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Abstract: The paper presents a state feedback stabilization method for uncertain systems 
subjected to parametric time-varying structured uncertainty. The proposed design 
approach also allows to obtain an imposed robust H ∞  performance with respect to the 
class of uncertainty considered. Necessary and sufficient conditions for the existence of 
such a state feedback control are derived in terms of the feasibility of a system of linear 
matrix inequalities. An application of the theoretical developments concerning the 
prevention of pilot induced oscillations occurrence is also presented. 
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1. INTRODUCTION 

The purpose of this paper is to present a state 
feedback design method for systems subjected 
to linear fractional transformations (LFT) based 
parametric uncertainty in order to achieve some 
specific robust stabilizing properties and in the 
same time, to accomplish an H ∞ - type 
performance for any uncertainty in the 
admissible set. This admissible set includes 
norm bounded time-varying structured 
uncertainty. There are some important reasons 
which motivate the interest for this class of 
uncertainty. Firstly, in many engineering 
applications the uncertain parameters are not 
time-invariant. This means that the condition 

T TS Sδ δ=  is not fulfilled 0T∀ >  as in the time-

invariant case, where δ  denotes the uncertain 
parameter and TS  is the shift operator defined as 

( ) 0,TS f t t T= ∀ <  
and ( ) ( ) ,TS f t f t T t T= − ∀ ≥ . Secondly, the 
stability domain with respect to time-varying 
uncertainty is usually smaller than the one 
corresponding to the time-invariant case. Useful 
aspects emphasizing the sharp difference 
between the time-invariant and the time-varying 
uncertainty can be found for instance in 
(Megretski, 1993),  (Rotea et al., 1993) and in 
(Shamma, 1994). The quadratic stability 
(Petersen and Hollot, 1986) is frequently used to 
handle time-varying uncertainty. This kind of 
stability is stronger than the robust stability (see 
e.g. (Rotea et al., 1993)) and it can be 
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successfully applied if the elements of the state 
matrix of the uncertain system are affine 
functions with respect to the uncertain 
parameters.  Unfortunately the affine parameter 
dependent representation may be very 
conservative because possible joint parameter 
dependencies are ignored. A method allowing to 
overcome this disadvantage is to use the LFT 
based uncertainty description ((Doyle et al., 
1991), (Varga et al., 1995)). Its main advantage 
is the more accurate representation of the 
parametric uncertainty including polynomial and 
rational approximations. For a plant with LFT 
based uncertainty description, the Small Gain 
Theorem ((Zames, 1966)) gives sufficient robust 
stability conditions. If the uncertainty is time-
varying these conditions are also necessary 
((Megretski, 1993), (Shamma, 1994), (Rotea et 
al., 1993)). In the case when the structure of the 
uncertainty is known, a modified small gain 
condition is used in order to reduce the 
conservativeness of the results. According with 
the terminology adopted in (Doyle et al., 1991) 
this small gain type condition defines the so-
called Q-stability of a stable system. Its 
definition and analysis in terms of the feasibility 
of a specific linear matrix inequality (LMI) are 
given in the next section. 

On the other hand, in many applications it is 
important to guarantee a certain robust 
performance for all admissible uncertainty. In 
the present paper this performance is the upper 
bound of an H ∞ -type norm. The state feedback 
Q-stabilization problem with imposed H ∞  
robust performance is formulated and solved in 
Section 3. Necessary and sufficient conditions 
for the existence of such feedback gain are 
expressed in terms of the solutions of an 
appropriate LMIs system. Some of the 
theoretical results are illustrated in Section 4 by 
an application concerning the detection of the 
so-called Pilot-Induced- Oscillations (PIO). 
This problem received much interest in the 
aeronautical engineering over the last years and 
it is determined by the interaction between the 
human pilot and the aircraft. Some of the 
methods developed to analyse the PIO 
occurrence imply in fact to determine the 
stability domain with respect to time-varying 
uncertain parameters (see for details (Amato et 
al., 1999) and (Stoica, 2004)). 

Some concluding remarks are given in the last 
section of the paper. 

