6 r 6 v) of the bins if the bin membership of
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each xi (1 6 i 6 n) is known, and zr (1 6 r 6 v) is coded
in the form zr = (zr1, . . . , zrK) where zrk is equal to 1 if
Hr is resulting from the component k and is equal to 0
elsewhere.

3. THE CLASSIFICATION APPROACH IN BINNED
DATA MIXTURE MODEL CLUSTERING

In this paragraph, we describe the classification approach
(Samé, 2004) for simultaneous estimation of the mixture
parameter Φ and the partition (z1, . . . , zv) maximizing the
log-likelihood criterion:

L(Φ; a, z)=L(Φ;n1, . . . , nv, z1, . . . , zv)

=logP (a, z;Φ)

=

v
∑

r=1

log

(

πzr

∫

Hr

fzr(x; θzr )dx

)

+ log
n!

∏v
r=1 nr!

. (2)

The maximization of L(Φ; a, z) with respect to (Φ, z),
knowing only the observed data a = (n1, . . . , nv), can be

performed on the basis of an initialization Φ
(0) and then

alternating, until convergence, the two following steps:

(1) computation of

z
(q) = argmax

z

L(Φ(q); a, z).

(2) computation of

Φ
(q+1) = argmax

Φ

L(Φ; a, z(q)).

The development of these two steps leads to the bin-EM-
CEM algorithm (Samé, 2004; Samé et al., 2006) which
we summarized in Algorithm 1, in the case of diagonal
Gaussian mixture model and while leaving from the initial

parameter Φ
(0), in three steps: E (Expectation), C (Clas-

sification) and M (Maximization). The maximization of
L(Φ; a, z(q)) with respect to Φ in the M-step, is performed
by an internal binned-EM algorithm (complete data are

((x1, z
(q)
1 ), . . . , (xn, z

(q)
n ))) while leaving from the initial-

ization Φ
(q).

4. BINNED UNCERTAIN DATA

Although the use of binned data in the form of histogram
constitutes a natural way of taking into account the local-
ization imprecision of data, we could improve the data dis-
cretization procedure by discretizing the uncertainty zones
rather than imprecise points. This principle is illustrated
in Figure 4 in the two-dimensional case. In this figure,
we consider a rectangular surface, divided into 4 bins per
dimension. Then, we consider a point xi located in the
bin H6 and we suppose that due to some perturbation
in measurement, the position of this point is measured
as being in the bin H11. By applying the traditional
discretization procedure to the imprecise point x̃i, the
frequency of the bin H11 will be incremented by 1, while
the frequencies of the other bins will not be incremented.
This procedure leads in this case to an error, the true
point being located in the bin H6. In order to solve this

Algorithm 1 bin-EM-CEM in the case of diagonal Gaus-
sian mixture model.
q ← 0 (q indicates the current iteration)
Initialization of the proportions, centers and variances

to an arbitrary value Φ
(0)

repeat
{E-step: computation of probabilities

p
(q)
r = P (x ∈Hr|Φ

(q)) and

p
(q)
k/r = P (zk = 1|x ∈Hr,Φ

(q))}

for r = 1 to v do
p
(q)
r ←

∑K
k=1 π

(q)
k

∫

Hr
fk(x; θ

(q)
k )dx

for k = 1 to K do

p
(q)
k/r ←

π
(q)

k

∫

Hr
fk(x;θ

(q)

k
)dx

p
(q)
r

{C-step: computation of the partition z
(q) by MAP

(Maximum A Posteriori)}
for r = 1 to v do
z
(q)
r ← argmax

k
p
(q)
k/r

{M-step: computation of the parameter Φ
(q+1)}

Φ
∗ = Φ

(q) (∗ indicates the current iteration of the
internal binned-EM algorithm)
repeat

{Internal E-step: computation of probabilities
p∗r/k = P (x ∈Hr|z = k,Φ∗)}

for r = 1 to v, k = 1 to K do
p∗r/k ←

∫

Hr
fk(x; θ

∗

k)dx

{Internal M-step: computation of the parameter

Φ
(q+1)}

for k = 1 to K do

π∗∗

k ←

∑

v

r=1
nrzrk

(q)

n

µ∗∗

k ←

∑

v

r=1

nrzrk
(q)

p∗
r/k

∫

Hr
xfk(x;θ

∗

k)dx

∑v

r=1
nrzrk(q)

Σ
∗∗

k ←

diag
(

∑

v

r=1

nrzrk
(q)

p∗
r/k

∫

Hr
(x−µ∗∗

k )(x−µ∗∗

k )T fk(x;θ
∗

k)dx

)

