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Abstract: This paper describes the design steps of robust QFT autopilot for the course-keeping 
and course-changing control of a ship, in the presence of disturbances. The ship model has 
parametric uncertainties, caused by the variations of hydrodynamic coefficients with the speed of 
the ship. Knowing the variation ranges of the model parameters, the QFT method (Quantitative 
Feedback Theory) can be used to design the ship autopilot with certain performance 
specifications. The autopilot must satisfy the robust stability, tracking performance and 
disturbance rejection conditions, for all ship models generated by the parameter variations within 
the uncertainty ranges.  
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1. INTRODUCTION 

Automatic control strategies for marine vehicles 
are in general designed to improve their 
functions with adequate reliability and economy. 
The main purpose of the rudder is to control the 
heading of the ship in course-keeping and 
course-changing maneuvers [1]. Applying more 
sophisticated autopilots for ship steering is 
mainly due to performance improvement and 
fuel economy [2]. 

A ship in waves is considered as a rigid body 
with six degrees of freedom. Nonlinear 

mathematical models of ship dynamics are used 
for simulation of ship motions and for design of 
the closed loop control systems. Model structure 
and parameter values can be estimated in model 
basin test, but full-scale verifications are also 
required [3]. 

Taking into account only yaw motion of the 
ship, the steering dynamics can be described by 
simple linear [4] or nonlinear [5] transfer 
functions. In this case, the heading control 
systems (also called autopilot systems) are of 
monovariable type. Their main purpose is to 
command the steering machine, moving the 
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rudder, so that the ship to track a desired route, 
which can be specified by way-points [1]. 

Ship steering control systems are designed to 
perform two entirely different functions: course-
keeping and course-changing maneuvers [6].  

In the first case, the autopilot acts to maintain 
the ship on a set course (between any two 
adjacent way-points) in the presence of 
disturbances. This type of system is fully 
autonomous in that it does not need an operator 
to provide commands during operation.  

In the second case, the autopilot provides good 
manoeuvrability, changing the ship course to a 
new way-point, in accordance with commanded 
course changes given by the superior control 
level or pilot/helmsman. In general, the yaw 
angle changes are small enough so the linear 
ship models can be used. However, for large 
maneuvers, the nonlinear ship models must be 
taken into account. 

Conventional ship autopilot for course-keeping 
and course-changing control problems involves 
the heading angle feedback, as shown in Fig. 1. 
The yaw motion of the ship is described by the 
transfer function HS (s) from the rudder angle (δ) 
to the course angle (ψ). The autopilot generates 
the rudder commands, based on the course error 
(ψe), which appears due to external disturbances. 

 

 
 
 
 
 
 
 
 
 

Fig. 1. Autopilot closed loop for heading control 
systems 

 
The external disturbances are generated by 
environmental conditions (e.g. first and second 
order waves, wind, marine currents) or by 
control systems (e.g. steering system, propulsion 
system). The waves are the most important 
external disturbances and they are considered in 
this paper.  

In addition, the operational conditions (e.g. trim, 
load or ballast condition, speed changes, water 
depth) affect the ship dynamics, modifying the 
hydrodynamic coefficients of the ship and the 
corresponding parameters of ship model. 

If the mathematical model of the controlled 
physical process presents parametric 
uncertainties, it is necessary to use robust 
control techniques for controller design. Since 
the model parameters of the ship’s yaw motion 
depend on the forward speed as well as the 
weather conditions, the ship model presents 
parametric uncertainties.  

Therefore, robust control theory should be 
considered, like H-inf theory [7], [8], [9], sliding 
mode control [10], QFT method [11], [12], 
neural networks [13] etc.  

In H-inf theory, desired properties for the 
closed-loop transfer function are embodied into 
weighting operators that shape output and 
control signals [14]. Selecting the weighting 
operators assures robust performances, but this 
is a difficult task. The H-inf approach is 
frequently used, especially for nonparametric 
uncertainties. 