2. NOTATIONS, DEFINITIONS AND  
PRELIMINARY RESULTS 

Consider the following class of uncertain 
systems with LFT based parametric uncertainty: 

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( ) ( ),

x t Ax t Kw t Bu t

z t Lx t Mw t Nu t

y t Cx t Hw t Du t w t t z t

= + +

= + +

= + + = ∆

 (1) 

where x denotes the state vector, w  and u are 
the exogenous and the control input, 
respectively, z  is the controlled output and y  
denotes the measurement vector. It is assumed 
that the norm-bounded time-varying structured 
uncertainty satisfies the condition ∆ ∈ DB  where  

( ){ }: : , 1,m m t×= ∆ → ∆ ≤ ∆ ∈R RDB D  
and  

( ){
}

11 1block diag ,..., , ,..., ,

,

δ δ

δ + +×

= ∆ ∆

∈ ∆ ∈R R

D
r

r i r i

k r k

k k
i i

I I
 (2) 

with 
1

r

i
i

k m
+

=

=∑ . Since the uncertainty ∆  is 

square, it is implicitly assumed that w  and z  
have the same dimension ( )1m× . If I M− ∆  is 
invertible, the uncertain system (1) can be 
rewritten as: 

( )( )
( )( )

1

1

x A K I M L x

B K I M N u

−

−

= + ∆ − ∆

+ + ∆ − ∆
 

( )( )
( )( )

1

1

y C H I M L x

D H I M N u

−

−

= + ∆ − ∆

+ + ∆ − ∆
                        (3) 

According with the Small Gain Theorem, if A  
is Hurwitz and 

( ) 1 1L sI A K M−

∞
− + <                                    (4) 

where 
∞

⋅ denotes the H ∞  norm, then (3) is 
stable for all ∆  with 1∆ < . It is important to 
note that the above condition guarantees 
quadratic stability and therefore robust stability 
conditions with respect to time-varying 
uncertainty. The condition (4) is not only 
sufficient but also necessary in the case of 
complex unstructured uncertainty ∆  (see e.g. 
(Khargonekar et al., 1990)). Since in the present 
paper it was assumed that ∆  is structured, 
condition (4) may provide conservative results. 
An effective approach (see e.g. (Doyle et al., 
1991)) to reduce the conservativeness generated 
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by the small gain condition (4) in the case of 
structured uncertainty of form (2) is the scale it 

as 
1 1
2 2S S

−
∆  where S  is a positive matrix with the 

following structure 
 

( )11 1block diag , , , , ,..., ,

, .R R
r r

i i

r k k

k k
i i

S S S s I s I

s S
+ +

×

=

∈ ∈
            (5) 

Definition 1. A stable system having the transfer 
function ( ) ( ) 1T s C sI A B D−= − +  with D  square 
is called Q-stable if it exists a symmetric matrix 

0S >  such that 
1 1
2 2 1S TS

−

∞

< . 

For the imposed structure (2) of the uncertainty 
∆  the matrix S  in the above definition has the 
form  (5). A direct consequence of the LMI 
version of the Bounded Real Lemma is the 
following result ((Skelton et al., 1998),  (Stoica, 
2004)): 

Proposition 1. A stable system with the transfer 
function ( ) ( ) 1T s C sI A B D−= − +  is Q-stable if 
and only if there exist the symmetric matrices 

0S >  of form (5) and 0P >  such that: 

0.
T T T

T T T

A P PA C SC PB C SD
B P D SC S D SD

 + + +
< + − + 

    

Consider now the uncertain system (1) and 
assume that it is Q-stable for all ∆ ∈ DB . Then 
define the cost function 

( ) ( ), 2
0

: sup , 1,T
uH

J y t y t dt u∞

∞

∆

  = ≤ ∆ ∈ 
  
∫ DB  

where ( )
2

⋅  denotes the norm on Lebesgue 
space of square integrable valued functions on 
R and ( )y t  is the output determined by the 
control u  in presence of ∆  with the initial state 

( )0 0x = . For the nominal system ( )0∆ ≡ , the 
performance index 

H
J ∞  coincides with the H ∞  

norm of ( )T s . For the perturbed system ( )0∆ ≠  

H
J ∞ represents a measure of the robust H ∞ -type 
(energy-to-energy gain) performance bound.  