∑v

r=1
nrzrk(q)

∗ ← ∗∗

until

∣

∣

∣

L(Φ∗∗;a,z(q))−L(Φ∗;a,z(q))

L(Φ∗;a,z(q))

∣

∣

∣
< ε [ or ∗ = ∗max ]

Φ
(q+1) ← Φ

∗∗

q ← q + 1
until unchanged partition (z(q) = z

(q−1)) [ or q = qmax ]
ẑ← z

(q)

Φ̂← Φ
(q+1)

problem, we propose a solution which discretizes, instead
of x̃i, the uncertainty zone Ri built around the imprecise
point x̃i, and then to increment the frequencies of the
bins H6, H7, H8, H10, H11 and H12, by proportions
proportional to the surfaces of overlapping between the
uncertainty zone Ri and these bins. The advantage of this
method compared to the traditional one, is the fact of
incrementing the frequency of the bin H6 containing the
true point, by a value different from zero, contrary to the
traditional method which, in this case, attributes a null
frequency to this bin.

The generalization of this principle to the multidimen-
sional case is direct. In fact, we define binned uncertain
data as the binned data obtained by discretizing the mul-
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Fig. 4. Principle of discretization of uncertain data.

tivariate uncertainty zones R1, . . . ,Rn (cf. Section 2) ac-
cording to the principle we defined above. The discretiza-
tion we propose, is carried out by sharing each uncertainty
zone Ri between several bins, i.e., by incrementing the
frequencies of the bins by proportions proportional to
the volumes of intersections (overlappings) between the
uncertainty zone Ri and the bins H1, . . . ,Hv.

Figure 5 represents an example of simulated data set
having a size of 50 rectangular uncertainty zones, obtained
from a mixture of two Gaussian components of the space
IR2. To illustrate our new concept of binned uncertain
data, figures 6 and 7 display the corresponding binned
data obtained respectively by the classical discretization
(discretization of imprecise points) and the new one (dis-
cretization of uncertainty zones) with a 20 × 20 grid (20
bins per dimension). Thus, we notice that the new data
discretization procedure is very promising. Indeed, the new
method tends to smooth the histogram of the observed
data and the shape of the two Gaussian components of the
mixture of figure 5, appears very clearly with this method
(see figure 7).

Figure 8 shows the binned uncertain data corresponding
to the uncertain data of Figure 3.

At the convergence of the bin-EM-CEM algorithm applied
to binned uncertain data, the proportions of the uncer-
tainty zone overlapping volumes (or surfaces in IR2) with
the bins H1, . . . ,Hv, can be considered as membership
degrees of Ri only to the corresponding bin clusters pro-
viding thus a semi fuzzy clustering. To obtain a partition
of uncertain data, we need only to arrange each individual
in the cluster maximizing its membership degree (MAP:
Maximum A Posteriori).

5. AN APPLICATION TO ACOUSTIC EMISSION
CONTROL

Our work was motivated by a non destructive control ap-
plication for anticipating and detecting structures defects.
During a pressurization control, the acoustic emission
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Fig. 5. Rectangular uncertainty zones obtained from a
mixture of two Gaussian components of IR2.
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Fig. 6. Binned data obtained by the classical discretization.
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Fig. 7. Binned data obtained by the proposed discretiza-
tion of uncertainty zones.
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Fig. 8. Binned uncertain data corresponding to uncertain
data of Figure 3.

events appear on the pressure equipment surface. Data at
hand are acoustic emission event locations, in a rectangle
of IR2 representing the unfolded surface of the cylindri-
cal pressure equipment, with the corresponding degree of
localization imprecision for each acoustic emission event.
The flaw diagnosis is achieved in two steps:

(1) Identification of spatial concentrations (sources) of
acoustic emission events (clustering step) which is the
object of the present study.

(2) Classification of identified sources in danger classes:
minor, active or critical (discrimination step).