In practice, the forward speed of the ship affects 
the ship dynamics, and the speed value is chosen 
by economical criteria, like fuel consumption, 
navigation safety, voyage period. For the 
heading control problems, the influence of the 
forward speed on the ship model parameters is 
very important. Also, the ascertainment of the 
model parameter variation range into usual 
limits of the forward speed is not a difficult 
problem, which can be done by experiments 
with a ship model or with the ship in open sea.  

It is desired to use a direct way for the autopilot 
design without explicitly solving the underlying 
H-inf problem. Therefore, the QFT method has 
been chosen for the autopilot design. In addition, 
the method permits that the structure of autopilot 
to be determined up-front. 

The goal of this paper is to design robust QFT 
autopilot for course-keeping and course-
changing control of a ship, in the presence of 
disturbances. 

The course-keeping autopilot takes into account 
the wave influence on the yaw motion, corrected 
with the ship’s speed and the incidence angle 
[15]. Robust stability and input disturbance 
rejection conditions are specified, to meet the 
course-keeping requirements in the presence of 
the first order wave disturbances. 

The course-changing autopilot satisfies some 
performance specifications, like robust stability 
and tracking performance conditions, in a 
similar manner as in [11]. In addition, input 
disturbance rejection conditions are imposed and 
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bigger uncertainty ranges of the ship parameters 
are considered [16]. 

The paper is organized as follows. Section2 
provides mathematical models used in 
simulations. In section 3, the algorithm of QFT 
method is presented. In section 4, performance 
specifications are generated for both course-
keeping and course-changing autopilots. Section 
5 describes the design steps for robust QFT 
autopilot and simulation results which are 
obtained for some numerical examples. 
Conclusions are presented in section 6. 

 

2. MATHEMATICAL MODELS 

As a requisite for the simulation results, models 
of ship dynamics and wave disturbances had to 
be generated.  
 

2.1 Ship Dynamics 

The equations describing the horizontal motion 
of a ship are derived by using Newton’s laws, 
expressing conservation of hydrodynamic forces 
and moments. Then, the model can be simplified 
applying Taylor series for hydrodynamic forces 
and moments [17]. A three degree-of-freedom 
linear model is obtained for asymmetric ship 
motions, with coupled sway-yaw-roll equations, 
which can be identified. 

Using the Laplace transform and eliminating the 
sway speed (v), two transfer functions result 
(Hδψ and Hδϕ) which describe the transfer from 
rudder angle (δ) to yaw angle (ψ) and to roll 
angle (ϕ) respectively.  

The responses of the ship to the external 
disturbances are usually computed by applying 
the principle of superposition.  

Considering only first order wave disturbances 
(w), the Laplace equations for linear ship model 
are [18]: 

 ψ(s) = Hδψ(s) · δ(s)  +  Hwψ(s) · w(s)  

 ϕ(s) = Hδϕ(s) · δ(s)  +  Hwϕ(s) · w(s) (1) 

The transfer functions have parameters 
depending on the speed of the ship (u) and the 
incidence angle (γ), which is the angle between 
the heading and the main direction of the wave. 
It should be noted that the linear model is not 
valid for large maneuvers, and the nonlinear 
ship models must be taken into account [19]. 

The first Laplace equation in (1) describes the 
yaw angle dependencies of the rudder angle and 
wave perturbation. The wave influence on the 
yaw motion represents the hydrodynamic 
moment of rotation around Oz axis (Nw), which 
is generated by waves.  

Considering the linear model of the ship, the 
additive disturbances can be moved at the 
system input. Therefore, the wave perturbation 
is treated as input noise (p) for the ship model, 
so that the Laplace equation for yaw motion can 
be written: 

ψ(s) = Hδψ(s) · δ(s)  +  Hδψ(s) · p(s)                 (2) 

The transfer function Hδψ represents the ship 
model with uncertainties, due to the 
hydrodynamic coefficients, which depend on 
operating conditions of the vessel. 

