
CEAI, Vol.14, No.1, pp. 83-92, 2012 Printed in Romania

MDE-driven OCL Specification Patterns

Dan Chiorean* Vladiela Petraşcu*
Ileana Ober**

*Babeş-Bolyai University, Cluj-Napoca, Romania (e-mail: {chiorean, vladi}@cs.ubbcluj.ro)
** Université Paul Sabatier, Toulouse, France (e-mail: ileana.ober@irit.fr)

Abstract: Detailed and unequivocal model specifications are a prerequisite for attaining the automated
software development goal as promoted by the Model Driven Engineering (MDE) paradigm. The use of
assertions, as promoted by the Design by Contract approach, assists in creating such model
specifications. However, writing from scratch a large amount of assertions can be tedious, time-
consuming, and error-prone. Consequently, a number of constraint patterns have been identified in the
literature, and corresponding OCL specifications have been proposed. Automating their use in tools
should speed the writing task and increase its correctness. Yet, no attention has been paid to the influence
of such specifications in the area of error detection and diagnosis. We approach this topic by proposing
new OCL specification patterns for some of the existing constraint patterns. Our proposal should increase
the efficiency of testing and debugging processes performed for models and applications. Relevant
examples and tool-support are used in order to explain and validate our approach.

Keywords: OCL, constraint patterns, MDE, testing, model compilability, model testing

1. INTRODUCTION

Nowadays, the large scale use of modeling is undoubtedly the
most promising approach to software development
automation. The recently emerged paradigm that promises
attainment of such a goal is referred as MDE (Model Driven
Engineering) (Schmidt 2006). However, this new approach
can only deliver its promises when provided with means of
creating detailed and rigorous models. Such models can be
achieved by complementing the graphical modeling
languages with appropriate assertion languages, such as OCL
(Object Constraint Language (OMG 2010a)) for the MOF
(Meta Object Facility (OMG 2006)) based family of
modeling languages. The purpose and value of using
assertions in software specification have been argued, among
others, by the Design by Contract approach (Meyer 1997).

The emergence of MDE has triggered a major shift with
respect to the usage of models and assertions in software
development. Traditionally, modeling has been primarily
targeted at facilitating problem understanding, assisting the
client-developer communication, and guiding a mostly-
manual implementation process. In this context, the purpose
of writing model assertions (pre/post-conditions and
invariants) was threefold. Firstly, they were meant to assist in
writing correct programs, their explicit definition being
regarded as a precondition of their enforcement in software.
Secondly, they were the “oracles” against which to mentally
assess software correctness during program testing. Thirdly,
they were used as documentation artifacts, along with the
complemented models.

With the advent of MDE however, models are upgraded from
helpers to “first class citizens” of software development.

Consequently, the emphasis is now laid on the creation of
comprehensive correct models, intended to be automatically
turned into code. Moreover, models are used at various
abstraction levels (user-model, metamodel, meta-metamodel),
reflected in metamodeling architectures. These new
requirements of MDE call for new means of using assertions.
Ensuring model correctness requires model compilability
checks and model testing; the former activity is based on the
evaluation of metamodel-level assertions (called Well
Formedness Rules or WFRs), while the latter involves the
evaluation of user model-level assertions (called Bussines
Constraint Rules of BCRs). Moreover, following a natural
MDE process, the model-level assertions should be turned
into program-level routines, along with the model itself. This
provides for runtime assertion monitoring, enabling the
automatic use of assertions in program testing (as opposed to
the traditional mental reasoning), as well as an aid to
debugging and the creation of fault tolerant systems (Meyer
1997).

We claim that these new means of using assertions should
enforce a change with respect to the style in which assertion
specification is done. While complying with the role of
assertions in traditional software development required them
to be specified in the shortest, most intuitive manner,
conformance to the requirements of MDE demands
specifications to facilitate efficient error detection and
diagnosis.

Widespread use of constraints has triggered the identification
of several constraint patterns. However, the existing solutions
to specify them do not seem targeted at fulfilling the
aforementioned conditions. Through this paper, we aim at
filling this gap, by proposing OCL specification patterns

84 CONTROL ENGINEERING AND APPLIED INFORMATICS

driven by the MDE requirements on using assertions. Our
proposal has a great automation potential, and, as such, it
does not come with the price of penalizing constraints’
readability.

The rest of the paper is organized as follows. Section 2 sets
the context by introducing constraint patterns and
summarizing related work that we rely on. Our specification
approach is detailed in Section 3 and validated in Section 4.
The paper ends with conclusions and hints on future work in
Section 5.

2. BACKGROUND AND RELATED WORK

2.1 Constraint Patterns

In Software Engineering, patterns are used to identify
recurring development problems, for which they provide a
common description and solution in a given context.

Definition [Pattern]. A pattern describes a generic solution
to a recurring problem in a certain domain that can be
reapplied to instances of the same problem (Wahler 2008).