In this section, we present the results obtained by our
approach applied to an acoustic emission data set of 2466
acoustic emission events. Then, we compare the parti-
tions obtained by the algorithms CEM, int-EM-CEM,
bin-EM-CEM and int-bin-EM-CEM (bin-EM-CEM algo-
rithm applied to binned uncertain data). Our objective is
not to move away too much from the partition provided
by the CEM algorithm. Indeed, on the present data set,
the CEM algorithm provides a rather acceptable result.
For example, Figure 9 presents the partition obtained
by the CEM algorithm and Figure 10 presents the fi-
nal result, obtained using this clustering by CEM, and
then Bayesian discrimination with Gaussian classes, on
the present acoustic emission data set. In Figure 10, the
vertically lengthened cluster corresponds to a true defect.
Figure 11 shows that this defect is lengthened along the
weldings of the pressure equipment, which constitute po-
tential critical zones and, since in general they are lenght-
ened horizontally and vertically, imply a strong possibility
to have horizontal or vertical classes of defect. This result
may be considered as a validation, by the practice, of the
choice of diagonal Gaussian mixture model for acoustic
emission control of pressure equipment. In the rest of this
section, we evaluate the precision of the algorithms int-
EM-CEM, bin-EM-CEM and int-bin-EM-CEM, compared
to that of CEM.

We applied, on the basis of the same initialization (pro-
vided by CEM applied to ‘raw’ acoustic emission measure-
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Fig. 9. Partition obtained by the CEM algorithm.
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Fig. 10. Results obtained by the classical bayesian discrim-
ination step done after the clustering step performed
by CEM algorithm.
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Fig. 11. Acoustic emission data and weldings on the un-
folded surface of the cylindrical pressure equipment.
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ments), the algorithms int-EM-CEM, bin-EM-CEM and
int-bin-EM-CEM (see Figures 12, 13 and 14). The number
of clusters, for all these algorithms, was fixed to six. For the
two algorithms treating binned data (bin-EM-CEM and
int-bin-EM-CEM ), we considered 40 bins per dimension.

When studying the partitions obtained in Figures 9, 12,
13 and 14, we noticed that the partitions obtained by the
algorithms CEM, int-EM-CEM and bin-EM-CEM (Fig-
ures 9, 12 and 13) are approximately identical. We have
six clusters: two horizontal elliptic clusters which are well
separated, a vertical cluster, and three clusters which
are overlapped. Since the vertical cluster corresponding
to the defect, has been identified by these algorithms,
it will be discriminated as defect class by the Bayesian
discrimination step. However, there is a difference between
the partition obtained by the int-bin-EM-CEM algorithm
(Figure 14), and the one given by the CEM algorithm.
Nevertheless, the cluster lengthened vertically, is identi-
fied. If we compare this partition with the one obtained
by the bin-EM-CEM algorithm (Figure 13), we first note
that there are more non empty bins in the first partition
than in the second one. This is due to the fact that when
we discretize an uncertainty zone, it will be distributed,
according to its surface, on several bins, and thus we get
more non empty bins than when we discretize imprecise
points in the classical case. On the other hand, we also note
that the obtained clusters are flattened. This is due to the
fact that the frequencies of the uncertainty zones when we
applied the int-bin-EM-CEM algorithm, were distributed
in a more homogeneous manner than the frequencies of
the points in the bin-EM-CEM strategy. This homoge-
neous distribution (smoothing) does so that the elevated
frequencies (for example the frequency of the bin belonging
to the smallest cluster in Figure 13 ; see also Figures 2 and
8) are distributed between several bins while providing a
tendency to flatten the clusters. Therefore, the two smaller
overlapped clusters of Figure 13 have been identified by the
algorithm int-bin-EM-CEM (see Figure 14) in one cluster
having approximately the size of the biggest cluster with
little flatness.

Before concluding, we insist on the fact that all the
tested algorithms could identify the cluster lengthened
vertically. In the decision (discrimination) step (classical
bayesian discrimination with Gaussian classes) following
the clustering step in our flaw diagnosis strategy, the
cluster lengthened vertically, has been found to be a flaw
(defect) cluster. Notice that this result is consistent with
the existence of a flaw.

6. CONCLUSION

In this paper, we presented the principle of fitting the
binning data procedure to imprecise data, and we defined
the binned uncertain data concept. We applied the binning
uncertain data procedure with the classification approach
in binned data mixture model clustering, to acoustic
emission data in a flaw diagnosis application. In this
framework, the binning uncertain data procedure was
compared to the classical binning data procedure and
also to the CEM and int-EM-CEM algorithms, in the
context of imprecise bivariate measurements of acoustic
emission event localization. Experimentations show that
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Fig. 12. Partition obtained by the int-EM-CEM algorithm.
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Fig. 13. Partition obtained by the bin-EM-CEM algo-
rithm.
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Fig. 14. Partition obtained by the int-bin-EM-CEM algo-
rithm.
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our method produces satisfactory results and that the use
of diagonal Gaussian mixture model is well adapted to
acoustic emission events clustering. The prospects of this
work would be to extend the proposed method to spherical
pressure equipments.
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