The monovariabile linear model of the ship’s 
dynamics for yaw motion, without considering 
any perturbations, can be represented as a first 
order Nomoto model [4], whose differential 
equation is: 
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T
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T
t δ⋅=ψ⋅+ψ            (3) 

The corresponding transfer function is: 
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where the parameters k and T depend on the 
operating conditions such as ship’s speed, load 
or ballast situation, water depth etc. 

The Nomoto model provides a reasonably 
accurate representation, if the rudder angles are 
relatively small. This is the case for course-
keeping control and for slight course changes.  

Also, the model can be used for course-changing 
problem, if the way-points of the desired route 
are computed and generated so that smooth 
rudder angles are obtained. 

When important course changes are needed, the 
rudder angles are big and a nonlinear term must 
be added to Nomoto equation, resulting the 
Norrbin model [5]: 
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ψ=r   and  01
2

2
3

3)( nrnrnrnrH N +++=      (6) 

The vessel particularities define the values of 
Norrbin coefficients. For course stabile ships 
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with lateral symmetry (n2=n0=0 and n1=1), the 
Norrbin model is: 

)()(1)(1)( 3
3 t

T
ktn

T
t

T
t δ⋅=ψ⋅⋅+ψ⋅+ψ           (7) 

In this paper, Nomoto model in (4) is used. The 
model parameters depend on the ship’s speed 
and this dependency is identified in [18]. 

 

2.2. Wave Model 

The generation of the waves is rather complex. 
Irregular waves can be modeled taking into 
account their stochastic nature. In this case, the 
wave can be regarded as an ergodic random 
process with elevation ζ(t) and zero mean. 
Knowing the mean square spectral density 
function φζζ(ω) of the wave elevation ζ(t), 
shortly called wave spectrum, the statistical 
parameters of the wave can be computed and the 
wave model can be generated [20].  

Based on the wave spectrum, the wave 
disturbance can be modeled as the sum of a 
limited number of sinusoidal waves with 
different amplitudes, frequencies and phase 
angles: 
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)(sin)( ϕ            (8) 

where Ai and ω i are the amplitude and angular 
frequency of the i-th component, and ϕ i is the 
phase angle randomly drawn from a uniform 
density distribution. 

Considering the discrete wave spectrum, the 
amplitude A i is [20]: 

ω∆)(ωA ii ⋅⋅= ζζφ2             (9) 

where ∆ω  represents the discrete frequency 
step, which is imposed. 

The relative frequency between the wave and 
the ship modifies the wave spectrum and this 
transformation must be taken into account for 
wave model generation [15].  

 

3. QFT METHOD 

The QFT method is a robust design technique 
for the linear or nonlinear systems with 
parametric uncertainties, which are affected by 
external disturbances.  

It is a frequency domain technique, using the 
Nichols chart to achieve the desired 

performance specifications of the close-loop 
system, over the specified region of parameter 
uncertainties [12]. 

If the system is nonlinear, the method can be 
used with equivalent linear system, but the 
variation intervals of system parameters must be 
wide enough to include the nonlinear behavior. 

The autopilot design by QFT method considers 
the Nomoto model of the ship like a system with 
parametric uncertainties, affected by external 
perturbations (p).  

The closed loop and the general autopilot 
structure are illustrated in Fig. 2. The autopilot 
has two linear components: the compensator 
G(s) and the prefilter F(s).  

 

 

 

 
 

Fig. 2. QFT autopilot structure 

The goal is to design the autopilot so that the 
closed loop system to fulfill the robust stability, 
input disturbance rejection and tracking 
specifications, with specific values for course-
keeping and course-changing problems.  

 
4. DESIGN SPECIFICATIONS 

The hydrodynamic characteristics of the ship 
depend on the forward speed. This dependency 
was identified in [18], for a frigate class ship 
and four different ship’s speed: 10, 14, 18 and 
22 knots.  

