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Abstract: Detailed and unequivocal model specifications are a prerequisite for attaining the automated 
software development goal as promoted by the Model Driven Engineering (MDE) paradigm. The use of 
assertions, as promoted by the Design by Contract approach, assists in creating such model 
specifications. However, writing from scratch a large amount of assertions can be tedious, time-
consuming, and error-prone. Consequently, a number of constraint patterns have been identified in the 
literature, and corresponding OCL specifications have been proposed. Automating their use in tools 
should speed the writing task and increase its correctness. Yet, no attention has been paid to the influence 
of such specifications in the area of error detection and diagnosis. We approach this topic by proposing 
new OCL specification patterns for some of the existing constraint patterns. Our proposal should increase 
the efficiency of testing and debugging processes performed for models and applications. Relevant 
examples and tool-support are used in order to explain and validate our approach.   
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1. INTRODUCTION 

Nowadays, the large scale use of modeling is undoubtedly the 
most promising approach to software development 
automation. The recently emerged paradigm that promises 
attainment of such a goal is referred as MDE (Model Driven 
Engineering) (Schmidt 2006). However, this new approach 
can only deliver its promises when provided with means of 
creating detailed and rigorous models. Such models can be 
achieved by complementing the graphical modeling 
languages with appropriate assertion languages, such as  OCL 
(Object Constraint Language (OMG 2010a)) for the MOF 
(Meta Object Facility (OMG 2006)) based family of 
modeling languages. The purpose and value of using 
assertions in software specification have been argued, among 
others, by the Design by Contract approach (Meyer 1997).  

The emergence of MDE has triggered a major shift with 
respect to the usage of models and assertions in software 
development. Traditionally, modeling has been primarily 
targeted at facilitating problem understanding, assisting the 
client-developer communication, and guiding a mostly-
manual implementation process. In this context, the purpose 
of writing model assertions (pre/post-conditions and 
invariants) was threefold. Firstly, they were meant to assist in 
writing correct programs, their explicit definition being 
regarded as a precondition of their enforcement in software. 
Secondly, they were the “oracles” against which to mentally 
assess software correctness during program testing. Thirdly, 
they were used as documentation artifacts, along with the 
complemented models. 

With the advent of MDE however, models are upgraded from 
helpers to “first class citizens” of software development. 

Consequently, the emphasis is now laid on the creation of 
comprehensive correct models, intended to be automatically 
turned into code. Moreover, models are used at various 
abstraction levels (user-model, metamodel, meta-metamodel), 
reflected in metamodeling architectures. These new 
requirements of MDE call for new means of using assertions. 
Ensuring model correctness requires model compilability 
checks and model testing; the former activity is based on the 
evaluation of metamodel-level assertions (called Well 
Formedness Rules or WFRs), while the latter involves the 
evaluation of user model-level assertions (called Bussines 
Constraint Rules of BCRs). Moreover, following a natural 
MDE process, the model-level assertions should be turned 
into program-level routines, along with the model itself. This 
provides for runtime assertion monitoring, enabling the 
automatic use of assertions in program testing (as opposed to 
the traditional mental reasoning), as well as an aid to 
debugging and the creation of fault tolerant systems (Meyer 
1997). 

We claim that these new means of using assertions should 
enforce a change with respect to the style in which assertion 
specification is done. While complying with the role of 
assertions in traditional software development required them 
to be specified in the shortest, most intuitive manner, 
conformance to the requirements of MDE demands 
specifications to facilitate efficient error detection and 
diagnosis.  

Widespread use of constraints has triggered the identification 
of several constraint patterns. However, the existing solutions 
to specify them do not seem targeted at fulfilling the 
aforementioned conditions. Through this paper, we aim at 
filling this gap, by proposing OCL specification patterns 
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driven by the MDE requirements on using assertions. Our 
proposal has a great automation potential, and, as such, it 
does not come with the price of penalizing constraints’ 
readability. 

The rest of the paper is organized as follows. Section 2 sets 
the context by introducing constraint patterns and 
summarizing related work that we rely on. Our specification 
approach is detailed in Section 3 and validated in Section 4. 
The paper ends with conclusions and hints on future work in 
Section 5. 

2. BACKGROUND AND RELATED WORK 

2.1  Constraint Patterns 

In Software Engineering, patterns are used to identify 
recurring development problems, for which they provide a 
common description and solution in a given context. 

Definition [Pattern]. A pattern describes a generic solution 
to a recurring problem in a certain domain that can be 
reapplied to instances of the same problem (Wahler 2008). 

In software modeling, constraint patterns (Wahler et al. 
2006) may be used to capture frequently occuring restrictions 
imposed on models. This paper is focused on describing and 
specifying such constraint patterns. We work with UML 
(Unified Modeling Language (OMG 2010b)) as the model 
specification language and we use OCL for specifying 
constraints. Throughout the paper, we will clearly distinguish 
among the concept of constraint pattern and that of OCL 
specification pattern, although the phrases appear to be used 
interchangeably in the literature (see (Ackermann 2005b); 
(Wahler 2008)). For the purpose of this work, a constraint 
pattern denotes a logical constraint (restriction) on a model, 
while an OCL specification pattern refers to a proposed way 
of specifying constraints, patterns included. We describe 
solutions to the constraint patterns of interest as OCL 
specification patterns.  

