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Abstract: Image processing techniques are widely used in medical software applications. For instance, 
feature extraction methods such as Canny edge detector and Hough transform can be applied to 
radiographic images for the purpose of computing certain parameters. The large number of pixels in a 
radiographic image leads to slow computing times for such algorithms. GPGPU Implementations of these 
algorithms that reduce the computing times already exist. The novelty of the proposed approach is in 
taking advantage of the power of multi-GPGPU accelerated computers and other mechanisms of the 
CUDA architecture. The particularities of orthopedic radiographic images are also taken into account to 
further reduce the computing times. The new implementations were tested on a computer with two 
graphic cards and were compared to CPU and other GPGPU implementations. The comparison between 
the CPU and existing GPU implementations show that multi-GPGPU applications can add a significant 
performance gain to image processing applications. 
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

1. INTRODUCTION 

In recent years, the use of GPU cards for other purposes other 
than rendering has increased considerably. The new GPGPU 
(General Purpose Computing on Graphics Processing Units) 
technology enables the implementation of various parallel 
algorithms that run a lot faster than on the CPU. Most of the 
image processing algorithms can be parallelized because, 
usually, the processing steps are the same for every pixel (in 
case of 2D images) or voxel (for 3D images). This is the case 
with the Canny edge detector and the Hough transform. 

In the previous work by (Morar et al. (2010a, b)) a system 
that automatically identifies parameters important in 
Arthroplasty was designed by observing the similarities 
between different salient parts of bones in radiographic 
images and simple curves like lines or circles. The parameter 
extraction method gives quite accurate results, but is time 
consuming. This is the reason behind investigating the use of 
the GPGPU paradigm for the parallel implementation of 
certain feature extraction methods. 

The remainder of this paper is organised as follows: the 
second section discusses the state of the art regarding image 
processing algorithms on the GPU and computed assisted 
analysis of radiographic images in the hip arthroplasy field. 
The third section presents the Canny edge detector optimised 
to run on multi-GPGPU computers. The forth section 
describes the Hough transform for lines, also implemented 
using a multi-GPGPU approach. The forth and the fifth 
section focus on methods that take advantage of the 
particularities of radiographic images in the hip arthroplasty 
field. Thus, the search space for the parameters of the Hough 
transforms for lines and circles can be considerably reduced. 
The sixth section shows a comparison of the new 

implementations with other existing implementations on the 
CPU and GPU. In the last section a series of conclusions are 
drawn, and some future research directions are presented.  

2. STATE OF THE ART  

2.1. Image processing with CUDA 

According to (Nvidia Co. (2011a)), the programmable GPU 
has recently evolved into a parallel processor, with many 
threads and cores that determine an impressive computational 
power, as illustrated in Figure 1.  

 

 

Fig. 1. Floating point operations per second on the CPU and 
GPU (image courtesy of (Nvidia Co. (2011a))) 

CUDA (Compute Unified Device Architecture) represents a 
parallel architecture in NVIDIA cards that is accessible to 
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software developers through variants of standard 
programming languages like CUDA C. It can solve complex 
problems in a more efficient way than on the CPU. At the 
core of the CUDA C language there are three main 
abstractions, a hierarchy of threads, a hierarchy of memories 
and barrier synchronization, which are exposed to the 
programmers through a set of minimal extensions of the C 
language.  

Parts of the Canny edge detector have been successfully 
implemented on the GPU with NVIDIA’s Cg shading 
language by (Fung (2005)). Only the last part of the filter, 
i.e., the hysteresis thresholding, was not approached in his 
paper. (Luo et al. (2008)) developed a new implementation of 
the Canny edge detector, using the GPGPU paradigm. It 
follows all the steps of the algorithm, including the hysteresis 
thresholding.  

In their paper, (Braak et. al. (2011)) describe three new 
implementations of the Hough transform for lines. They 
concentrate on the advantages and disadvantages of each 
approach. Other research directions presented by (Chen et al. 
(2011)) follow ways of accelerating the Hough transform 
both for lines and circles. 

2.2. Image processing in hip arthroplasty 

According to (Kennon (2008)), athroplasty represents a 
surgical procedure of inserting an artificial implant 
(prosthesis) in place of an arthritic joint. (Morar et al (2010a, 
b)) describe the important parameters in hip replacement and 
a series of algorithms that lead to the automatic/semi-
automatic extraction of these parameters. For the 
understanding of the current paper, only the salient parts of 
the bones that can be approximated by simple curves are 
presented. Further explanations regarding computer 
assistance in Hip Arthroplasty decision making can be found 
in the previously mentioned papers. 