The frequency characteristics of the ship model 
are different with the speed, as shown in Fig. 3. 

 

 

 

 

 

 

 

 

 
 

Fig. 3. Frequency characteristics of the ship model 
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4.1. Uncertainty Region of the Ship Model 

The two parameters of the Nomoto model (k and 
T) have variations with the ship speed, in two 
value ranges: 

[kmin, kmax]  and  [Tmin, Tmax]         (10) 

These variations modify the frequency 
characteristics of the ship model.  

The goal is to specify the value intervals of 
model parameters, so that the frequency 
characteristics to be within the limits for all 
values of the speed. 

The four frequency characteristics, illustrated 
with continuous lines in Fig.3, are included in 
two limit characteristics, which are represented 
with dashed lines. These limits correspond to 
Nomoto models generated by: 

[ ]03.0,1.0 −−∈k   and  [ ]12,7.1∈T        (11) 

As a result, an uncertainty region appears, 
generated by the value ranges of ship 
parameters. This region is illustrated in Fig.4.  

If the performance specifications are met for the 
plant models placed on the contour of 
uncertainty region, then they are met for all 
plant models into the region. Therefore, only a 
small number (N) of models on the contour must 
be selected for QFT design. 

In this paper, six equidistant values are 
considered for the two parameters of the ship 
model (k and T), resulting 20 different ship 
models on the contour (N = 20), which are 
marked distinctly in figures 4 and 5. 

 

  
 

 

 

 

 

 

 

 
 

Fig. 4. Uncertainty region generated by parameter 
values 

For every frequency value, the characteristics of 
all ship models (generated by uncertainty 

region) represent points of a template, which is a 
closed contour into Nichols chart.  

For example, the template of ship models 
generated for the frequency ω = 0.1 rad/s is 
represented in Fig. 5.  

The boundary of the template can be obtained 
by mapping the boundary of the uncertainty 
region. Templates for other values of frequency 
are obtained in a similar manner.  

The corresponding points on both contours in 
Fig. 4 and Fig. 5 respectively can be found by 
crossing the contours in the ways indicated by 
arrows.  

 

 

 

 

 

 

 

 

 

 
Fig. 5. Template of ship models in Nichols chart 

The lower-left corner into the uncertainty region 
corresponds to the upper-right corner of the 
template. 

 

4.2.  Stability Specifications 

The stability specifications assure the stability of 
the closed loop system for all possible variations 
of the model parameters into the uncertainty 
region. 

The closed loop transfer function is: 
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where L(s) represents the loop transmission 
function. 

For every frequency into the working 
bandwidth, the envelope of the magnitude 
characteristics must be smaller than a maximum 
value αB: 
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where in general αB < 2 dB. The chosen value is 
αB = 1.2 ≅ 1.6 dB. The stability specifications 
must be met by both types of autopilot. 

 

4.3.  Robust Tracking Specifications 

The course changes must be defined within 
acceptable range of variations. When a course 
change is commanded, the reference course 
followed by the vessel can be specified by 
means of a second order reference model: 
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where ω0 is the natural frequency and ζ is the 
damping coefficient of the closed loop reference 
model.  

For course-changing without oscillations, the 
damping coefficient is recommended to be [1]: 

  ζ ∈ [0.8, 1].  

In this paper, the selected values are: ω0 = 0.1 
rad/s and ζ = 0.9. 

The closed loop tracking system has the transfer 
function: 
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which must be the same as H0 . 

Due to parameter variations of the ship model, 
the closed loop system has also variations, 
which must remain within specific limits. These 
limits are defined by two transfer functions, 
denoted lower bound (H0L (s)) and upper bound 
(H0U  (s)) respectively.  