In software modeling, constraint patterns (Wahler et al.
2006) may be used to capture frequently occuring restrictions
imposed on models. This paper is focused on describing and
specifying such constraint patterns. We work with UML
(Unified Modeling Language (OMG 2010b)) as the model
specification language and we use OCL for specifying
constraints. Throughout the paper, we will clearly distinguish
among the concept of constraint pattern and that of OCL
specification pattern, although the phrases appear to be used
interchangeably in the literature (see (Ackermann 2005b);
(Wahler 2008)). For the purpose of this work, a constraint
pattern denotes a logical constraint (restriction) on a model,
while an OCL specification pattern refers to a proposed way
of specifying constraints, patterns included. We describe
solutions to the constraint patterns of interest as OCL
specification patterns.

We will mainly focus on three constraint patterns that have
been identified in the literature - Attribute Value Restriction,
Unique Identifier, and For All. In a pattern taxonomy
proposed by Wahler (2008), the first two are classified as
atomic or elementary constraint patterns, while the last one is
regarded as a composite constraint pattern. Elementary
patterns abstract basic constraints on a model, while
composite patterns allow expressing arbitrarily complex
restrictions, by integrating any number of constraints, either
atomic or composed (Wahler 2008). Attribute Value
Restriction (Wahler 2008) is a basic pattern used to express
various constraints on the value of a given class attribute.
Unique Identifier (Wahler 2008) captures the situation in
which an attribute (a group of attributes) of a class plays the
role of an identifier for the class, i.e. the class' instances
should differ in their value for that attribute (group). This is
probably the best known constraint pattern, being referred
under different names in the literature - Semantic Key by
Ackermann (2005a), Primary Identifier by Miliauskaite et al.
(2005), or simply Identifier by Costal et al. (2006). Finally,

the For All constraint pattern requires every object of a
certain collection to fulfill a number of specified restrictions.

In the following subsection, we present existing OCL
specification patterns for the three mentioned constraint
patterns. The OCL specification patterns are given in terms of
OCL parameterized templates, as described by Wahler
(2008). Using this representation, each OCL specification
pattern is a template (macro) that depends on a number of
parameters which are typed by elements from the UML and
OCL metamodels. Replacing them with actual model
elements generates a pattern instantiation. In order to keep
consistency and allow an easy comparison of our work with
existing related approaches, we will use the same
representation means (OCL templates) when introducing our
proposals in Section 3.

2.2 Existing Approaches to Specifying Constraint Patterns

Wahler (2008) uses OCL templates and HOL-OCL functions
to represent the OCL specification patterns and to formalize
their semantics. The atomic patterns are described both ways.
However, since composite patterns are higher order
constructs, representing constraints over constraints, their
semantics cannot be expressed naturally using OCL
parameterized templates, as in case of atomic patterns.
Therefore, composite patterns are only described in terms of
HOL-OCL.

Ackermann (2005a) introduces a detailed pattern description
scheme exposing all properties of a pattern: name,
parameters, restrictions for pattern use, as well as type,
context and body of the resulting constraint.

Since we want to keep all descriptions consistent and
intelligible, we will only use OCL templates when
introducing the OCL specification patterns of interest from
the two mentioned papers. Therefore, the specification
pattern for Semantic Key given by Ackermann (2005a) will
be translated into this representation, without altering its core
semantics. We also provide an OCL template sketch for the
composite For All pattern from (Wahler 2008). All the other
specifications faithfully reproduce the ones in (Wahler 2008).

In (Wahler 2008), the following template representation is
given for the OCL specification pattern associated to
Attribute Value Restriction.

pattern AttributeValueRestriction(property:Property,
 operator, value:OclExpression)=
 self.property operator value

This template depends on three parameters (given in italics),
namely property - which stands for the attribute that is to be
constrained, operator, and value - which are used to restrict
the attribute's value. Such a pattern may be instantiated to
generate an invariant in the context of an UML class, by
providing as actual parameters an attribute of the class, a
concrete operator and a value expression.

Following, there is the OCL template for Unique Identifier,
as proposed in (Wahler 2008) and (Wahler et al. 2006). The
template employs one parameter, property, standing as a

CONTROL ENGINEERING AND APPLIED INFORMATICS 85

placeholder for any tuple of class attributes on which we
want to impose the uniqueness constraint.

pattern UniqueIdentifier(property:Tuple(Property))=
 self.allInstances()->isUnique(property)

The specification given in (Ackermann 2005a) for the same
pattern matches the following OCL template. The template
uses two parameters, class and property, the first standing for
the class on whose instances we want to impose the
uniqueness constraint, and the second for the attribute under
consideration (whose values should be unique).

pattern SemanticKey(class:Class, property:Property)=
 class.allInstances()->forAll(i1, i2 | i1 <> i2 implies
 i1.property <> i2.property)

Finally, we give below the OCL template-like description for
the specification pattern associated to the For All constraint
pattern.

pattern ForAll(collection:OclExpression,
 properties:Set(OclExpression))=
 collection->forAll(y | oclAND(properties, y))

The template-like description above uses two parameters.
The first one, collection, denotes the collection of model
elements which is iterated. The second parameter, properties,
stands for the set of constraints that should be fulfilled by all
objects in the collection. Each such constraint is, in fact, an
instantiation of some constraint pattern. Since the OCL
standard does not include a construct for expressing the
conjunction of an arbitrary number of boolean expressions,
we introduce the oclAND notation in this purpose.
Consequently, oclAND(properties, y) denotes the expression
resulting from the conjunction of the boolean expressions
obtained by replacing self with y in each of the constraints
from properties.