As can be observed in Fig. 2, the contour of the femoral body 
can be approximated by two straight lines. Also, the ischiadic 
tuberosities, the femoral head and the lesser trochanter have 
similarities with parts of circles. This is the idea behind 
identifying the position of the salient parts of the bones. After 
the extraction of the parameters presented in Fig 2 all the 
other automatic measurements described by (Morar et al. 
(2010a, b)) can be easily accomplished. 

Although there are some papers on GPGPU based image 
processing and others on automatic measurements in 
arthroplasty, none of them use the power of multi-GPGPU 
computers. The computing times are further reduced by 
taking into account the particularities of special images, like 
the radiographic images at the level of the hip. 

 

Fig. 2. Parts of bones that can be approximated by curves 

3. CANNY EDGE DETECTOR WITH CUDA 

3.1. General presentation of the Canny edge detector 

Canny edge detector, proposed by (Canny (1986)), is a 
widely used contour extraction technique.  

After many experiments, it was decided that the last step in 
the Canny edge detector, i.e., the hysteresis thresholding, 
does not lead to significant improvements in finding the 
contour of the bones in radiographic images. The hysteresis 
thresholding step is quite difficult to implement in CUDA 
because it is not intuitively parallel. Thus, the step that 
connects the pixels of the contour has been removed from the 
current implementation of the Canny edge detection. Instead, 
a single threshold T that divides the pixels into background 
and contour pixels is introduced. 

This new version of the Canny edge detection method is 
based on the CUDA SDK example of the Sobel filter 
described by (Nvidia Co. (2011b)). The first five steps and 
the alteration of the sixth step of the detector are briefly 
described: 

1. The image is filtered with a 3x3 convolution mask that 
approximates the Gaussian filtering, described in Gonzales et 
al. (2002).  

2. The output is then filtered with the Sobel operator. The 
gradient is approximated with the following masks: 

. 
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The matrix of the gradient magnitudes is obtained by using 
the following expression: 
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3.  The direction of the gradient is determined: 
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4.  The direction of the gradient is discretized in the 
following manner: 
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5. Non-maximum suppression: Having a pixel A, the two 
neighbours, B and C, on the direction of the gradient, are 
detected. If Intensity (A) < Intensity (B) or Intensity (A) < 
Intensity (C), then Intensity (A) = 0. 

6. Instead of applying two thresholds and connecting the 
border pixels, only one threshold T is applied. 

3.2. Canny edge detector with CUDA 

This section presents a simplified implementation of the 
Canny edge detector with CUDA. It is based on the method 
proposed by (Luo et al. (2008)).  

The parallel implementation uses three kernels that are 
executed for all the pixels in the image. Before these kernels 
are run, the intensities of the image are copied in the GPU 
texture memory. 

The first step of the detector, i.e., the Gaussian filtering, is 
implemented in the first CUDA kernel. The kernel reads the 
intensities of the pixels located in a 3x3 neighbourhood of the 
current pixel and updates the intensity of that pixel based on 
the Gaussian mask. Each thread block handles an image row, 
as illustrated in Fig. 3. If the size of the block is less than the 
image width, a thread handles more than one pixel. 

 

Fig. 3. Each block of threads handles one row in the image 

The possibility of using the shared memory has been 
explored, and is presented in a few lines. Each thread block 
copies parts of the image by loading data from texture 
memory to shared memory. Through barrier synchronization, 
each thread waits until the other threads have finished loading 
the corresponding data from texture to shared memory. Using 
the faster access to the shared memory a thread updates in 
one iteration four pixels instead of one (as in Fig. 4). Again, 
after updating the pixels, the threads of a block synchronize. 

Although the access to the shared memory is faster than the 
access to texture memory, the transfer between these two 
memory spaces leads to a lag and determines an insignificant 
difference between the two implementations. 

 

Fig. 4. In one iteration, a thread updates four pixels (the red 
pixels), based on their neighbours (the yellow pixels). 

For simplicity, the next steps of the Canny algorithm are 
described using only texture memory. It has to be mentioned 
that they can be implemented using shared memory, but 
without significant improvement. 

The result of the Gaussian filter is saved into texture memory, 
because it can be accessed faster than the global memory.  