The magnitude characteristics satisfy the 
inequalities: 

)()()( 00 ω≤ω≤ω jHjHjH UTL         (16) 

The two transfer functions represent robust 
tracking tolerances and must include the 
reference model H0: 

)()()( 000 ω≤ω≤ω jHjHjH UL         (17) 

Hence, the lower- and upper-limit transfer 
functions are selected around the second order 
reference model: 
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where the parameter values are:  a1 = 0.5·ω 0 ,  
a2 = 1.5·ω 0 ,   a3 = 2·ω 0 and a = 1.2·ω 0 . 

The magnitude characteristics of the desired 
second order reference model and lower- and 
upper-limit transfer functions are illustrated in 
Fig. 6.  

It can be observed that the ship dynamics of the 
yaw motion are important for very low 
frequencies and they decrease rapidly for 
frequencies bigger than ω0 = 0.1 rad/s. 

The step responses of the transfer functions 
defined in (14), (18) and (19) are represented in 
Fig. 7. The course changes last tens of seconds 
and depend on the operational conditions. 

 

 

 

 

 

 

 

 
 
Fig. 6. Magnitude characteristics of the reference and 

tracking bound models 

 

 

 

 

 

 

 

 

 
Fig. 7. Step responses of the reference and tracking 

bound models 

The continuous lines correspond to the reference 
model and the dashed lines illustrate the tracking 
tolerances of the lower and upper bounds. 
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4.4.  Input Disturbance Rejection Specifications 

The input disturbance rejection specifications 
are defined for the transfer function: 
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For all possible variations of the model 
parameters into the uncertainty region, the 
magnitude characteristic envelope of the 
perturbation channel must be smaller than a 
maximum value αP: 

( ) PP
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where the chosen value is αP = 0.1 = − 20 dB. 

4.5.  Ship model templates 

The goal of this step is to obtain ship model 
templates at specified frequencies that 
pictorially describe the region of plant parameter 
uncertainty on the Nichols chart. Then, the 
nominal ship model is chosen. 

For every point of a chosen frequency vector 
into the system bandwidth, a ship model 
template is obtained in Nichols chart, by 
computing the frequency responses of all ship 
models (N = 20) selected on the contour of the 
uncertainty region.  

The template shape depends on the frequency 
value. Starting from low frequencies, the 
template width increases, then as frequency 
takes on larger values, the templates become 
narrower, tending to a vertical line when the 
frequency tends to infinity. 

In Fig. 8, six templates are represented, 
corresponding to six frequency values into the 
system bandwidth: 

 w1 =   0.02, 0.05, 0.1, 0.2, 0.5 and 1 rad/s   (22) 

 

 

 

 

 

 

 

 
 

Fig. 8. Ship model templates for six frequency values 

The frequency responses for all selected models 
are computed with the function freqcp.m from 
QFT Toolbox of Matlab. 

The nominal ship model is the one whose 
template point is always at the lower left corner 
(marked distinctly in Fig. 8) for all frequencies 
for which the templates are obtained. For the 
selected templates, the nominal ship model is: 
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5.  DESIGN AND SIMULATION  RESULTS 

Once the performance specifications are 
imposed, the QFT autopilot can be designed for 
course-changing and course-keeping problems. 
Also, the resulting closed loop system can be 
verified and simulated in the presence of first 
order wave disturbances. 

For course-changing autopilot, the compensator 
G(s) and prefilter F(s) must be designed, while 
for course-keeping control, only G(s) must be 
determined.  

5.1.  Course-changing autopilot 

In this case, robust stability and tracking 
specifications are used, with disturbance 
rejection conditions.  

Due to the prefilter F(s), the autopilot acts like a 
real-PD controller on reference channel, which 
is sufficient if the course change commands are 
step type signals. Such autopilot assures zero 
stationary error for step reference input, but it 
can not compensate the stationary errors if the 
system is used to track a desired trajectory ψr (t). 

On perturbation channel, the real-PD autopilot 
can not eliminate the stationary errors generated 
by constant-value disturbances, which is not this 
case, because the prefilter has no influence on 
perturbation input.  