3. PROPOSED OCL SPECIFICATION PATTERNS

The majority of OCL specifications found in the literature
(those for constraint patterns included) are focused
exclusively on the clearness of expressions. During testing
and debugging however, the mere information that a system
state is inconsistent or that a method pre/post-condition is not
fulfilled is not enough. Identifying the exact failure reasons is
of utmost importance for error correction. This is the core-
idea of the OCL specification approach that we promote. In
this respect, in the following we give improvements of
existing OCL specification patterns, considering both the
case of invariants and that of pre/post-conditions.

3.1 The case of invariants

Fig. 1. A sample class model.

1) The “For All” constraint pattern: Let us consider the
UML model in Figure 1, together with a business constraint
rule stating that “All employees of a company should be aged
at most 65”. We will refer to this particular constraint as
Complying with Retirement Age Limit (CRAL) in the
following.

Most of the OCL specifications encountered in the literature
for such a constraint consist of an invariant of the following
shape.

context Company inv CRAL_E:
 self.employees->forAll(e | e.age <= 65)
The specification above is quite compact and intelligible, due
to the fact that the OCL forAll() operation directly
corresponds to the mathematical logic’s universal quantifier
 . However, such an invariant shape is not the most useful

in a testing/debugging-related context. The feedback it offers
in case of failure is tool-dependent, consisting in either a
simple false message, or an implementation-dependent tree
showing the result of evaluating the age constraint on each
employee of the company. In the former case, we have no
useful hint regarding the identity of those employees which
are over the age limit. In the latter, the task of searching
within the employees tree may be disturbing and time-
consuming. This turns the debugging of an object model
containing a large number of employees into a difficult task.

As an answer to the above problem, we suggest using any of
the following two specifications. These are convenient not
only when modeling, but also at runtime, allowing a user to
easily get the information he needs in fixing a possible error.

context Company inv CRAL_P1:
 self.employees->reject(e | e.age <= 65)->isEmpty()

context Company inv CRAL_P2:
 self.employees->select(e | e.age > 65)->isEmpty()

As proved in the Appendix, CRAL_E, CRAL_P1, and
CRAL_P2 are semantically equivalent. However, the newly
proposed invariants have the advantage of allowing
evaluations of the reject()/select() subexpressions,
which return exactly the set of employees violating the age
constraint. A proof of this will be provided in Subsection 4.1,
using the OCLE tool (LCI 2005).

A basic reasoning on the kind of restriction imposed by
CRAL leads to the conclusion that this particular constraint is,
in fact, an instantiation of the For All composite constraint
pattern described in Subsection 2.1. The constraint used by
the composite is, at its turn, an instantiation of an atomic
constraint pattern, namely Attribute Value Restriction.
Furthermore, the OCL specification employed by the
CRAL_E invariant (a widely-encountered style in the
literature) is an instantiation of the ForAll specification
pattern, as proposed in (Wahler 2008) (see Subsection 2.2).
The latter uses an instantiation of the
AttributeValueRestriction specification pattern
proposed by the same reference. In light of these statements,
the CRAL_E invariant reads as follows.

context Company inv CRAL_E:
 ForAll(self.employees,
 Set{AttributeValueRestriction(age,<=,65)})

86 CONTROL ENGINEERING AND APPLIED INFORMATICS

Above, we have emphasized the benefits gained by replacing
the CRAL_E specification with its CRAL_P counterparts. In
order to be able to exploit those benefits in case of all
constraints instantiating the For All composite pattern, we
propose the following two equivalent OCL specification
patterns for it.

pattern ForAll_Reject(collection:OclExpression,
 properties:Set(OclExpression))=
collection->reject(y | oclAND(properties,y))->isEmpty()

pattern ForAll_Select(collection:OclExpression,
 properties:Set(OclExpression))=
collection->select(y | not oclAND(properties,y))->isEmpty()

In this context, it is obvious that the CRAL_P1 and
CRAL_P2 specifications are instantiations of the
ForAll_Reject and ForAll_Select specification
patterns respectively, as shown below.

context Company inv CRAL_P1:
 ForAll_Reject(self.employees,
 Set{AttributeValueRestriction(age,<=,65)})
context Company inv CRAL_P2:
 ForAll_Select(self.employees,
 Set{AttributeValueRestriction(age,<=,65)})

As previously stated, we claim that the use of the newly
proposed OCL specification patterns (ForAll_Reject and
ForAll_Select) has a significant impact on the
efficiency of testing/debugging activities, by increasing it in
case of large collections of objects.