The next three steps of the Canny edge detector, i.e. the 
computation of the gradient magnitude with the Sobel 
convolution kernels, the computation of the gradient direction 
and the discretization of the gradient direction, are defined in 
a single CUDA kernel. Within the kernel, the pixels in a 3x3 
neighbourhood of the current pixel are read from the texture 
memory. For each pixel the values of Dx and Dy are 
determined, the gradient amplitude is computed by using (1) 
and the gradient direction is calculated based on (2). The 
gradient direction is discretized by using (3). Similar to the 
Gaussian filtering, each thread block handles an image row. 

The last two steps of the Canny edge detector can be defined 
in a single CUDA kernel. Within the kernel, the discretized 
direction of the gradient and the intensity of the current pixel 
are read. The intensities of the pixel's neighbours on the 
gradient direction are determined. If the intensity of a 
neighbour is greater than the intensity of the current pixel, 
this pixel is removed from the contour pixels. The modified 
sixth step uses a single threshold T. All the pixels with 
intensity value greater than T are considered contour pixels. 
All the other pixels are background pixels. Each thread block 
handles one image row. 

The pseudo code of the CUDA Canny edge detector is given 
below. 
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Pseudo code 1. Canny edge detector 
Stage 1. Gaussian filtering 
copy image from CPU to texture memory on the GPU 
for every image pixel p, do (in parallel) 
   read values of p from a 3x3 neighbourhood 
   compute intensity based on the Gaussian mask 
end for 
Stage 2. Gradient magnitude and direction + 
discretization of gradient direction 
copy output of Stage 1 into texture memory 
for every pixel p, do (in parallel) 
   read values of p from a 3x3 neighbourhood 
   determine Dx and Dy  
   compute gradient magnitude 
   compute gradient direction 
   discretize gradient direction 
end for 
Stage 3. Non-maximum suppression and hysteresis 
copy the gradient magnitudes into texture memory 
for every image pixel A, do (in parallel) 
   read gradient direction (discretized) 
   determine neighbour pixels C and B along 
gradient direction 
   read values vA, vB and vC of A, B and C 
   if vA<vB or vA<vC, then 
      vA=0 
   end if 
   //thresholding 
   if vA>T (threshold), then 
      vA=255 (border pixel) 
   else 
      vA=0 (background pixel) 
   end if 
end for  
copy final image from GPU to CPU 
End of pseudo code 

3.3. Improvements to the Canny edge detector with CUDA 

 This section describes the main improvements of the 
Canny edge detector implementation with CUDA. One of the 
features recently introduced in the CUDA architecture is 
"zero-copy". This feature refers to direct device access to 
host memory. Before this, a simple CUDA program was 
structured into three stages: 

- Copy data from CPU to GPU 
- Process data on the GPU 
- Copy data back from the GPU to the CPU 

Now, the GPU devices can have access to the data on the 
host, if the data resides into page locked memory. The data 
can be allocated on page locked memory via 
cudaHostAlloc(). The instruction 
cudaHostGetDevicePointer() passes back the device 
pointer corresponding to the mapped, pined host buffer 
allocated by cudaHostAlloc(). This eliminates the copies 
from host to device and from device to host. However, the 
access to page locked memory is slower than the access to 
device memory. So, if a kernel needs to access the data 
frequently, a compromise should be made: 

- Allocate CPU data on page locked memory 
- Copy data from CPU to GPU 
- Process data on the GPU 
- Copy data back from GPU to page locked memory 

This approach is faster than the normal flow in a CUDA 
program because the transfer between page locked memory 
and device memory is faster than the transfer between 
pageable memory and device memory. Even if it can reduce 
the memory transfer duration, page locked memory is limited 
and can also degrade system performance, since it reduces 
the amount of memory available to the system for paging. 
These problems are further discussed in the Results section. 

The first improved version of the CUDA implementation of 
the Canny edge detector takes advantage of the “zero-copy” 
feature. The data, i.e., the radiographic image, is allocated on 
page locked memory with cudaHostAlloc(). A pointer to 
this data that can be accessed by the device is obtained with 
the instruction cudaHostGetDevicePointer(). The 
remainder of the algorithm is similar to the one in pseudo 
code 1, without the last instruction that copies the data from 
the GPU back to the CPU.  

The second improved version uses page locked memory, but 
still copies the data between CPU and GPU before and after 
applying the Canny edge detector.  