In addition, constant or slow varying drift effect 
produced by wind or marine currents can be 
compensated by periodic course corrections. 
Therefore, constant disturbances can be ignored, 
but the trajectory of the ship is not optimally. 

The bounds of robust stability, robust tracking 
and input disturbance rejection are calculated, 
on the basis of the performance specifications, 
ship templates and nominal ship model, using 
sisobnds.m function from QFT Toolbox of 
Matlab. These bounds are illustrated in Fig. 9. 
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The tracking bounds (thin lines, denoted with 7) 
and input disturbance rejection bounds (thick 
lines, denoted with 3) are open contours, being 
calculated for the four smallest frequency 
values: 

w2 =   0.02, 0.05, 0.1 and 0.2 rad/s        (24) 

The closed contours represent the stability 
bounds for all six frequency values of vector w1. 
Considering the open contours, the bound 
magnitude is bigger for smaller frequencies. 
Also, the disturbance rejection bounds are above 
the tracking ones for the same frequency.  

 

 

 

 

 

 

 

 

 
Fig. 9. Robust stability, tracking and disturbance 

rejection bounds 

For every frequency value, the optimal bounds 
are calculated by intersecting all the bounds, as 
illustrated in Fig. 10, using sectbnds.m function 
from QFT Toolbox of Matlab.  

On the same Nichols chart, the transfer function 
of the nominal loop transmission is represented 
(vertical line): 

)()()( δψ00 sHsGsL ⋅= ,                      (25) 

where the initial expression of compensator G(s) 
can be chosen.  

 

 

 

 

 

 

 

 
 

Fig. 10. Optimal bounds and nominal loop 
transmission for course-changing autopilot 

The nominal loop transmission is calculated for 
an extended frequency vector, which includes 
the w1 vector, with w1 values marked distinctly 
in Fig. 10. 

For this, the lpshape.m QFT function is used, 
which is a controller design environment for 
continuous-time linear systems. It produces the 
Nichols plot for the nominal loop transmission, 
while the compensator expression can be 
modified into an interactive manner. 

In this way, modifying the compensator 
expression, the nominal loop transmission is 
synthesized to satisfy the optimal bounds, 
without penetrating the closed contours.  

For every frequency value, the values of 
nominal loop transmission must be on or above 
the corresponding values of optimal bounds. 

The final expression of the compensator, 
corresponding to the Nichols plot of the nominal 
loop transmission illustrated in Fig. 10, is: 
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It can be observed that the compensator is a 
series-type PID controller of the form: 
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with parameter values: 
TI = 430,   TD = 5.25,  TP = 0.6536 

and   kR = - 10.4                   (28) 
The frequency characteristics of compensator 
G(s) are illustrated in Fig. 11.  

 

 

 

 

 

 

 

 
 

Fig. 11. Frequency characteristics of compensator 
G(s) 
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Big negative values of the phase are generated 
by negative value of gain kR, which is caused by 
sign convention between rudder angle (positive 
to port side) and yaw angle movements (positive 
to starboard side). 

The prefilter F(s) is synthesized to satisfy the 
tracking specifications, by modifying the 
expression interactively, starting from a 
structure determined up-front. The parameters of 
prefilter are modified, until the tracking 
specifications are met.  

The final expression of prefilter is: 

058.0
058.0)(

+
=

s
sF                       (29) 

For robust tracking verification, the influence of 
the prefilter is illustrated in Fig. 12 and 13.  

The upper and lower envelopes of magnitude 
characteristic variations of the closed loop 
system without prefilter are represented with 
continuous lines in Fig. 12. It can be observed 
that the envelopes are outside of the tracking 
limits (illustrated with dashed lines). 

 

 

 

 

 

 

 

 

 
Fig. 12. Upper and lower magnitude envelopes of 

closed loop system without prefilter 

Using the prefilter F(s), the tracking 
specifications are satisfied, as shown in Fig. 13.  