2) The “Unique Identifier” constraint pattern: There are
basically two possible contexts for applying the Unique
Identifier constraint pattern, although little emphasis has been
put on distinguishing among them in the literature. One of
them refers to the so-called “global” uniqueness - certain
models or applications may require all possible instances of a
class to differ in their value for a particular attribute. The
other captures a “container-relative” uniqueness - a
model/application constraint may state that each instance of a
class accessible starting from a given “container” should be
uniquely identifiable by the value of a particular attribute
among all instances of the same class from within the same
container. The existing OCL specification patterns for the
Unique Identifier constraint pattern (those reproduced in
Subsection 2.2) concern the “global” uniqueness case
exclusively. Therefore, they should not be used for the
“container-relative” one, as generally done in the literature.
Moreover, the existing specification patterns have drawbacks,
even when used in the appropriate context. In the following,
we will analyze both uniqueness cases and propose
appropriate OCL specification patterns for each.

“Global” uniqueness case (GUID): Let us consider a census
application whose model contains a Person class. Suppose
this class has an ID attribute and there is a business
constraint stating that persons should be uniquely identifiable
by their IDs. This is a classical case of a “global” uniqueness
constraint. For such a constraint, the majority of OCL
specification proposals in the literature have one of the
following shapes.

context Person inv GUID_E1:
Person.allInstances()->forAll(p,q| p<>q implies p.ID<>q.ID)

context Person inv GUID_E2:
Person.allInstances()->isUnique(ID)

It may be easily noticed that these are instantiations of the
SemanticKey and UniqueIdentifier specification
patterns, as reproduced in Subsection 2.2. Therefore, they can
be written as:

context Person inv GUID_E1: SemanticKey(Person, ID)
context Person inv GUID_E2: UniqueIdentifier(Tuple{x=ID})

As given above, these specifications have two drawbacks,
which have been confirmed by the tests that we have
performed using OCLE.

1) The worst is that GUID_E1 breaks the semantics
of invariants, as promoted by Design by Contract.
To acknowledge this, consider the case when at least
two persons have the same ID value. Then, the
evaluation of this invariant would return false for
ALL persons (even for those having an unique ID).
According to the semantics of an invariant, this
should evaluate to false only for those instances
violating the constraint that it formalizes. Such a
semantics is clearly disregarded by GUID_E1
invariant. This drawback is triggered by the use of
allInstances() uncorrelated with the
contextual instance.

2) Due to the use of forAll() and isUnique()
respectively, the two specifications do not provide
appropriate debugging support.

Since we have shown that the two specifications are, in fact,
instantiations of the OCL specification patterns
UniqueIdentifier and SemanticKey, it logically
follows that the OCL patterns themselves are incorrect. As a
replacement of GUID_E1 and GUID_E2, we propose the
following invariant

context Person inv GUID_P:
 Person.allInstances()->select(p|p.ID = self.ID)->size()=1

from which we deduce the general OCL specification pattern
that should be applied in case of “global” uniqueness
constraints.

pattern GloballyUniqueIdentifier(class:Class,
 attribute:Property)=
class.allInstances()->select(i |
 i.attribute = self.attribute)->size() = 1

It is obvious that GUID_P is an instantiation of this pattern.

context Person inv GUID_P:
 GloballyUniqueIdentifier(Person,ID)
The specification pattern that we have introduced above is
both correct with respect to the semantics of invariants and
useful from a debugging perspective. However, as stated by
the UML 1.5 Specification (OMG 2003, p. 6-19): “The use of
allInstances has some problems and its use is discouraged in
most cases. The first problem is best explained by looking at
the types like Integer, Real and String. For these types the
meaning of allInstances is undefined. ... The second problem
with allInstances is that the existence of objects must be
considered within some overall context, like a system or a
model. ... A recommended style is to model the overall
contextual system explicitly as an object within the system
and navigate from that object to its containing instances
without using allInstances.”

CONTROL ENGINEERING AND APPLIED INFORMATICS 87

“Container-relative” uniqueness case (CUID): According
to the emphasized phrase from the above quotation, we claim
that this is how the majority of uniqueness constraints should
be imposed. Let us start from the model in Figure 1 and
suppose there is a constraint requiring that employees of a
company should be uniquely identified by their IDs. This is a
classical case of an uniqueness requirement in the context of
a “container”, the “container” being represented by a
Company object.

A correct and efficient specification for the considered
constraint can be given in the context of Company, as
follows.

context Company inv CUID_P1:
 self.employees->reject(e |
 self.employees.ID->count(e.ID)=1)->isEmpty()

This has a minor efficiency issue, however, due to the
repeated computation of the employees’ id collection. In
order to avoid it, we propose to isolate this computation by
means of an OCL let statement.

context Company inv CUID_P2:
 let allIDs:Bag(String) = self.employees.ID in
 self.employees->reject(e|allIDs->count(e.ID)=1)->isEmpty()

Analyzing the CUID_P2 invariant, we discover a potentially
new atomic constraint pattern requiring that “A given class
attribute has exactly one occurence in a given bag of
elements of the same type”. We use the phrase Unique
Occurence in Bag, with the acronym UOB, to denote the
newly proposed atomic constraint pattern. For UOB, we
propose the following OCL specification pattern.

pattern UniqueOccurenceInBag(bag:OclExpression,
 attribute:Property)=
 bag.count(self.attribute) = 1