The next result which proof may be found in 
(Doyle et al., 1991) and (Skelton et al., 1998) 
gives a characterization of the robust H ∞  
performance bound. 

Proposition 2. The following assertions are 
equivalent: 

(i)   The uncertain system (1) is Q-stable for 
all ∆ ∈ DB ; 
(ii) There exist a scalar 0γ >  and the 

symmetric matrices 0P >  and 0S >  with S  
having the form (5),  such that: 

2

0
0

0
0

0

T

T

T

T T

T T

T T

A P PA PK PB
K P S
B P I

L C
S L M N

M H
I C H D

N D

γ

 +
 − 
 − 

 
    + <    
     

            (6) 

Moreover, if the above statements hold then 
H

J γ∞ < .   
                     
 

3. STATE FEEDBACK Q-
STABILIZATION WITH ROBUST H ∞  

PERFORMANCE 
 
In this section the following system with LFT 
based parametric uncertainty is considered: 

( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

1 1 2 2

1 1 11 1 12 2 1

2 2 21 1 22 2 2

1 1,

x t Ax t K w t K w t Bu t

z t L x t M w t M w t N u t

z t L x t M w t M w t N u t

y t x t w t t z t

= + + +

= + + +

= + + +

= = ∆

   (7) 

with ∆ ∈ DB . Then the problem has the 
following statement: given 0γ > , determine a 
state feedback control ( ) ( )u t Fx t=  such that the 
resulting system: 

( )
( )
( )

1 1 2 2

1 1 1 11 1 12 2

2 2 2 21 1 22 2 1 1,

x A BF x K w K w

z L N F x M w M w

z L N F x M w M w w z

= + + +

= + + +

= + + + = ∆

     (8) 

is Q-stable for all ∆ ∈ DB  and 
H

J γ∞ < . 
The next result provides necessary and sufficient 
conditions for the solvability of this problem. 

Theorem 1. There exists a state feedback gain 
F  such that the system (8) with LFT based 
parametric uncertainty is Q-stable for all 
∆ ∈ DB  and 

H
J γ∞ < if and only if: 

(i) ( )22Mγ σ> , where ( )σ ⋅  denotes the 
maximal singular value of ( )⋅ ; 

(ii) There exist the symmetric matrices 0X >  
and 0Y >  with Y  having the structure (5) such 
that: 
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11 11 1 1 12 12

2
2 2 13 13 0

T T T T

T T

AX XA K YK Y

K Kγ −

+ + −

+ − <

N N N N

N N
               (9) 

and 

( ) ( )
( ) ( )

11 12

12 22

0T

Y Y
Y Y

 
< 

 

M M
M M

                                 (10) 

where 

( )
( )
( )

11 12 1 13 2

1 11 1 12 11 13 21

2 11 2 12 12 13 22
2

11 11 11 12 12

2
12 11 21 12 22

2
22 21 21 22 22

:

:

:

:

:

:

T T T

T T T

T T T

T T

T T

T T

A A L L

K K M M

K K M M

Y M YM Y M M

Y M YM M M

Y I M YM M M

γ

γ

γ

−

−

−

= + +

= + +

= + +

= − +

= +

= − + +

N N N

N N N

N N N
M

M

M

 

and 11 12 13

TT T T  N N N  is any basis of the null 

space of 1 2 .T T TB N N     

Proof. Applying the last part of Proposition 2 
for the closed loop system (8) it follows that 
there exist the symmetric matrices 0P >  and 

0S >  with S  having the structure (5) such that: 

( ) ( )

( ) ( )

1 2

1
2

2

1 1 2 2

11 21

12 22

1 1 11 12

2 2 21 22

0
0

0
0

0 .

T

T

T

T T

T T

T T

A BF P P A BF PK PK
K P S
K P I

L N F L N F
S

M M
I

M M

L N F M M
L N F M M

γ

 + + +
 

− 
 −  

 + +
   

+    
  

  
+ 

× < + 

 

Based on a Schur complement argument, the 
above condition is equivalent with: 
 

( ) ( ) ( )

( )
( )

0 1 2 1 2

1 11 21
2

2 12 22
1

1 11 12

2 21 22

,
0

00
0

0

T T

T T T

T T

P F PK PK F F
K P S M M
K P I M M

F M M S
F M M I

γ
−

 
 − 
  <−
 

− 
 − 

L L L

L
L

 

where the following notions have been 
introduced: 
 

( ) ( ) ( )
( )
( )

0

1 1 1

2 2 2

, :

: ;

: .