In this case, the upper and lower envelopes of 
the closed loop system with prefilter are inside 
of the tracking limits. 

In figure, the magnitude characteristic of the 
reference model is also represented with dash-
dot line. 

The closed loop system verifies the robust 
stability specification, as shown in Fig. 14. The 
maximum value αB = 1.2 ≅ 1.6 dB is represented 
with dashed line. 

 

 

 

 

 

 

 

 

 

 
Fig. 13. Upper and lower magnitude envelopes of 

closed loop system with prefilter 

 

 

 

 

 

 

 

 

 
Fig. 14. Robust stability verification for course-

changing autopilot 

The maximum magnitude characteristic 
envelope is smaller than the specified value for 
the entire working bandwidth: 
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Also, the disturbance rejection condition is 
satisfied, as illustrated in Fig. 15.  

 

 

 

 

 

 

 

 

 
Fig. 15. Disturbance rejection verification 
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The maximum value αP = 0.1 = − 20 dB is 
represented with dashed line. 

The magnitude characteristic envelope of the 
perturbation channel is smaller than the 
specified value for the entire working 
bandwidth: 

( ) 1.0098.0)(max
ω),(

=<= PP
sH

jH αω
ψδ

        (31) 

The frequency characteristics of closed loop 
system for all N ship models on the contour of 
uncertainty region are illustrated in Fig. 16. 

 

 

 

 

 

 

 

 

 

 

 
Fig. 16. Frequency characteristics of closed loop 

system for all N ship models on the contour 

As expected, these characteristics are enclosed 
by upper and lower envelopes from Fig. 13. The 
reference model and tracking tolerances are 
represented with dashed lines. 

The reference step responses of the closed loop 
system for all the ship models considered on the 
contour of the uncertainty region (N=20) are 
illustrated in Fig. 17. The course followed by the 
ship remains into the specified limits and 
approximates the second order reference model. 

 

 

 

 

 

 

 

 
Fig. 17. Reference step responses of closed loop 

system for all N ship models on the contour 

The step responses on perturbation channel of 
the closed loop system for all the ship models 
considered on the contour of the uncertainty 
region are illustrated in Fig. 18. 

 

 

 

 

 

 

 

 

 
 

Fig. 18. Perturbation step responses of closed loop 
system for all N ship models on the contour 

It can be observed that the disturbance rejection 
condition is satisfied for all ship models selected 
on the contour of the uncertainty region. Also, 
theoretically, the autopilot can compensate the 
constant-value disturbances, but the time 
constant is big. 

To illustrate the course change in the presence 
of disturbances, a change command of 10 deg is 
considered simultaneously with wave 
disturbances.  

The waves have the significant height h1/3 = 4 m 
and the incidence angle γ = 135 deg. The 
parameters of the ship model correspond to the 
ship speed u = 22 Knots. 

The course-changing response of the ship is 
illustrated in Fig. 19. The tracking tolerances are 
represented with dashed lines. 

 

 

 

 

 

 

 

 

 
 

Fig. 19. Course-changing response of the ship in the 
presence of wave disturbances 
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The autopilot assures zero stationary error for 
step reference input, but it can not compensate 
the stationary errors if the system is used to 
track a desired trajectory ψr (t). For example, a 
linear variable reference signal produces 
stationary error of the yaw angle, as illustrated 
in Fig. 20.  

 

 

 

 

 

 

 

 

 

 
Fig. 20. Tracking errors of the yaw angle 

In this case, the trajectory error is small and in 
addition, the errors can be compensated by 
periodic course corrections. 

 

5.2.  Course-keeping autopilot 

For course-keeping problem, only the robust 
stability and disturbance rejection conditions 
must be satisfied. The autopilot structure 
contains the compensator G(s), without the 
prefilter F(s). The autopilot is a series-type PID 
controller, which assures zero stationary error 
for step type signal on both reference and 
perturbation inputs. 