Based on this, it can be easily noticed that the proposed
CUID_P2 invariant specification uses an instantiation of our
previously proposed OCL specification pattern
ForAll_Reject, composed with an atomic
UniqueOcurrenceInBag instance. Therefore, we
propose the following OCL specification pattern, that is to be
applied in all cases of “container-relative” uniqueness.

pattern ContainerRelativeUniqueIdentifier(
 navigation:Property, attribute:Property)=
 let bag:Bag(OclAny) = self.navigation.attribute in
 ForAll_Reject(navigation,
 Set{UniqueOccurenceInBag(bag,attribute)})

It is possible to generalize the
ContainerRelativeUniqueIdentifier pattern,
such that the uniqueness constraint, instead of applying to all
contained elements, would rather apply to a conveniently
selected subset. Below, we give the OCL pattern that we
propose in this respect. Within it, navigation stands for the
feature used to access the objects on which we want to
impose the uniqueness constraint, properties denotes the set
of constraints used to filter them, class stands for their
classifier and attribute for the id-like attribute.

pattern GenContainerRelativeUniqueIdentifier(
 navigation:Feature, properties:Set(OclExpression),
 class:Class, attribute:Property)=
 let subset:Set(class) = self.navigation->select(e |
 oclAND(properties,e)) in
 let bag:Bag(OclAny) = subset.attribute in
 ForAll_Reject(subset,
 Set{UniqueOccurenceInBag(bag,attribute)})

An instantiation of this pattern will be provided within the
validation section.

3.2 The case of pre/post-conditions

The existing OCL specification patterns have been mostly
related to the use of invariants for specifying constraint
patterns. And, indeed, the use of invariants is the only
alternative in case static model evaluation is required. From a
dynamic perspective however, it is better to prevent than to
cure. At runtime, instead of evaluating invariants after each
call of a method that may modify the properties they depend
on, it is preferable to prevent constraint breaking by means of
appropriate pre/post-condition pairs. Due to space constraints
of the paper, we only exemplify this for the particular cases
considered previously, omitting the general pattern
specifications that may be easily deduced.

The uniqueness constraint imposed on IDs of employees
within a company can be prevented from breaking by means
of appropriate pre/post-condition pairs for the two modifiers
that may violate this constraint. The two modifiers concern
adding an employee to a company and setting the name of an
employee, respectively. The corresponding specifications are
given below.

context Company::addEmployee(emp:Employee)
pre CUID_preAdd:
 self.employees->reject(e | e.ID <> emp.ID)->isEmpty()
post CUID_postAdd:
 self.employees = self.employees@pre->including(emp)

context Employee::setID(id:String)
pre CUID_preSet:
 self.employer.employees->reject(e | e.ID <> id)->isEmpty()
post CUID_postSet:
 self.ID = id

In case the uniqueness constraint is imposed in a global
fashion, the corresponding contract for the ID setter is the
following.

context Person::setID(id:String)
pre GUID_preSet:
 Person.allInstances->reject(p | p.ID <> id)->isEmpty()
post GUID_postSet:
 self.ID = id

4. TOOL SUPPORT AND VALIDATION

As already pointed out at the beginning of this paper, the
primary goal of any modeling activity leaded under the
umbrella of MDE should be the production of correct models.
Except for the abstraction level, the question of determining
the correctness of a model can be thought by analogy to that
of establishing the correctness of a program. Namely,
ensuring program correctness requires carrying out two
mandatory tasks, compilability checks and program testing, a
successful accomplishment of the former coming as a
precondition of the latter. Compilability checks are meant to
establish the correctness of a program with respect to the
programming language used to define it; specifically, they
test whether the programs conforms of not to the syntactical
and static semantics’ rules of the language in question.
Program testing aims at deciding whether the program is
correct or not with respect to its requirements specification.

88 CONTROL ENGINEERING AND APPLIED INFORMATICS

The same two steps should be undertaken when judging the
correctness of a model; their specifics in a modeling context
are detailed in the following.

In modeling, compilability checks encompass both the model
itself and its associated assertions, being regarded as a
mandatory prerequisite of any model transformation task
(code generation included). The model should be compilable
with respect to the modeling language used to describe it,
while its assertions should be compilable with respect to the
constraint language employed. Failure to fulfill the first
requirement may trigger inability to accomplish the second.
Compilability of a model with respect to its modeling
language is judged by its conformance to the abstract syntax
and static semantics of the language (Chiorean et al. 2010).
The abstract syntax of a modeling language is described by
means of its metamodel, while the static semantics is given
by metamodel-level invariants called Well Formedness Rules
(WFRs). Conformance to the WFRs is checked by evaluating
all such WFRs (or their programming language equivalents)
on the model. Starting from the assumption that all WFRs are
correct (since the modeling language must have been
extensively tested prior to release), failure to fulfill any of the
WFRs indicates a bug in the model. Writing the WFRs with
model debugging-support in mind (as promoted by our
proposed specification patterns) considerably facilitates this
task, thus speeding up the development process.