TP F A BF P P A BF

F L N F

F L N F

= + + +

= +

= +

L

L

L

 

 
The above inequality  can be rewritten in the 
equivalent form: 

0T T TZ F F+ + <P R R P                                   (11) 
 
where: 

[ ]

1 2 1 2

1 11 21
2

2 12 22
1

1 11 12

2 21 22

1 2

0
: ,0

0
0

: 0 0 ,

: 0 0 0 0 .

T T T

T T T

T T T

T

A P PA PK PK L L
K P S M M

Z K P I M M
L M M S
L M M I

B P N N

I

γ
−

 +
 − 
 = −
 

− 
 − 
 =  

=

P

R

  (12) 

According with the Projection Lemma (see e.g. 
(Boyd et al., 1994), (Skelton et al., 1998)) there 
exists F  satisfying (11) if and only if: 

0TW ZW <P P                                                     
(13) 
and  

0TW ZW <R R ,                                                  (14) 
where WP  and WR  denote any bases of the null 
spaces of P  and R , respectively. 
Since 

1
11

12

13

0 0
0 0
0 0

0 0
0 0

P
I

W I

− 
 
 
 =
 
 
 
 

P

N

N
N

 

with 11 12,N N  and 13N  defined in the statement, 
direct algebraic computations together with 
Schur complement arguments show that 
condition (13) is equivalent with (9), where 

1:X P−=  and 1:Y S −= . Then based on the fact 
that 

0 0 0 0
0 0 0

,0 0 0
0 0 0
0 0 0

I
W I

I
I

 
 
 
 =
 
 
  

R  

it follows that (14) is equivalent with: 

11 21
2

12 22

1
11 12

21 22

0
0

0.
0

0

T T

T T

S M M
I M M

M M S
M M I

γ

−

 −
 − 
  <
 

− 
 − 

 

The Schur complement of the bloc (1,1) in the 
above inequality directly gives (10). 
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Part (i) of the statement directly follows from 
the block (2,2) of the LMI in (10).  
 
Remark 1. If the conditions in the statement of 
Theorem 1 are fulfilled then a state feedback 
gain F  can be easily determined by solving the 
basic LMI (11) in which P  and S  are replaced 
by 1X −  and by 1Y − , respectively . 
 
 
4.  A CASE STUDY 
 
In the present section a case study concerning 
the prevention of pilot induced oscillations 
(PIO) is described. Although these phenomena 
are not new, several recent incidents in which 
advanced fighters prototypes as YF-22, Saab 
Gripen and transport aircrafts as the B777 were 
involved. PIO have many sources and a detailed 
model of the pilot-aircraft dynamics is difficult 
to be derived. The case study described in this 
section considers the so-called Category II of 
PIO (see e.g. (Klyde et al., 1996)). These 
oscillations are mainly induced by nonlinearities 
determined by rate or position limits of surface 
actuators. The resulting pilot-aircraft system is 
linear, except rate or position saturation. 
Considering for example a position saturation of 
the actuator, the behaviour of this nonlinear 
element is equivalent with a linear unknown 
gain [ ]min ,1L L∈ , as illustrated in Figure 1 where 

sat satuψ = (for details, see (Amato et al., 1994)). 
A large value of the predicted maximal 
command maxu  corresponds to a small value 
of minL . Therefore for a wide range of the control 
variable u , a low limit minL of the gain L  is 
required. One can directly check that the gain L  
is not time-invariant. 

satu maxu u

satψ

ψ

minL

 
Fig. 1. The saturation nonlinear element 

 
Taking into account that L  is time-varying one 
expects to obtain a larger value of minL  than in 
the case when L  is assumed time-constant.  

A typical control configuration for the linearized 
longitudinal dynamics of an aircraft with rate 
limited actuator is shown in Figure 2. 