We will mainly focus on three constraint patterns that have 
been identified in the literature - Attribute Value Restriction, 
Unique Identifier, and For All. In a pattern taxonomy 
proposed by Wahler (2008), the first two are classified as 
atomic or elementary constraint patterns, while the last one is 
regarded as a composite constraint pattern. Elementary 
patterns abstract basic constraints on a model, while 
composite patterns allow expressing arbitrarily complex 
restrictions, by integrating any number of constraints, either 
atomic or composed (Wahler 2008). Attribute Value 
Restriction (Wahler 2008) is a basic pattern used to express 
various constraints on the value of a given class attribute. 
Unique Identifier (Wahler 2008) captures the situation in 
which an attribute (a group of attributes) of a class plays the 
role of an identifier for the class, i.e. the class' instances 
should differ in their value for that attribute (group). This is 
probably the best known constraint pattern, being referred 
under different names in the literature - Semantic Key by 
Ackermann (2005a), Primary Identifier by Miliauskaite et al. 
(2005), or simply Identifier by Costal et al. (2006). Finally, 

the For All constraint pattern requires every object of a 
certain collection to fulfill a number of specified restrictions.   

In the following subsection, we present existing OCL 
specification patterns for the three mentioned constraint 
patterns. The OCL specification patterns are given in terms of 
OCL parameterized templates, as described by Wahler 
(2008). Using this representation, each OCL specification 
pattern is a template (macro) that depends on a number of 
parameters which are typed by elements from the UML and 
OCL metamodels. Replacing them with actual model 
elements generates a pattern instantiation. In order to keep 
consistency and allow an easy comparison of our work with 
existing related approaches, we will use the same 
representation means (OCL templates) when introducing our 
proposals in Section 3. 

2.2  Existing Approaches to Specifying Constraint Patterns 

Wahler (2008) uses OCL templates and HOL-OCL functions 
to represent the OCL specification patterns and to formalize 
their semantics. The atomic patterns are described both ways. 
However, since composite patterns are higher order 
constructs, representing constraints over constraints, their 
semantics cannot be expressed naturally using OCL 
parameterized templates, as in case of atomic patterns. 
Therefore, composite patterns are only described in terms of 
HOL-OCL.  

Ackermann (2005a) introduces a detailed pattern description 
scheme exposing all properties of a pattern: name, 
parameters, restrictions for pattern use, as well as type, 
context and body of the resulting constraint. 

Since we want to keep all descriptions consistent and 
intelligible, we will only use OCL templates when 
introducing the OCL specification patterns of interest from 
the two mentioned papers. Therefore, the specification 
pattern for Semantic Key given by Ackermann (2005a) will 
be translated into this representation, without altering its core 
semantics. We also provide an OCL template sketch for the 
composite For All pattern from (Wahler 2008). All the other 
specifications faithfully reproduce the ones in (Wahler 2008). 

In (Wahler 2008), the following template representation is 
given for the OCL specification pattern associated to 
Attribute Value Restriction. 

pattern AttributeValueRestriction(property:Property, 
                      operator, value:OclExpression)= 
 self.property operator value 

This template depends on three parameters (given in italics), 
namely property - which stands for the attribute that is to be 
constrained, operator, and value - which are used to restrict 
the attribute's value. Such a pattern may be instantiated to 
generate an invariant in the context of an UML class, by 
providing as actual parameters an attribute of the class, a 
concrete operator and a value expression.  

Following, there is the OCL template for Unique Identifier, 
as proposed in (Wahler 2008) and (Wahler et al. 2006). The 
template employs one parameter, property, standing as a 
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placeholder for any tuple of class attributes on which we 
want to impose the uniqueness constraint.  

pattern UniqueIdentifier(property:Tuple(Property))= 
 self.allInstances()->isUnique(property) 

The specification given in (Ackermann 2005a) for the same 
pattern matches the following OCL template. The template 
uses two parameters, class and property, the first standing for 
the class on whose instances we want to impose the 
uniqueness constraint, and the second for the attribute under 
consideration (whose values should be unique). 

pattern SemanticKey(class:Class, property:Property)= 
 class.allInstances()->forAll(i1, i2 | i1 <> i2 implies  
                              i1.property <> i2.property)

Finally, we give below the OCL template-like description for 
the specification pattern associated to the For All constraint 
pattern. 

pattern ForAll(collection:OclExpression, 
               properties:Set(OclExpression))= 
 collection->forAll(y | oclAND(properties, y)) 

The template-like description above uses two parameters. 
The first one, collection, denotes the collection of model 
elements which is iterated. The second parameter, properties, 
stands for the set of constraints that should be fulfilled by all 
objects in the collection. Each such constraint is, in fact, an 
instantiation of some constraint pattern. Since the OCL 
standard does not include a construct for expressing the 
conjunction of an arbitrary number of boolean expressions, 
we introduce the oclAND notation in this purpose. 
Consequently, oclAND(properties, y) denotes the expression 
resulting from the conjunction of the boolean expressions 
obtained by replacing self with y in each of the constraints 
from properties. 