Model testing aims at deciding whether the model conforms
or not to the domain/reality that it represents and the rules
that govern it. Such rules are referred as Business Constraint
Rules (BCRs), being represented by means of model-level
invariants (as opposed to WFRs which are given by
metamodel-level invariants). Testing is performed using
snapshots (domain model instantiations), which are meant to
detect faults in the model itself (e.g. missing concepts,
missing/wrong relationships, attributes having wrong types),
as well as bogus model BCRs. Assuming that the model itself
is correct, faults in the BCRs are identified by evaluating
them on the test snapshots. The detection of any false-
positive (wrong snapshot that is accepted, i.e. all BCRs
evaluate to true) or false-negative (good snapshot that is
denied, i.e. fails to fulfill a particular BCR) points to a logical
bug in the BCR expressions. Designing them with debugging
support in mind may ease the task considerably. This is
especially useful when the model to test is, in fact, a
metamodel, since, given their reuse potential, metamodels
require extensive testing on sizable models.

Within this section, we aim at giving proof of the
testing/debugging potential of the proposed specification
patterns, covering both compilability checks and model
testing.

4.1 Tool Support

All software development-related activities (testing and
debugging included) require tools supporting both the
employed formalisms and the pursued goals. The advantages
derived from using the specification patterns described in this
work, instead of those already proposed in the literature, may

be highlighted by means of an appropriate tool, such as
OCLE (Object Constraint Language Environment (LCI
2005)). We have chosen this particular OCL tool over others,
since it best supports the proposed specification approach.

OCLE is a CASE (Computer Aided Software Engineering)
tool that allows the specification of OCL assertions at two
abstraction levels (metamodel-level and user model-level).
Assertions are stored in ascii files whose extensions denote
the abstraction level employed: “.ocl” for metamodel-level
assertions (WFRs) and “.bcr” for user model-level assertions
(BCRs). Once compiled, these assertions can be evaluated
using any of the following three model validation
approaches:

1) Validation of the entire model, with respect to all
specified constraints. Each object is validated
against all constraints specified for its class and its
ancestors.

2) Validation of all instances of one or several
classes belonging to a given package, with respect to
either all constraints specified for those classes or a
specific subset.

3) Validation of a particular object, with respect to a
particular constraint.

Information regarding the errors identified during the
validation of a model or of a set of objects is exposed in a
tree-like manner: each broken constraint is represented by a
node having as a direct ancestor its context class and as direct
descendants rule failure messages pointing at the
“responsible” instances. Starting from such an error message,
the user can access/edit:

- the assertion (constraint) whose assessment has
failed,

- the diagram pointing out the bogus instance (which
is automatically set as the contextual instance),

- the model excerpt containing the base class of the
problematic instance.

By means of the textual editor, the user can then evaluate any
of the constraints’s subexpressions on the contextual
instance, with the aim of identifying the exact failure reasons.

4.2 Validation

1) Model compilability checks: In order to emphasize the
benefits that our proposal brings in ensuring model
compilability, let us start from the UML 1.5 metamodel
excerpt in Figure 2 and from a sample WFR included in the
UML 1.5 specification document (OMG 2003). The WFR in
question concerns the name uniqueness of model elements
within namespaces. In (OMG 2003), the rule is located in the
Namespace context, having the following informal
statement “If a contained element, which is not an
Association or Generalization has a name, then the name
must be unique in the Namespace.” Below, there is the OCL
equivalent of this informal WFR, as provided by the same

CONTROL ENGINEERING AND APPLIED INFORMATICS 89

reference. As may be seen, it is stated as an instantiation of
the classical ForAll OCL pattern.

Fig. 2. UML 1.5 metamodel excerpt.

self.allContents->forAll(me1, me2 : ModelElement |
 (not me1.oclIsKindOf(Association) and
 not me2.oclIsKindOf(Association) and
 me1.name <> ’’ and me2.name <> ’’ and
 me1.name = me2.name
) implies me1 = me2)
Assume that there is the need of creating an UML model for
components, whose syntactic description is given as follows:
“From a syntactic perspective, a component is a named entity
that offers services through a set of provided interfaces, for
whose accomplishment it needs to use the services provided
by a set of required interfaces.

Each such interface has itself a name and consists of a
collection of operations. An operation is a typed entity that
owns a number of parameters. Each parameter is itself a
typed element, which additionally specifies data flow
direction (input, output, or both).” The model part created for
this syntactic description is illustrated within the model
browser (top left) and diagram (top right) panels of the OCLE
screenshot in Figure 3. We may assume that this is a part of a
larger model covering all aspects related to the specification
of components. The syntactic part of the model is rooted in
the SyntacticSpec package.

OCLE allows checking the compilability of UML 1.5
models, by evaluating the metamodel WFRs against them. In
order to ensure maximum flexibility, the WFRs are not hard
coded, but stored explicitely as OCL expressions that may be
conveniently edited.

Suppose that the OCL WFR used by OCLE for prohibiting
names clashes within namespaces has been written as above.
When checking the compilability of the component model
(prior to code generation, for example), the tool reports that
the WFR concerning name clashes is violated by the
SyntacticSpec package, as shown by the bottom
evaluation panel.

Fig. 3. OCLE screenshot illustrating the sample component model.