The last proposed version of the Canny edge detector with 
CUDA offers the possibility to run the algorithm on multiple 
graphic cards. If a problem can be divided into several sub-
problems to be solved independently on different GPUs, the 
computing times can be significantly reduced. Let N be the 
number of available graphic cards on a computer. The initial 
image can be divided on the y axis into N sub-images that are 
processed independently, as illustrated in Fig. 5. 

 

Fig. 5. Division of input and output images for multi-GPGPU 
processing 
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Let w and h be the width, respectively the height of the 
image. It can be assumed without loss of generality that h is a 
multiple of N.  

The output of each GPU is a sub-image of width w and height 
Nh / . The output image of GPUk starts with the 

]1/)1[(  Nhk th row and ends with the )/( Nhk  th row. 

Each pixel is processed based on the pixels from a 3x3 
neighborhood. Thus, for the correct processing of the border 
pixels, the input of each GPU is a sub-image of width w and 
height 2/ Nh . The input sub-image of GPUk starts with 
the ]/)1[( Nhk  th row and ends with the )1/(  Nhk th 

row. Exceptions are the first and the last GPU, which have 
input images of height 1/ Nh . 

Data is processed on different GPUs concurrently through 
streams. The sub-images are copied from page locked 
memory on the CPU to GPU and back asynchronously with 
cudaMemcpyAsync(). The pseudo-code of the multi-GPGPU 
Canny edge detector is given below.  

Pseudo code 2. Multi-GPGPU Canny edge detector 
Divide the data according to the number of 
available GPUs in the system 
 
for k=0 to N, do 
   set active device GPUk 
   allocate memory on CPU for sub-image k (with 
cudaHostAlloc) 
   copy from initial image to input sub-image k 
on the CPU    
   allocate memory for sub-image k on GPUk 
   create stream for k 
end for 
 
Copy data to/from each GPU asynchronously and 
apply Canny edge detector on each GPU 
 
for k=0 to N, do 
   set active device GPUk 
   copy input data from CPU to GPUk (with 
cudaMemcpyAsync) 
   apply Canny on sub-image of k 
   copy output data from GPUk to CPU (with 
cudaMemcpyAsync) 
end for 
 
Synchronize streams 
 
for k=0 to N, do 
   set device GPUk 
   wait for all operations of stream k to finish 
   delete stream k 
   copy data from output sub-image on the CPU to 
final image on the CPU 
end for 
End of pseudo code 

Arithmetic operations on N GPUs are N times faster than the 
same arithmetic operations on a single GPU. However, the 
division of data and memory operations to/from multiple 
GPUs introduce a lag that can eliminate the multi-GPGPU 
performance gain. This issue is further discussed in the 
Results section. 

 

4. HOUGH TRANSFORM FOR LINES WITH CUDA 

4.1. General presentation of the Hough transform for lines 

A straight line can be described by the expression y=mx+b. 
The main idea behind the Hough transform for lines 
according to Hough (1962) is to define a line not as a set of 
points (x,y), but in terms of parameters, based on m and b. 
Hence, the straight line y=mx+b can be represented by the 
point (m,b) in the parametric space. There is another pair of 
parameters, r and θ, better suited to define a line: 
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2,1 hwr  is the distance from the origin to 

the line and  360,0 is the angle of the vector from the 

origin to the closest point on the line. The Hough algorithm 
uses an accumulator that stores the number of white pixels 
corresponding to each pair (r,θ). The pairs (r,θ) where the 
accumulator’s value is greater than a given threshold describe 
straight lines in the image. 

4.2. CUDA implementation of the Hough transform for lines 

The intuitive implementation described in Luo et al. (2011) 
follows the CPU implementation of the algorithm. However, 
in the parallel implementation, all threads have concurrent 
access to data. In order to avoid memory read/write hazards, 
the incrementing of the accumulator at location (r,θ) has to be 
done using an atomic operation, atomicAdd(). This 
operation serializes the access of the threads to the 
accumulator, representing at a first glance an inefficient use 
of the parallel architecture. 

The updating of the accumulator is defined in a CUDA kernel 
that is executed for every image pixel. The intensity of the 
current pixel is read from a binary image, where the 
important pixels are white and the background pixels are 
black. In the proposed radiographic image processing 
method, the binary image is the output of the Canny edge 
detector. If the current pixel is white, the algorithm searches 
for all the candidate lines that go through that pixel. For all θ, 
the second parameter r is computed by using (4). If 





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2
2,1 hwr , the accumulator at location (r,θ) is 

incremented. Every thread block handles an image row.  