3. PROPOSED OCL SPECIFICATION PATTERNS 

The majority of OCL specifications found in the literature 
(those for constraint patterns included) are focused 
exclusively on the clearness of expressions. During testing 
and debugging however, the mere information that a system 
state is inconsistent or that a method pre/post-condition is not 
fulfilled is not enough. Identifying the exact failure reasons is 
of utmost importance for error correction. This is the core-
idea of the OCL specification approach that we promote. In 
this respect, in the following we give improvements of 
existing OCL specification patterns, considering both the 
case of invariants and that of pre/post-conditions. 

3.1 The case of invariants 

 

Fig. 1. A sample class model. 

1) The “For All” constraint pattern: Let us consider the 
UML model in Figure 1, together with a business constraint 
rule stating that “All employees of a company should be aged 
at most 65”. We will refer to this particular constraint as 
Complying with Retirement Age Limit (CRAL) in the 
following. 

Most of the OCL specifications encountered in the literature 
for such a constraint consist of an invariant of the following 
shape. 

context Company inv CRAL_E: 
 self.employees->forAll( e | e.age <= 65) 
The specification above is quite compact and intelligible, due 
to the fact that the OCL forAll() operation directly 
corresponds to the mathematical logic’s universal quantifier 
  . However, such an invariant shape is not the most useful 

in a testing/debugging-related context. The feedback it offers 
in case of failure is tool-dependent, consisting in either a 
simple false message, or an implementation-dependent tree 
showing the result of evaluating the age constraint on each 
employee of the company. In the former case, we have no 
useful hint regarding the identity of those employees which 
are over the age limit. In the latter, the task of searching 
within the employees tree may be disturbing and time-
consuming. This turns the debugging of an object model 
containing a large number of employees into a difficult task. 

As an answer to the above problem, we suggest using any of 
the following two specifications. These are convenient not 
only when modeling, but also at runtime, allowing a user to  
easily get the information he needs in fixing a possible error. 

context Company inv CRAL_P1: 
 self.employees->reject(e | e.age <= 65)->isEmpty() 
 
context Company inv CRAL_P2: 
 self.employees->select(e | e.age > 65)->isEmpty() 

As proved in the Appendix, CRAL_E, CRAL_P1, and 
CRAL_P2 are semantically equivalent. However, the newly 
proposed invariants have the advantage of allowing 
evaluations of the reject()/select() subexpressions, 
which return exactly the set of employees violating the age 
constraint. A proof of this will be provided in Subsection 4.1, 
using the OCLE tool (LCI 2005). 

A basic reasoning on the kind of restriction imposed by 
CRAL leads to the conclusion that this particular constraint is, 
in fact, an instantiation of the For All composite constraint 
pattern described in Subsection 2.1. The constraint used by 
the composite is, at its turn, an instantiation of an atomic 
constraint pattern, namely Attribute Value Restriction. 
Furthermore, the OCL specification employed by the 
CRAL_E invariant (a widely-encountered style in the 
literature) is an instantiation of the ForAll specification 
pattern, as proposed in (Wahler 2008) (see Subsection 2.2). 
The latter uses an instantiation of the 
AttributeValueRestriction specification pattern 
proposed by the same reference. In light of these statements, 
the CRAL_E invariant reads as follows. 

context Company inv CRAL_E: 
 ForAll(self.employees, 
        Set{AttributeValueRestriction(age,<=,65)}) 
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Above, we have emphasized the benefits gained by replacing 
the CRAL_E specification with its CRAL_P counterparts. In 
order to be able to exploit those benefits in case of all  
constraints instantiating the For All composite pattern, we 
propose the following two equivalent OCL specification  
patterns for it. 

pattern ForAll_Reject(collection:OclExpression, 
                      properties:Set(OclExpression))= 
collection->reject(y | oclAND(properties,y))->isEmpty() 
 

pattern ForAll_Select(collection:OclExpression, 
                      properties:Set(OclExpression))= 
collection->select(y | not oclAND(properties,y))->isEmpty()

In this context, it is obvious that the CRAL_P1 and 
CRAL_P2 specifications are instantiations of the 
ForAll_Reject and  ForAll_Select specification 
patterns respectively, as shown below. 

context Company inv CRAL_P1: 
 ForAll_Reject(self.employees, 
               Set{AttributeValueRestriction(age,<=,65)}) 
context Company inv CRAL_P2: 
 ForAll_Select(self.employees, 
               Set{AttributeValueRestriction(age,<=,65)})

As previously stated, we claim that the use of the newly 
proposed OCL specification patterns (ForAll_Reject and 
ForAll_Select) has a significant impact on the 
efficiency of testing/debugging activities, by increasing it in 
case of large collections of objects. 