90 CONTROL ENGINEERING AND APPLIED INFORMATICS

However, given the shape of the constraint, there are only
two partial evaluations that could be performed on it in the
attempt of discovering the model fault. First, there is the
evaluation of the allContents additional operation, that
basically returns the entire contents of the SyntacticSpec
package; this does not offer extra debugging support, since it
is also entirely visible in the model browser. Secondly, there
is the evaluation of the forAll expression, which simply
returns a false value, indicating constraint violation by
SyntacticSpec - an already known information bearing
no debugging help.

Yet, the WFR that we are dealing with can be stated as an
instantiation of the generalized form of the “container-
relative” unique identifier pattern given in Subsection 3.1, as
shown below.

context Namespace inv noNameClashes:
 GenContainerRelativeUniqueIdentifier(allContents,
 Set{AttributeValueRestriction(name,<>,’’),
 not self.oclIsKindOf(Association),
 not self.oclIsKindOf(Generalization)
 }
 ModelElement, name)
The literal OCL expression resulting from instantiation is
given in the middle-right panel of the OCLE screenshot in
Figure 4.

By replacing the previous WFR definition with the new one
within the metamodel constraints file, and retrying the model
checking operation, this will fail again, as expected, due to
the violation of the WFR in question by the
SyntacticSpec package. However, this time, the
invariant shape enables subexpression evaluations that would
directly lead to the fault causing the failure, allowing to
efficiently rectify it. The three lines in the bottom panel of the
OCLE screenshot in Figure 4 correspond to the
subexpression evaluations performed. The first gives the
result of evaluating the subset helper variable, namely the
subset of model elements from within the SyntacticSpec
package to which the name uniqueness constraint applies.
The second line provides the names of all those elements, as
a result of evaluating the bag subexpression. Finally, the
evaluation of the reject subexpression provides, on the
third line, (hyperlinks to) the model elements causing the
failure. As indicated by the latter, the model is faulty since it
contains both a class and an enumeration having the same
name, Type. The class has been introduced to represent the
intuitive concept of type, while the enumeration is used to
classify the values indicating possible data flow directions of
parameters (input, output, or both). Switching to a less
general, more meaningfull name for the enumeration, such as

Fig. 4. Approach validation in OCLE - model compilability checks.

CONTROL ENGINEERING AND APPLIED INFORMATICS 91

ParamDirection, would eliminate the model error. In
this respect, one of the hyperlinks made available by the last
evaluation provides immediate access to the properties of the
enumeration object, allowing to change its name so as to
ensure compilability.

The component model employed in the previous
demonstration is, in fact, a metamodel, that can be seen as an
instantiation of MOF 1.4 (the metalanguage of UML 1.5).
Moreover, both the UML 1.5 metamodel excerpt in Figure 2
and the WFR used have equivalents in the MOF 1.4
specification. Therefore, in this particular context, it would
have been more natural to carry the compilability discussion
above at a higher abstraction level (compilability of a
metamodel with respect to its meta-metamodel). The fact that
we have decreased the level, by treating the component
metamodel as an ordinary UML 1.5 model and checking its
compilability with respect to an UML 1.5 WFR, can be
justified by tool constraints. Namely, OCLE, the only
available tool supporting the approach that we promote, only
works with an UML 1.5 repository in its current version.

2) Model testing: To prove the advantages of our approach
with respect to model testing, let us return to the model from
Figure 1. Suppose that the domain experts have stated a
business rule requiring that within a company, each boss
should have a better income than any of its subordinates, and
the modelers have hastily coded it in OCL as follows:

context Employee inv bossHasBetterIncome:
 self.subordinates->reject(e |
 e.salary > self.salary)->isEmpty()
The OCL specification above is obviously an instantiation of
the ForAll_Reject pattern, reading as:

context Employee inv bossHasBetterIncome:
 ForAll_Reject(subordinates,
 AttributeValueRestriction(salary,>,self.salary))

Assume that one of the snapshots used during the model
testing phase is the one figured in the top right-most panel of
the screenshot in Figure 5. The snapshot consists of a
Company object with four employees, the employee named
Mike being the boss of the others. Since the salaries of all
subordinates are smaller than the one of the boss, the test is
intended to be a positive one with respect to the above
constraint (it is expected to pass). However, constraint
evaluation fails for the boss employee, which turns the test
into a false-negative (it crashes, although it shouldn’t). As
indicated by the bottom OCL output panel, the two partial
evaluations performed for the subordinates reference
and reject subexpression return the same set of
employees. Therefore, all subordinates break the rule, which
immediately leads to the assumption that the invariant may
have been written on the reverse. And indeed, the swapping
of e with self in the relational expression used by reject
corrects the invariant, making the test succeed. If the bogus
invariant had been stated as an instatiation of the classical
ForAll pattern

context Employee inv bossHasBetterIncome:
 self.subordinates->forAll(e | e.salary > self.salary)

fault identification might have been slower, in the absence of
any debugging hint. When a forAll fails, the resultis the
same (false), irrespective of whether the failure has been
triggered by a single element in the collection or by all.
Therefore, identifying the failure’s cause generally involves a
detailed and time-consuming examination of both the
snapshot and constraint.