According to (Luo et al. (2011)), the atomic operation that 
updates the accumulator introduces a considerable lag. 
However, for radiographic images, where the contour pixels 
represent less than 3% of the total number of image pixels 
and the straight lines are very sparse, the atomic operation 
does not affect the performance of the CUDA Hough 
transform.  
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The pseudo code of the CUDA Hough transform for lines is 
described below. 

Pseudo code 3. Hough transform for lines 
transfer image data from CPU to GPU texture 
memory 
Run kernel to initialize accumulator 
for every pair (r,θ), do (in parallel) 
   accum[r,θ]=0 
end for 
Run kernel to update accumulator 
for every pixel p, do (in parallel) 
   if p is white, then 
      get x and y coordinates of p 
      for θ = 0 to 360, do 
         compute r 
         if r>1 and r<sqrt(w*w+h*h), then 
            increment accumulator accum at 
location [r,θ](with atomicAdd) 
         end if 
      end for 
   end if 
end for 
Determine the lines in the image based on the 
value of the accumulator 
for every θ, do 
   for every r, do 
      if accum[r,θ]>T (threshold), then  
         (r,θ) is a line 
      end if 
   end for 
end for 
End of pseudo code 
 

4.3. Improvements to the Hough transform for lines 

The first change to the described implementation is to 
allocate memory for the image data to page locked memory 
with cudaHostAlloc(). If the CPU data is accessed directly 
by the device with cudaHostGetDevicePointer(), the 
algorithm is slower than the initial one. The reason is the 
frequent access of the GPU to the accumulator.  

The other version that uses page locked memory without 
eliminating the copies between CPU and GPU is a faster 
alternative. The computing times for the proposed 
implementations are described in the Results section. 

The next alteration to the initial implementation is the multi-
GPGPU Hough transform for lines. It divides the image in a 
similar way as to the one described in the multi-GPGPU 
Canny edge detection method. The input and output sub-
images of GPUk for the Hough transform for lines have the 
same properties as the output sub-image of GPUk for the 
Canny edge detector. Here there is no need to duplicate the 
border rows for the input sub-images because the 
accumulator is not processed based on neighbouring pixels.  

If the data that represents the image can be divided based on 
the number of available GPUs, this cannot be accomplished 
with the accumulator. For each GPU, a sub-accumulator of 
the same size as the initial one is allocated on the CPU on 
page locked memory and on the current GPU. After the  

accumulator of each GPU is updated, and the data is copied 
back to the CPU on page locked memory, the final 
accumulator is built based on the following expression: 
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Another alteration to the initial algorithm is to change the 
structure of the CUDA grids and blocks.  

In the classic implementation, the threads are structured into 
one-dimensional blocks and the blocks are structured into a 
one-dimensional grid. The size of the grid is equal to the 
height of the image. The size of a block is 256. Each block 
handles a single image row. If the width of the image is 
greater than the number of threads in a block, a thread 
processes more than one pixel. 

The new approach structures the thread based on the size of 
the image, but also on the size of the parameter θ. The blocks 
are structured into two-dimensional grids, with the width and 
height equal to the image width and image height, 
respectively. The size of a block is equal to the number of 
possible values of parameter θ. Thus, a thread does not 
handle all the candidate straight lines that go through a pixel, 
but a single line defined by the parameter θ which goes 
through the current pixel. This implementation is faster than 
the first one if the search space, i.e., the size of the image and 
the size of parameters r and θ, is relatively small. Otherwise, 
there will not be enough GPU cores to handle all the data 
concurrently, and the CUDA driver will serialize the process. 
The lag introduced by this serialization can eliminate the 
performance gain obtained by the different structuring of the 
CUDA threads. 

The initial interval of the parameter θ is [0,360]. If the 
particularities of the orthopedic radiographic images are 
taken into account, this interval can be significantly reduced. 
For instance, if the application searches for straight lines that 
approximate the contour of the femoral body in images at the 
level of the hip, only the lines that are almost vertical should 
be considered. The search space for the parameter θ  is 
reduced to the interval ]360,345[]195,165[]15,0[  . 

Thus, a block has 45 threads instead of 360, one thread for 
each θ. A comparison between the existing and proposed 
implementations is described in section 7.  