2) The “Unique Identifier” constraint pattern: There are 
basically two possible contexts for applying the Unique 
Identifier constraint pattern, although little emphasis has been 
put on distinguishing among them in the literature. One of 
them refers to the so-called “global” uniqueness - certain 
models or applications may require all possible instances of a 
class to differ in their value for a particular attribute. The 
other captures a “container-relative” uniqueness - a 
model/application constraint may state that each instance of a 
class accessible starting from a given “container” should be 
uniquely identifiable by the value of a particular attribute 
among all instances of the same class from within the same 
container. The existing OCL specification patterns for the 
Unique Identifier constraint pattern (those reproduced in 
Subsection 2.2) concern the “global” uniqueness case 
exclusively. Therefore, they should not be used for the 
“container-relative” one, as generally done in the literature. 
Moreover, the existing specification patterns have drawbacks, 
even when used in the appropriate context. In the following, 
we will analyze both uniqueness cases and propose 
appropriate OCL specification patterns for each. 

“Global” uniqueness case (GUID): Let us consider a census 
application whose model contains a Person class. Suppose 
this class has an ID attribute and there is a business 
constraint stating that persons should be uniquely identifiable 
by their IDs. This is a classical case of a “global” uniqueness 
constraint. For such a constraint, the majority of OCL 
specification proposals in the literature have one of the 
following shapes. 

context Person inv GUID_E1: 
Person.allInstances()->forAll(p,q| p<>q implies p.ID<>q.ID) 
 
context Person inv GUID_E2: 
Person.allInstances()->isUnique(ID) 

It may be easily noticed that these are instantiations of the 
SemanticKey and UniqueIdentifier specification 
patterns, as reproduced in Subsection 2.2. Therefore, they can 
be written as: 

context Person inv GUID_E1: SemanticKey(Person, ID) 
context Person inv GUID_E2: UniqueIdentifier(Tuple{x=ID}) 

As given above, these specifications have two drawbacks, 
which have been confirmed by the tests that we have 
performed using OCLE. 

1) The worst is that GUID_E1 breaks the semantics 
of invariants, as promoted by Design by Contract. 
To acknowledge this, consider the case when at least 
two persons have the same ID value. Then, the 
evaluation of this invariant would return false for 
ALL persons (even for those having an unique ID). 
According to the semantics of an invariant, this 
should evaluate to false only for those instances 
violating the constraint that it formalizes. Such a 
semantics is clearly disregarded by GUID_E1 
invariant. This drawback is triggered by the use of 
allInstances() uncorrelated with the 
contextual instance. 

2) Due to the use of forAll() and isUnique() 
respectively, the two specifications do not provide 
appropriate debugging support. 

Since we have shown that the two specifications are, in fact, 
instantiations of the OCL specification patterns 
UniqueIdentifier and SemanticKey, it logically 
follows that the OCL patterns themselves are incorrect. As a 
replacement of GUID_E1 and GUID_E2, we propose the 
following invariant 

context Person inv GUID_P: 
 Person.allInstances()->select(p|p.ID = self.ID)->size()=1 

from which we deduce the general OCL specification pattern 
that should be applied in case of “global” uniqueness 
constraints. 

pattern GloballyUniqueIdentifier(class:Class, 
                                 attribute:Property)= 
class.allInstances()->select(i | 
              i.attribute = self.attribute)->size() = 1 

It is obvious that GUID_P is an instantiation of this pattern. 

context Person inv GUID_P: 
 GloballyUniqueIdentifier(Person,ID) 
The specification pattern that we have introduced above is 
both correct with respect to the semantics of invariants and 
useful from a debugging perspective. However, as stated by 
the UML 1.5 Specification (OMG 2003, p. 6-19): “The use of 
allInstances has some problems and its use is discouraged in 
most cases. The first problem is best explained by looking at 
the types like Integer, Real and String. For these types the 
meaning of allInstances is undefined. ... The second problem 
with allInstances is that the existence of objects must be 
considered within some overall context, like a system or a 
model. ... A recommended style is to model the overall 
contextual system explicitly as an object within the system 
and navigate from that object to its containing instances 
without using allInstances.” 
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“Container-relative” uniqueness case (CUID): According 
to the emphasized phrase from the above quotation, we claim 
that this is how the majority of uniqueness constraints should 
be imposed. Let us start from the model in Figure 1 and 
suppose there is a constraint requiring that employees of a 
company should be uniquely identified by their IDs. This is a 
classical case of an uniqueness requirement in the context of  
a “container”, the “container” being represented by a 
Company object.  