Fig. 5. Approach validation in OCLE - model testing.

92 CONTROL ENGINEERING AND APPLIED INFORMATICS

In this respect, our approach brings an improvement in the
efficiency, by providing useful hints for error diagnosis.

5. CONCLUSIONS AND FUTURE WORK

Within this paper, we have focused on specification patterns
that increase the efficiency of error diagnosing tasks for
models and applications. In this respect, we have used OCL,
the standard constraint language for the MOF-based family of
modeling languages. Related to the best known approaches in
the field, (Ackermann 2005a); (Ackermann 2005b); (Wahler
et al. 2006); (Wahler 2008), our contribution consists of: 1)
proposal of a pair of OCL specification patterns for the For
All constraint pattern, efficient with respect to our pursued
goals; 2) a deeper analysis of the Unique Identifier constraint
pattern, with regard to the particular type of uniqueness
imposed (“global” vs. “container-relative”); 3) proposal of
appropriate OCL specifications patterns for each uniqueness
context; 4) approaching the constraint patterns’ problem from
both a static and a dynamic perspective, with appropriate
specification patterns for each case; 5) validation of our
proposed approach using appropriate tool-support. To our
knowledge, this is the only approach to constraint patterns’
specification aimed at maximizing the amount of relevant
testing/debugging related information.

Future work targets at: 1) identifying new constraint and
OCL specification patterns, along with improving some of
the existing ones; 2) automating the instantiation of proposed
patterns by means of an appropriate tool; 3) developing an
automated test-data generator; 4) a detailed study on run-time
exception handling.

ACKNOWLEDGEMENTS

This work was supported by CNCSIS-UEFISCSU, project
number PNII-IDEI 2049/2008.

APPENDIX

We aim at proving that the invariants CRAL_E and
CRAL_P1, described in Subsection 3.1 are semantically
equivalent (in case of CRAL_P2 the proof is quite similar).
Thus, we provide a translation of the two constraints, together
with the corresponding part of the diagram, into a
mathematical model that uses predicate logic and set theory.

Let us denote by C the set of all Company instances and by
E the set of all Employee instances. Then the age attribute
from Employee may be formalized using a function age:
E and the employees reference using a function emp:
CP(E), where P(E) denotes the power set of E.

In the above context, the CRAL_E invariant reduces to the
following predicate

 ,65)()()(eageselfempeCself (1)

while CRAL_P reduces to

}65)(|)({)(eageselfempeselfemp

Cself (2)

The predicate (2) is equivalent to

}65)(|)({)(

eageselfempeselfemp

Cself (3)

Since (3) is obviously equivalent to (1), our proof is
complete.

REFERENCES

Ackermann, J. (2005a). Formal description of OCL
specification patterns for behavioral specification of
software components. In Thomas Baar (ed.),
Proceedings of the MoDELS’ 05 Conference Workshop
on Tool Support for OCL and Related Formalisms -
Needs and Trends, Technical Report LGL-REPORT-
2005-001, EPFL, 15–29.

Ackermann, J. (2005b). Frequently occurring patterns in
behavioral specification of software components. In
Klaus Turowski and Johannes Maria Zaha (ed.), COEA
2005, 41–56. GI, Erfurt, Germany.

Chiorean, D. and Petraşcu, V. (2010). Towards a conceptual
framework supporting model compilability. In
Proceedings of the Workshop on OCL and Textual
Modelling (OCL 2010), vol. 36 of ECEASST, 14 pages.
EASST.

Costal, D., Gómez, C., Queralt, A., Raventós, R., and
Teniente, E. (2006). Facilitating the definition of general
constraints in UML. In Nierstrasz, O., Whittle, J., Harel,
D., and Reggio, G. (ed.), Model Driven Engineering
Languages and Systems, 260–274. Springer Berlin/
Heidelberg.

LCI (Laboratorul de Cercetare în Informatică) (2005). Object
Constraint Language Environment (OCLE).
<http://lci.cs.ubbcluj.ro/ocle/>

Meyer, B. (1997). Object-oriented software construction, 2nd
ed., Prentice Hall.

Miliauskaite E. and Nemuraite, L. (2005). Representation of
integrity constraints in conceptual models. Information
Technology and Control, 34 (4), 355–365.

OMG (Object Management Group) (2003). Unified
Modeling Language (UML) Specification, Version 1.5.

OMG (Object Management Group) (2006). Meta Object
Facility (MOF) Core Specification, Version 2.0.

OMG (Object Management Group) (2010a). Object
Constraint Language (OCL), Version 2.2.

OMG (Object Management Group) (2010b). Unified
Modeling Language (UML) Superstructure, Version 2.3.

Schmidt, D. C. (2006). Model-Driven Engineering.
Computer, 39 (2), 25–31.

Wahler, M., Koehler, J., and Brucker, A.D. (2006). Model-
driven constraint engineering. Electronic
Communications of the EASST, 5, 20 pages.

Wahler, M. (2008). Using patterns to develop consistent
design constraints, Ph.D. dissertation, ETH Zurich,
Switzerland.