5. HOUGH TRANSFORM FOR CIRCLES WITH CUDA 

5.1. General presentation of the Hough transform for circles 

A circle is described by the expression 

222 )()( rbyax  ,           (6) 

where (a,b) are the coordinates of the centre of the circle, and 
r, its radius. The parametric space of the Hough transform for 
circles is described by the triplet (a,b,r). Usually, 

],1[ 22 hwr  , where w and h represent the width and 

the height of the image, while ],0[ wa  and ],0[ hb . 
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5.2. CUDA implementation of the Hough transform for 
circles 

This section describes the intuitive implementation of the 
CUDA Hough transform for circles. The accumulator is 
updated in a CUDA kernel that is executed for all the image 
pixels. If the current pixel is of interest, r is computed for 
every pair (a,b) based on (6). If r is within range, the 
accumulator is incremented at location (a,b,r) with atomic 
operations. All the triplets (a,b,r) where the accumulator has 
the value greater than a given threshold T describe a circle. 

Similar to the observation in section 4.2 regarding computing 
times for the implementation of the Hough transform for lines 
with atomic operations, there is a small number of circles 
extracted from radiographic images. This is the reason why 
atomic operations are not considered to increase significantly 
the computing times in this particular case. 

The pseudo code of the CUDA Hough transform for circles is 
given below. 

Pseudo code 4. Hough transform for circles 
transfer image data from CPU to texture memory 
on the GPU 
for every pixel p, do (in parallel) 
   if p is white, then 
      get x and y coordinates of p 
      for a = 1 to w, do 
         for b = 1 to h, do 
            compute r (based on (6)) 
            if r>1 and r<sqrt(w*w+h*h), then 
               increment accumulator accum at 
location [a,b,r](with atomicAdd) 
            end if 
         end for 
      end for 
   end if 
end for 
for every a, do 
   for every b, do 
      for every r, do 
         if accum[a,b,r]>T (threshold), then  
            (a,b,r) is a circle 
         end if 
      end for 
   end for 
end for 
End of pseudo code 

5.3. Improvements to the Hough transform for circles 

This section describes the changes made to the classic 
implementation of the algorithm with CUDA, which are 
similar to the ones proposed in 4.3.  

The parameter space of the Hough transform for circles is 
three-dimensional, and occupies large amounts of memory. 
This represents an impediment for using page locked 
memory. For an image of size 512x512, the accumulator 
occupies 724(int))()()(  sizeofbsizeasizersize  MB of 

memory. On the computer used for testing it was impossible 
to allocate such amount of pinned memory. Also, the direct 
access to the data that resides on page locked memory via 
cudaHostGetDevicePointer() introduces a lag that 
reaches the maximum run-time for the kernel launches. These 

are the reasons for not using the implementations that allocate 
page locked memory 

Another change made to the classic implementation is the 
different structuring of the CUDA threads. The new approach 
structures the thread based on the size of the image, but also 
on the size of the circle radius r. The blocks are structured 
into two-dimensional grids, with the width and height equal 
to the image width and image height, respectively. The size 
of a block is equal to the number of possible values of 
parameter r. Thus, a thread does not handle all the possible 
straight circles that go through a pixel, but a single circle 
defined by parameter r that goes through the current pixel. 
The current thread computes for every 

 ),min(),,0max( hryryb   the value of parameter a, 

based on (6). If a is within range, the accumulator is 
incremented at location (a,b,r). In the classic implementation, 
a and b loop through their whole search space. In this new 
implementation, the search space of b is reduced based on the 
radius of the circle r. The comparison between the classic 
implementation and the proposed one is described in the 
Results section. 

The parameter search space can be further reduced if the 
particularities of the processed images are known. For 
example, if the application searches for circles that 
approximate the ischiadic tuberosities, the lesser trochanters 
and the femoral heads in radiographic images, the radius of 
these circles can be set within certain intervals. The circles 
representing the ischiadic tuberosities and the femoral heads 
have a radius smaller than the width of the femoral body; the 
circles approximating the lesser trochanters have a radius 
smaller than half the width of the femoral body. 

Thus, after determining the femoral body with the Hough 
transform for lines, the intervals for the radii of the circles 
can be set.  

6. RESULTS 

The tests regarding the automatic extraction of parts that can 
be approximated by simple curves from X-rays were made on 
a computer with i7-2600K 3.40 GHz processor with 8GB 
RAM and two Nvidia GeForce GTX 590 GPU cards with 1.5 
GB RAM. 