A correct and efficient specification for the considered 
constraint can be given in the context of Company, as 
follows. 

context Company inv CUID_P1: 
 self.employees->reject(e | 
  self.employees.ID->count(e.ID)=1)->isEmpty() 

This has a minor efficiency issue, however, due to the 
repeated computation of the employees’ id collection. In 
order to avoid it, we propose to isolate this computation by 
means of an OCL let statement. 

context Company inv CUID_P2: 
 let allIDs:Bag(String) = self.employees.ID in 
 self.employees->reject(e|allIDs->count(e.ID)=1)->isEmpty() 

Analyzing the CUID_P2 invariant, we discover a potentially 
new atomic constraint pattern requiring that “A given class 
attribute has exactly one occurence in a given bag of 
elements of the same type”. We use the phrase Unique 
Occurence in Bag, with the acronym UOB, to denote the 
newly proposed atomic constraint pattern. For UOB, we 
propose the following OCL specification pattern. 

pattern UniqueOccurenceInBag(bag:OclExpression, 
                             attribute:Property)= 
 bag.count(self.attribute) = 1 

Based on this, it can be easily noticed that the proposed 
CUID_P2 invariant specification uses an instantiation of our 
previously proposed OCL specification pattern 
ForAll_Reject, composed with an atomic 
UniqueOcurrenceInBag instance. Therefore, we 
propose the following OCL specification pattern, that is to be 
applied in all cases of “container-relative” uniqueness. 

pattern ContainerRelativeUniqueIdentifier( 
                 navigation:Property, attribute:Property)= 
 let bag:Bag(OclAny) = self.navigation.attribute in 
 ForAll_Reject(navigation, 
               Set{UniqueOccurenceInBag(bag,attribute)}) 

It is possible to generalize the 
ContainerRelativeUniqueIdentifier pattern, 
such that the uniqueness constraint, instead of applying to all 
contained elements, would rather apply to a conveniently 
selected subset. Below, we give the OCL pattern that we 
propose in this respect. Within it, navigation stands for the 
feature used to access the objects on which we want to 
impose the uniqueness constraint, properties denotes the set 
of constraints used to filter them, class stands for their 
classifier and attribute for the id-like attribute. 

pattern GenContainerRelativeUniqueIdentifier( 
     navigation:Feature, properties:Set(OclExpression), 
     class:Class, attribute:Property)= 
 let subset:Set(class) = self.navigation->select(e | 
                         oclAND(properties,e)) in 
 let bag:Bag(OclAny) = subset.attribute in 
 ForAll_Reject(subset, 
               Set{UniqueOccurenceInBag(bag,attribute)}) 

An instantiation of this pattern will be provided within the 
validation section. 

3.2 The case of pre/post-conditions 

The existing OCL specification patterns have been mostly 
related to the use of invariants for specifying constraint 
patterns. And, indeed, the use of invariants is the only 
alternative in case static model evaluation is required. From a 
dynamic perspective however, it is better to prevent than to 
cure. At runtime, instead of evaluating invariants after each 
call of a method that may modify the properties they depend 
on, it is preferable to prevent constraint breaking by means of 
appropriate pre/post-condition pairs. Due to space constraints 
of the paper, we only exemplify this for the particular cases 
considered previously, omitting the general pattern 
specifications that may be easily deduced. 

The uniqueness constraint imposed on IDs of employees 
within a company can be prevented from breaking by means 
of appropriate pre/post-condition pairs for the two modifiers 
that may violate this constraint. The two modifiers concern 
adding an employee to a company and setting the name of an 
employee, respectively. The corresponding specifications are 
given below. 

context Company::addEmployee(emp:Employee) 
pre CUID_preAdd: 
 self.employees->reject(e | e.ID <> emp.ID)->isEmpty() 
post CUID_postAdd: 
 self.employees = self.employees@pre->including(emp) 
 
context Employee::setID(id:String) 
pre CUID_preSet: 
 self.employer.employees->reject(e | e.ID <> id)->isEmpty() 
post CUID_postSet: 
 self.ID = id 

In case the uniqueness constraint is imposed in a global 
fashion, the corresponding contract for the ID setter is the 
following. 

context Person::setID(id:String) 
pre GUID_preSet: 
 Person.allInstances->reject(p | p.ID <> id)->isEmpty() 
post GUID_postSet: 
 self.ID = id 

 

4. TOOL SUPPORT AND VALIDATION 

As already pointed out at the beginning of this paper, the 
primary goal of any modeling activity leaded under the 
umbrella of MDE should be the production of correct models. 
Except for the abstraction level, the question of determining 
the correctness of a model can be thought by analogy to that 
of establishing the correctness of a program. Namely, 
ensuring program correctness requires carrying out two 
mandatory tasks, compilability checks and program testing, a 
successful accomplishment of the former coming as a 
precondition of the latter. Compilability checks are meant to 
establish the correctness of a program with respect to the 
programming language used to define it; specifically, they 
test whether the programs conforms of not to the syntactical 
and static semantics’ rules of the language in question. 
Program testing aims at deciding whether the program is 
correct or not with respect to its requirements specification. 
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The same two steps should be undertaken when judging the 
correctness of a model; their specifics in a modeling context 
are detailed in the following. 