The optimal bounds are illustrated in Fig. 21.  

 

 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 21. Optimal bounds and nominal loop 
transmission for course-keeping autopilot 

The nominal loop transmission is calculated for 
the same extended frequency vector, with w1 
values marked distinctly.  

The bounds of robust stability and input 
disturbance rejection are determined on the basis 
of the performance specifications, ship 
templates and nominal ship model, which are 
computed in the same manner.  

For disturbance rejection specifications, the 
maximum value αP has been decreased:  

αP = 0.03 = − 30.5 dB. 

The disturbance rejection bounds are higher in 
this case, which implies bigger values for 
autopilot gains. 

Again, the compensator is a series-type PID 
controller of the general form given in (27) and 
its structure is determined up-front.  

Modifying the compensator expression, the 
nominal loop transmission is synthesized to 
satisfy the optimal bounds, without penetrating 
the closed contours, as shown in Fig. 21.  

The final expression of the compensator is: 
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+⋅+⋅−
=

ss
ss         (32) 

The parameter values are:   TI = 73.4,   TD = 4.3, 
TP = 0.1515  and   kR = - 33.35         (33) 
It can be observed that the gain value is bigger 
and the time constants are smaller.  

The frequency characteristics of autopilot are 
illustrated in Fig. 22.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 22. Frequency characteristics of course-keeping 

autopilot 
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The closed loop system verifies the robust 
stability specification, as shown in Fig. 23.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 23. Robust stability verification for course-
keeping autopilot 

The maximum magnitude characteristic 
envelope is smaller than the specified value for 
the entire working bandwidth: 

( ) 2.11823.1)(max
ω),(

=<= BB
sH

jH αω
ψδ

 (34) 

Also, the disturbance rejection condition is 
satisfied, as illustrated in Fig. 24.  

The maximum admissible value of input 
disturbance rejection αP = 0.03 = −30.5 dB is 
represented with dashed line.  

 

 
 
 
 
 
 
 
 
 
 
 
 
Fig. 24. Disturbance rejection verification for course-

keeping autopilot 

The magnitude characteristic envelope of the 
perturbation channel is smaller than the 
specified value: 

( ) 03.00296.0)(max
ω),(

=<= PP
sH

jH αω
ψδ

         (35) 

The reference step responses of the closed loop 
system for all the ship models considered on the 
contour of the uncertainty region (N=20) are 

illustrated in Fig. 25. Depending on the ship 
model, the PID effect is different. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 25. Reference step responses of closed loop 
system for course-keeping autopilot 

Using the same wave disturbances and ship 
model, the course-keeping effect using QFT 
autopilot is illustrated in Fig. 26. The waves 
have the significant height h1/3 = 4 m and the 
incidence angle γ = 135 deg. The parameters of 
the ship model correspond to the ship’s forward 
speed u = 22 Knots, which was chosen on the 
upper limit of the speed range. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 26. Course stabilization with QFT autopilot 

In the first figure, the wave disturbance 
corrected with incidence angle is illustrated. Due 
to incidence angle, the wave spectrum is moved 
to higher frequencies, changing the disturbance 
characteristics. As a result, the wave has smaller 
amplitudes and higher frequency components. 
In the second figure, yaw angles are represented 
in two situations: without using QFT autopilot 
(drawn with dotted line) and with autopilot 
(continuous line). The reduction effect of yaw 
angle is obviously. 
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6. CONCLUSIONS 

Robust QFT ship autopilot is designed, for the 
course-changing and course-keeping control of a 
ship. The ship model is affected by wave 
disturbances and has parametric uncertainties 
due to the forward speed, which affects 
hydrodynamic coefficients. Knowing the 
variation ranges of the model parameters, QFT 
autopilot can be design to satisfy performance 
specifications. The autopilot satisfies the robust 
stability, tracking performance and disturbance 
rejection conditions, for all ship models 
generated by the uncertainty region.  
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