The CPU classic implementation of the Canny edge detector 
was compared to the implementation with CUDA described 
in section 3.2 and the new implementations that were 
proposed in section 3.3. Table 1 shows the computing times 
in ms for each method applied on radiographic images of 
different sizes. Each value represents the average of 10 tests. 
The third column in the table represents the intuitive 
implementation of the Canny edge detector with CUDA, as 
described in section 3.2. The forth column presents the 
computing times for the implementation that uses the “zero-
copy” (“0copy”) feature of the CUDA architecture. The fifth 
column denotes the implementation that allocates page 
locked memory (“pmem”) on the CPU, but also transfers the 
data to/from the GPU. The forth GPU implementation is the 
multi-GPGPU Canny edge detector.  
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Table 1.  Computing times of Canny edge detector on the 
CPU and on the GPU 

As can be observed, the implementation that allocates page 
locked memory on the CPU and transfers it via 
cudaMemcpy() to/from the GPU relatively improves the 
computing times as compared to the classic CUDA 
implementation. The implementation where the GPU 
accesses the data directly from page locked memory 
decreases performance for large images because of the 
frequent access to memory. The fastest implementation, i.e., 
the multi-GPGPU one, reduces significantly the computing 
times. For an image of size 256x256 the lag introduced by the 
division of data into sub-images and their transfer to/from the 
GPU leads to slower computing times than for other 
implementations. But for an image of size 4096x4096, two 
graphic cards perform the Canny edge detector almost two 
times faster than a single graphic card. 

 Fig. 6 presents the output image after applying the Canny 
edge detector on a radiographic image. 

 

Fig. 6. The result of applying the Canny edge detector on a 
radiographic image 

Table 2 shows the computing times for the implementations 
of the Hough transform for lines, both on the CPU and GPU 
(the average of 10 tests for each image). The first GPU 
implementation is the one described in section 4.2. The  

second and third GPU implementations allocate page locked 
memory with cudaHostAlloc(). In the second 
implementation the data is accessed directly by the GPU via 
cudaHostGetDevicePointer() and in the third one, the 
data is transferred to/from the GPU via cudaMemcpy().  The 
last column in the table shows the computing times for the 
multi-GPGPU implementation of the Hough transform for 
lines. 

Table 2.  Computing times of the intuitive Hough 
transform for lines on the CPU and on the GPU 

 
As can be observed in Table 2, the “zero-copy” 
implementation is very slow because of the frequent access of 
the GPU to the page locked memory for the computing of the 
accumulator. The implementation that stores the accumulator 
on the CPU on page locked memory and transfers it to/from 
the GPU is faster than the other single-GPGPU 
implementations. But the real performance gain can be 
observed for the multi-GPGPU implementation. 
 
The next table shows the computing times for similar 
implementations of the Hough transform. The only difference 
is in the structuring of the CUDA threads. Instead of 
searching for all the lines that go through the current pixel, a 
thread searches for the line that is defined by a certain 
parameter θ  and goes through the current pixel. 

Table 3.  Computing times of the Hough transform for 
lines on the CPU and on the GPU - with the changed 

structuring of the CUDA threads 

The different thread structuring leads to faster computing 
times than the classic one, for images of size up to 
1024x1024. 

Table 4 shows the computing times of the Hough transform 
for lines, if the search space of parameter θ is reduced from 
the interval [0.360] to ]360,345[]195,165[]15,0[   . 

Image 
size (in 
pixels) 

CPU 
implem 

(ms) 

GPU  
classic 
implem 

(ms) 

GPU 
“0copy“ 
implem 

(ms) 

GPU  
“pmem” 
implem  

(ms) 

Multi 
GPGPU 
implem 

(ms) 

2562 15 0.341 0.345 0.279 0.624 

5122 39 0.701 0.662 0.606 0.783 

10242 153 2.149 1.931 1.867 1.392 

20482 566 7.668 6.877 6.793 4.104 

40962 2118 30.481 44.617 27.254 15.98 Image 
size 
(in 

pixels) 

CPU 
implem 

(ms) 

GPU  
classic 
implem 

(ms) 

GPU 
“0copy“ 
implem 

(ms) 

GPU  
“pmem” 
implem  

(ms) 

Multi 
GPGPU 
implem 

(ms) 
2562 152 1.955 10.209 1.779 2.088 
5122 218 4.615 23.836 4.277 3.784 
10242 1995 19.344 113.879 18.695 12.642 
20482 9890 89.494 538.171 87.312 52.979 
40962 13830 333.472 1768.36 326.143 118.771 

Image 
size (in 
pixels) 

GPU  
classic 
implem 

(ms) 

GPU 
“0copy“ 
implem 

(ms) 

GPU  
“pmem” 
implem 

(ms) 

Multi 
GPGPU 
implem 

(ms) 
2562 3.184 11.201 3.028 2.715 
5122 7.995 20.181 7.536 6.305 
10242 19.842 89.541 19.151 14.926 
20482 54.907 439.531 52.502 38.875 
40962 139.502 1284.097 132.478 101.326 
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Table 4.  Computing times of the Hough transform for 
lines on the CPU and on the GPU - with reduced search 

space for parameter θ 

Image 
size 
(in 

pixels) 

CPU 
implem. 