In modeling, compilability checks encompass both the model 
itself and its associated assertions, being regarded as a 
mandatory prerequisite of any model transformation task 
(code generation included). The model should be compilable 
with respect to the modeling language used to describe it, 
while its assertions should be compilable with respect to the 
constraint language employed. Failure to fulfill the first 
requirement may trigger inability to accomplish the second. 
Compilability of a model with respect to its modeling 
language is judged by its conformance to the abstract syntax 
and static semantics of the language (Chiorean et al. 2010). 
The abstract syntax of a modeling language is described by 
means of its metamodel, while the static semantics is given 
by metamodel-level invariants called Well Formedness Rules 
(WFRs). Conformance to the WFRs is checked by evaluating 
all such WFRs (or their programming language equivalents) 
on the model. Starting from the assumption that all WFRs are 
correct (since the modeling language must have been 
extensively tested prior to release), failure to fulfill any of the 
WFRs indicates a bug in the model. Writing the WFRs with 
model debugging-support in mind (as promoted by our 
proposed specification patterns) considerably facilitates this 
task, thus speeding up the development process. 

Model testing aims at deciding whether the model conforms 
or not to the domain/reality that it represents and the rules 
that govern it. Such rules are referred as Business Constraint 
Rules (BCRs), being represented by means of model-level 
invariants (as opposed to WFRs which are given by 
metamodel-level invariants). Testing is performed using 
snapshots (domain model instantiations), which are meant to 
detect faults in the model itself (e.g. missing concepts, 
missing/wrong relationships, attributes having wrong types), 
as well as bogus model BCRs. Assuming that the model itself 
is correct, faults in the BCRs are identified by evaluating 
them on the test snapshots. The detection of any false-
positive (wrong snapshot that is accepted, i.e. all BCRs 
evaluate to true) or false-negative (good snapshot that is 
denied, i.e. fails to fulfill a particular BCR) points to a logical 
bug in the BCR expressions. Designing them with debugging 
support in mind may ease the task considerably. This is 
especially useful when the model to test is, in fact, a 
metamodel, since, given their reuse potential, metamodels 
require extensive testing on sizable models. 

Within this section, we aim at giving proof of the 
testing/debugging potential of the proposed specification 
patterns, covering both compilability checks and model 
testing. 

4.1 Tool Support 

All software development-related activities (testing and 
debugging included) require tools supporting both the 
employed formalisms and the pursued goals. The advantages 
derived from using the specification patterns described in this 
work, instead of those already proposed in the literature, may 

be highlighted by means of an appropriate tool, such as 
OCLE (Object Constraint Language Environment (LCI 
2005)). We have chosen this particular OCL tool over others, 
since it best supports the proposed specification approach. 

OCLE is a CASE (Computer Aided Software Engineering) 
tool that allows the specification of OCL assertions at two 
abstraction levels (metamodel-level and user model-level). 
Assertions are stored in ascii files whose extensions denote 
the abstraction level employed: “.ocl” for metamodel-level 
assertions (WFRs) and “.bcr” for user model-level assertions 
(BCRs). Once compiled, these assertions can be evaluated 
using any of the following three model validation  
approaches: 

1) Validation of the entire model, with respect to all 
specified constraints. Each object is validated 
against all constraints specified for its class and its 
ancestors. 

2) Validation of all instances of one or several 
classes belonging to a given package, with respect to 
either all constraints specified for those classes or a 
specific subset. 

3) Validation of a particular object, with respect to a 
particular constraint. 

Information regarding the errors identified during the 
validation of a model or of a set of objects is exposed in a 
tree-like manner: each broken constraint is represented by a 
node having as a direct ancestor its context class and as direct 
descendants rule failure messages pointing at the  
“responsible” instances. Starting from such an error message, 
the user can access/edit: 

- the assertion (constraint) whose assessment has 
failed, 

- the diagram pointing out the bogus instance (which 
is automatically set as the contextual instance), 

- the model excerpt containing the base class of the 
problematic instance. 

By means of the textual editor, the user can then evaluate any 
of the constraints’s subexpressions on the contextual 
instance, with the aim of identifying the exact failure reasons. 

4.2 Validation 

1) Model compilability checks: In order to emphasize the 
benefits that our proposal brings in ensuring model 
compilability, let us start from the UML 1.5 metamodel 
excerpt in Figure 2 and from a sample WFR included in the 
UML 1.5 specification document (OMG 2003). The WFR in 
question concerns the name uniqueness of model elements 
within namespaces. In (OMG 2003), the rule is located in the 
Namespace context, having the following informal 
statement “If a contained element, which is not an 
Association or Generalization has a name, then the name 
must be unique in the Namespace.” Below, there is the OCL 
equivalent of this informal WFR, as provided by the same 
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reference. As may be seen, it is stated as an instantiation of 
the classical ForAll OCL pattern. 