In this figure pK  denotes the human pilot gain, 
0.04secτ =  is the time constant of the first order 

actuator dynamics and 

( )
( )

( )( )
( )( )2 2

3.457 0.0292 0.883
0.019 0.01 0.8418 5.29e

s s s
s s s s s

θ
δ

+ +
=

+ + + +
 

is the transfer function from the elevator 
position eδ  to the longitudinal attitude angle θ  
of the aircraft. 

comθ
pK 1

τ
1
s

( )
( )e

s
s

θ
δ

θ+

− −

+ ν eδ

 
Fig. 2. The closed-loop system with rate saturation 

actuator 

As shown above the saturation element in the 
inner loop of Figure 2 can be replaced by a 
linear unknown gain L . Since the pilot gain is 
variable, two uncertain parameters will be 
considered in this problem, namely pK  and L . 
The PIO detection implies to determine the pairs 
( ), pL K  separating the stability and the 
instability regions in the parameters 
plane pL K− . 
In Figure 3 the stability regions in the case when 
L  is assumed constant (solid frontier) and when 
it is assumed time-varying are illustrated 
(dashed frontier), respectively (see (Stoica, 
2004)).  

unstable

stability−Q

 
Fig. 3. Stability regions in constant and time-varying 

cases 
 
For the configuration shown in Figure 2, the H ∞  
norm of 

com
Tνθ denoting the mapping from comθ to 
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the input ν  of the saturation element replaced 
by the uncertain gain L  has been determined. 
Denoting by ( ), ,A B C  a realization of the 
transfer function ( )( ) / es sθ δ  of the aircraft 
dynamics, the following state space 
representation of 

com
Tνθ is obtained: 

 
0

1

comp p
e e

p p com
e

A B
x x

K L K LLC

x
K C K

θ
δ δ

τ τ τ

ν θ
δ

   
      = +      − −         

 
 = − − +  

 

         (15) 

Denoting 1 pKδ = and 2 Lδ = , (15) may be 
written as un uncertain system with LFT based 
parametric uncertainty of form (3) where: 

[ ]

1

2

0 00 1 0
, , ,10 00

0 0
, , 0 ,

1 0 0

K L
CC

C
M N H C

δ
δ

τ
+

+

     ∆ = = =    −      
 − 

= = = −  
   

 

with C+ denoting the pseudo-inverse of C . 
Numerical results for several values of the 
uncertain parameters pK  and L  are given in 
Table 1. 
Table 1. Numerical results 

pK  ( )* degcomθ  L  
com

Tνθ ∞
 

1  30  1.2pK =  - 
0.7  35.9794  
1  32.5000  1.3pK =  17.8  

0.7  49.6522  
1  43.5498  1.5pK =  10.4  

0.7  107.1137  
1  91.4996  1.75pK =  6.7  

0.7  615.9411 
 
In the above table,  *

comθ  denotes the minimal 
amplitude of the step command comθ  at which 
PIO occur.  It is desirable to obtain large values 
of *

comθ since it means that only such large 
amplitude commands   can generate PIO. The 
time response of the pitch angle θ  
corresponding to * 6.7degcomθ =  and 1.3pK =  
determined by the configuration in Figure 2 with 
a rate limit of 15deg/ sec±  is plotted in Figure 4.  

Fig. 4. PIO occurrence 
 
Analysing these numerical results, it clearly 
results the relationship between *

comθ  and the 
H ∞  norm of 

com
Tνθ  . One can also see that a small 

value of 
com

Tνθ ∞
over the interval of variation of 

L  implies large values of the command comθ  that 
induces oscillations. 
 
 
5. CONCLUSIONS 
 
The design method proposed in this paper is a 
state feedback robust stabilization for uncertain 
systems with structured time-varying LFT based 
parametric uncertainty. This class of uncertainty 
includes the affine parameter dependent 
representation. In order to reduce the 
conservativeness, a Q-stability condition is 
imposed which gives necessary and sufficient 
robustness conditions with respect to time-
varying parametric uncertainty. Additionally, an 
H ∞  type robust performance has been also 
included in order to provide an upper bound of 
the energy-to-energy gain for all uncertainty in 
the admissible set. The solvability conditions are 
expressed in terms of the feasibility of a system 
of linear matrix inequalities. 
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