(ms) 

GPU  
classic 
implem 

(ms) 

GPU 
“0copy“ 
implem 

(ms) 

GPU  
“pmem” 
implem  

(ms) 

Multi 
GPGPU 
implem 

(ms) 
2562 33 0.701 4.857 0.549 1.088 
5122 39 1.996 11.744 1.696 2.175 

10242 337 7.475 55.912 6.553 5.732 
20482 1656 29.272 240.334 27.235 18.647 
40962 2342 114.051 810.173 106.784 64.839 

 
Fig. 7 presents the lines extracted with the Hough transform 
for lines. 
 

 

Fig. 7. The result of applying the Hough transform for lines 
in order to extract the contour of the femoral body (and the 
contour of the prostheses’ body, if it exists). 

Table 5 shows the computing times for the CPU and GPU 
implementations of the Hough transform for circles. The first 
GPU implementation is the one described in section 5.2. The 
second implementation changes the structuring of the CUDA 
threads so a thread does not handle all the circles that contain 
the current pixel, but only one circle defined by a certain 
radius that contains the current pixel. The third CUDA 
implementation shows the impact of reducing the search 
space of the radius parameter from the interval 

],1[ 22 hw  to ]10/,1[ 22 hw  , based on the properties 

of bones that can be approximated by circles, which are 
described in section 5.3. The first CPU implementation is the 
intuitive one, and the second one reduces the search 

parameter of r to ]10/,1[ 22 hw  . 

The application structured in a manner that a thread handles 
all the circles that contain the current pixel is considerably 
slower than the one that is structured in a manner that a 
thread handles only one circle defined by a certain radius that 
contains the current pixel. If the search space for the radius is 
reduced according to the particularities of the radiographic 
images and the investigated parameters, the computing times 
are further improved.  

Table 5.  Computing times of the Hough transform for 
circles on the CPU and on the GPU 

Image 
size 
(in 

pixels) 

CPU  
classic 

implem. 
(ms) 

CPU  
“reduced 
space” 

implem. 
(ms) 

GPU  
classic 

implem. 
(ms) 

GPU 
“diff 

struct” 
implem. 

(ms) 

GPU 
“reduced 
spaced” 
implem.  

(ms) 
2562 11622 57 389.831 24.154 2.907 
5122 157275 453 2787.51 186.429 20.169 

10242 1019555 4798 X X 149.995 

Fig. 8 presents the parameters extracted with the Hough 
transform for circles. As can be observed, the lesser 
trochanter on the right side could not be extracted because it 
does not have a circular shape. 

 

Fig. 8. The result of applying the Hough transform for circles 
in order to determine the position of the ischiadic 
tuberosities, the femoral heads and the lesser trochanters. 

7. CONCLUSIONS 

Even though the differences in GPU implementations (with 
or without reducing the search space) are small, it must be 
mentioned that the GPU memory is quite limited as 
compared to the CPU memory. This is why, for large images, 
the implementation that does not reduce the ranges of the 
parameters cannot be run on any hardware.  

The tests were made on radiographic images at the level of 
the hip for the extraction of certain parameters important in 
hip arthroplasty. However, the proposed multi-GPGPU 
implementations of the Canny edge detector and the Hough 
transform for lines can be used on any kind of images. The 
performance gain is quite impressive. For the Canny edge 
detector, the application that runs on two graphic cards is 
almost two times faster than the one that runs on a single 
GPU. The multi-GPGPU implementation of the Hough 
transform for lines also reduces the computing times 
considerably.  

The other changes made to the classic implementations show 
that the particularities of certain images and of the searched 
objects in the image can also add a performance gain by 
reducing the search space for the parameters of the Hough 
transforms. 

A future research direction would be to explore the 
possibility of using the CUDA architecture for accelerating 
other analysis, processing and visualization algorithms in 2D 
and 3D medical images. 
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