 

Fig. 2. UML 1.5 metamodel excerpt. 

self.allContents->forAll(me1, me2 : ModelElement | 
 (not me1.oclIsKindOf(Association) and 
  not me2.oclIsKindOf(Association) and 
  me1.name <> ’’ and me2.name <> ’’ and 
  me1.name = me2.name 
 ) implies me1 = me2) 
Assume that there is the need of creating an UML model for 
components, whose syntactic description is given as follows: 
“From a syntactic perspective, a component is a named entity 
that offers services through a set of provided interfaces, for 
whose accomplishment it needs to use the services provided 
by a set of required interfaces.  

 

Each such interface has itself a name and consists of a 
collection of operations. An operation is a typed entity that 
owns a number of parameters. Each parameter is itself a 
typed element, which additionally specifies data flow 
direction (input, output, or both).” The model part created for 
this syntactic description is illustrated within the model 
browser (top left) and diagram (top right) panels of the OCLE 
screenshot in Figure 3. We may assume that this is a part of a 
larger model covering all aspects  related to the specification 
of components. The syntactic part of the model is rooted in 
the SyntacticSpec package. 

OCLE allows checking the compilability of UML 1.5 
models, by evaluating the metamodel WFRs against them. In 
order to ensure maximum flexibility, the WFRs are not hard 
coded, but stored explicitely as OCL expressions that may be 
conveniently edited. 

Suppose that the OCL WFR used by OCLE for prohibiting 
names clashes within namespaces has been written as above. 
When checking the compilability of the component model 
(prior to code generation, for example), the tool reports that 
the WFR concerning name clashes is violated by the 
SyntacticSpec package, as shown by the bottom 
evaluation panel. 

 

 

Fig. 3. OCLE screenshot illustrating the sample component model. 
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However, given the shape of the constraint, there are only 
two partial evaluations that could be performed on it in the 
attempt of discovering the model fault. First, there is the 
evaluation of the allContents additional operation, that 
basically returns the entire contents of the SyntacticSpec 
package; this does not offer extra debugging support, since it 
is also entirely visible in the model browser. Secondly, there 
is the evaluation of the forAll expression, which simply 
returns a false value, indicating constraint violation by 
SyntacticSpec - an already known information bearing 
no debugging help. 

Yet, the WFR that we are dealing with can be stated as an 
instantiation of the generalized form of the “container-
relative” unique identifier pattern given in Subsection 3.1, as 
shown below. 

context Namespace inv noNameClashes: 
 GenContainerRelativeUniqueIdentifier(allContents, 
   Set{AttributeValueRestriction(name,<>,’’), 
       not self.oclIsKindOf(Association), 
       not self.oclIsKindOf(Generalization) 
      } 
   ModelElement, name) 
The literal OCL expression resulting from instantiation is 
given in the middle-right panel of the OCLE screenshot in 
Figure 4. 

 

 

By replacing the previous WFR definition with the new one 
within the metamodel constraints file, and retrying the model 
checking operation, this will fail again, as expected, due to 
the violation of the WFR in question by the 
SyntacticSpec package. However, this time, the 
invariant shape enables subexpression evaluations that would 
directly lead to the fault causing the failure, allowing to 
efficiently rectify it. The three lines in the bottom panel of the 
OCLE screenshot in Figure 4 correspond to the 
subexpression evaluations performed. The first gives the 
result of evaluating the subset helper variable, namely the 
subset of model elements from within the SyntacticSpec 
package to which the name uniqueness constraint applies. 
The second line provides the names of all those elements, as 
a result of evaluating the bag subexpression. Finally, the 
evaluation of the reject subexpression provides, on the 
third line, (hyperlinks to) the model elements causing the 
failure. As indicated by the latter, the model is faulty since it 
contains both a class and an enumeration having the same 
name, Type. The class has been introduced to represent the 
intuitive concept of type, while the enumeration is used to 
classify the values indicating possible data flow directions of 
parameters (input, output, or both). Switching to a less 
general, more meaningfull name for the enumeration, such as  

 

 

Fig. 4. Approach validation in OCLE - model compilability checks. 
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ParamDirection, would eliminate the model error. In 
this respect, one of the hyperlinks made available by the last 
evaluation provides immediate access to the properties of the 
enumeration object, allowing to change its name so as to 
ensure compilability. 

The component model employed in the previous 
demonstration is, in fact, a metamodel, that can be seen as an 
instantiation of MOF 1.4 (the metalanguage of UML 1.5). 
Moreover, both the UML 1.5 metamodel excerpt in Figure 2 
and the WFR used have equivalents in the MOF 1.4 
specification. Therefore, in this particular context, it would 
have been more natural to carry the compilability discussion 
above at a higher abstraction level (compilability of a 
metamodel with respect to its meta-metamodel). The fact that 
we have decreased the level, by treating the component 
metamodel as an ordinary UML 1.5 model and checking its 
compilability with respect to an UML 1.5 WFR, can be 
justified by tool constraints. Namely, OCLE, the only 
available tool supporting the approach that we promote, only 
works with an UML 1.5 repository in its current version. 

2) Model testing: To prove the advantages of our approach 
with respect to model testing, let us return to the model from 
Figure 1. Suppose that the domain experts have stated a 
business rule requiring that within a company, each boss 
should have a better income than any of its subordinates, and 
the modelers have hastily coded it in OCL as follows: 

context Employee inv bossHasBetterIncome: 
 self.subordinates->reject(e | 
  e.salary > self.salary)->isEmpty() 
The OCL specification above is obviously an instantiation of 
the ForAll_Reject pattern, reading as: 

context Employee inv bossHasBetterIncome: 
 ForAll_Reject(subordinates, 
  AttributeValueRestriction(salary,>,self.salary))

Assume that one of the snapshots used during the model 
testing phase is the one figured in the top right-most panel of 
the screenshot in Figure 5. The snapshot consists of a 
Company object with four employees, the employee named 
Mike being the boss of the others. Since the salaries of all 
subordinates are smaller than the one of the boss, the test is 
intended to be a positive one with respect to the above 
constraint (it is expected to pass). However, constraint 
evaluation fails for the boss employee, which turns the test 
into a false-negative (it crashes, although it shouldn’t). As 
indicated by the bottom OCL output panel, the two partial 
evaluations performed for the subordinates reference 
and reject subexpression return the same set of 
employees. Therefore, all subordinates break the rule, which 
immediately leads to the assumption that the invariant may 
have been written on the reverse. And indeed, the swapping 
of e with self in the relational expression used by reject 
corrects the invariant, making the test succeed. If the bogus 
invariant had been stated as an instatiation of the classical 
ForAll pattern 

context Employee inv bossHasBetterIncome: 
 self.subordinates->forAll(e | e.salary > self.salary)

fault identification might have been slower, in the absence of 
any debugging hint. When a forAll fails, the resultis the 
same (false), irrespective of whether the failure has been 
triggered by a single element in the collection or by all. 
Therefore, identifying the failure’s cause generally involves a 
detailed and time-consuming examination of both the 
snapshot and constraint.  

Fig. 5. Approach validation in OCLE - model testing. 
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In this respect, our approach brings an improvement in the 
efficiency, by providing useful hints for error diagnosis. 

5. CONCLUSIONS AND FUTURE WORK 

Within this paper, we have focused on specification patterns 
that increase the efficiency of error diagnosing tasks for 
models and applications. In this respect, we have used OCL, 
the standard constraint language for the MOF-based family of 
modeling languages. Related to the best known approaches in 
the field, (Ackermann 2005a); (Ackermann 2005b); (Wahler 
et al. 2006); (Wahler 2008), our contribution consists of: 1) 
proposal of a pair of OCL specification patterns for the For 
All constraint pattern, efficient with respect to our pursued 
goals; 2) a deeper analysis of the Unique Identifier constraint 
pattern, with regard to the particular type of uniqueness 
imposed (“global” vs. “container-relative”); 3) proposal of 
appropriate OCL specifications patterns for each uniqueness 
context; 4) approaching the constraint patterns’ problem from 
both a static and a dynamic perspective, with appropriate 
specification patterns for each case; 5) validation of our 
proposed approach using appropriate tool-support. To our 
knowledge, this is the only approach to constraint patterns’ 
specification aimed at maximizing the amount of relevant 
testing/debugging related information. 

Future work targets at: 1) identifying new constraint and 
OCL specification patterns, along with improving some of 
the existing ones; 2) automating the instantiation of proposed 
patterns by means of an appropriate tool; 3) developing an 
automated test-data generator; 4) a detailed study on run-time 
exception handling. 
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APPENDIX 

We aim at proving that the invariants CRAL_E and 
CRAL_P1, described in Subsection 3.1 are semantically 
equivalent (in case of CRAL_P2 the proof is quite similar). 
Thus, we provide a translation of the two constraints, together 
with the corresponding part of the diagram, into a 
mathematical model that uses predicate logic and set theory. 

Let us denote by C the set of all Company instances and by 
E the set of all Employee instances. Then the age attribute 
from Employee may be formalized using a function age: 
E  and the employees reference using a function emp: 
CP(E), where P(E) denotes the power set of E.  

In the above context, the CRAL_E invariant reduces to the 
following predicate  

      ,65)()()(  eageselfempeCself               (1) 

while CRAL_P reduces to 

    

  



}65)(|)({)( eageselfempeselfemp

Cself              (2) 

The predicate (2) is equivalent to 

     
}65)(|)({)( 


eageselfempeselfemp

Cself                  (3) 

Since (3) is obviously equivalent to (1), our proof is  
complete. 
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