
CEAI, Vol. 7, No. 2, pp. 34-41, 2005                                                                          Printed in Romania 
 

PERFORMANCE GUIDED HYBRID LQ CONTROLLER  
FOR TIME-DELAY SYSTEMS 

Vojislav Z. Filipovic 

RCT, POBox 126, 15300 Loznica, Serbia and Montenegro 
Fax: ++381 15 881 945, E-mail: vfilip@eunet.yu 

Abstract: In this paper the concept of multiple models and concept of switching 
controllers is used. The analog part of the system is described by finite set of discrete-
time models. It is considered general case when time-delay of real process is not equal 
to integer multiple of sampling time. As a set of controllers is used a finite set of LQ 
controllers with the prescribed degree of stability. The switching rule is based on the 
selection of the best performance of the closed-loop system. In the form of theorem is 
proved that hybrid system is asymptotically stable in the Lypunov sense and 
performance of system is no worse then the best non-switching strategy. 
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1. INTRODUCTION 
 
Hybrid systems can be interpreted as digital 
real-time systems which are embedded in analog 
environments. Continuous (analog) variables 
take the values from the set of real numbers and 
the discrete variables take the values from a 
finite set of symbols. Analog part of the hybrid 
system is described with differential or 
difference equation [11] and discrete part of 
hybrid system is a event driven dynamics which 
can be described using concept from discrete 
event system such as timed automata, max-plus 
algebra or Petry nets [5]. For hybrid discrete 
systems whose components are dominantly 
discrete events analysis and design are based on 
tools from computer sciences [1]. 

 
From the clasical control theory point of view 
hybrid systems can be considered as a switching 
control between analog feedback loops. This 
area of research now is a very reech [23], [27]. 

Now we have a different approaches for control 
of hybrid dynamical systems. In the [3] mixed 
logical dynamical model for hybrid system is 
proposed. This model is described by linear 
dynamical equations subject to linear mixed-
integer inequalites. The complementarity class 
of hybrid systems are systems with inequality 
constraints [13]. Concept of picewise linear 
system is introducet in  [19]. Equivalence 
between above classes of hybrid systems is 
established in [14]. 
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Recently, the stochastic frame for hybrid 
dynamical systems  is introduced [17], [18]. 
Stochastic hybrid systems (SHS) arise in 
numerous applications of systems with multiple 
models: air traffic management, flexibile 
manufacturing systems, fault tolerant systems 
etc. Very general class of SHS are diffusion 
processes with Markovian switching parameters. 
 
In the last years new paradigm for adaptive 
control is developed {20], [24]. If conventional 
adaptive control is used, experience shows that 
the presence of large parameter errors will, 
generally, results in a slow convergence with 
large transient errors. Because, it is proposed 
concept of multiple models to identifay the 
unknown plant. That is foundation for higher 
level of adaptive control. Similar approach is 
taken, also, in [28] where   mapping of hybrid 
states to hybrid control is based on system 
performance. 
 
The theory of hybrid control systems is very 
powerfull. Now is clear that such kinde of 
system can describe the system with 
quantization [22], TCP congestion control [16] 
and control of wireless communication networks 
[21]. 
 
The field of time-delay systems had its origins 
in the 18th centery. Systematic and 
comprehinseve coverage of modern control 
theory for time-delay dynamic system is 
presented in [26]. The problem of the time-delay 
system stability, from the LMI point of view, is 
considered in [12].The recent developments on 
the class of uncertain deterministic and 
stochastic dynamical systems with time-delay 
are deeply covered in [4]. In [7] the concept of 
hybryd control is used for systems with input 
delay. Using suitable transformation the models 
with input delay is converted in delay free 
models and then, using LMI tool, the robust 
controller is derived. The networked control 
systems with time-varyng transmission times 
and unmodeled dynamics is considered in [8]. 
The system is described with functional 
differential equation and stability is proved 
using Lyapunov- Razumikhin theory. 
 
In this paper we will adapt the multi model 
approach for control of time-delay systems 
using hybrid control methodology. The analog 
part of system will be described by difference 
equation. In the paper is considered general case 
when time-delay of real physical system is not 

equal to integer multiple of sampling period. 
The presence of time-delay will increases the 
dimension of equivalent model, in state space 
form, without the delay. The discrete event part 
is determined with the index of performance 
what is a natural criterion for optimal control. 
 
In this paper the next results are established  
 

(i) Equilibrium point 0=x  of the hybrid 
system is exponetially stable in 
Lyapunov sense 

 
(ii) Performance of hybrid control systems 

is no worse then the best non-switching 
strategy 

 
2. DISCRETE MODEL FOR PROCESS 

WITH TIME-DELAY 
  
We will consider continuous-time state variable 
model that includes a delay in control action.The 
state equation is  
 
( ) ( ) ( )τ−+= tGutFxtx 11 ,  (1) 

 
where τ   is a delay in the system. In this paper 
we will consider the discrete-time version of 
system (1). It is supposed that τ  is not equal to 
integer multiple of sampling periods. Instead 
that we will separate the system delay τ  into an 
integral number of sampling periods l  and a 
positive number m  less then one such that  
 

mTlT −=τ  (2) 
 
Wher T is a sampling period and 
 

1>l ,  10 <≤ m  (3) 
 
For such case discrete model is [11] 
 
( ) ( ) ( )kbukAxkx +=+1  (4) 

    
where     
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( ) ( )lkukxn −=+1 , 

 
( ) ( )12 +−=+ lkukxn  , …,  

 
( ) ( )1−=+ kukx ln  

 
( ) Faea =Φ  

 

( ) σψ σ de
a

a
a

F∫=
0

1  

 
( ) ( ) ( )mTmTmTT ψΦ−=Γ1  

 
( )mTmTψ=Γ2  

 
Remark 1. The discrete model (4) of the process 
is very general in ratio to description of process 
time delay. One can see that time delay 
increases the dimensions of vecrors and matrices 
in the model. When fraction part of the delay 
equal to zero then matrix 02 =Γ  
 
 
3. DESCRIPTION OF TIME-DELAY 

SYSTEM BY MULTIPLE  MODELS 
 
In this part of paper we consider multiple model 
description of processes with time-delay. It will 
be assumed that the process model is a member 
of admissible process models 
 

pp
U FF

P∈
=  (5) 

 
where P  is matrix index set which represents 
the range of parametric uncertainty so that for 
each fixed P∈p  the subfamily pF  accaunts 
for unmodeled dynamics. Usually, P  is 
compact subset of a finite-dimensional normed 
linear vector space [15]. 
 
In this paper we will suppose that process with 
time delays for large class of structured 

uncertainty can be described with collection of 
linear time invariant systems which have the 
form of relations (4) 
 
( ) ( ) ubkxAkx pp +=+1  (6)  

sp ,....,2,1=   
 
where lnRx +∈  and 1Ru∈  are state and control 
signal of the system respectively. 
 
Relation (6) describes the continuous part of 
system. The event driven part can be dscribed in 
the next form 
 

( ) ( ) ( )( )ttptp σϕ ,=+  (7) 
 
where ( )tp   is discrete event variable, ( )tσ   is a 
discrete input and ( )⋅⋅,ϕ  is a function which 
describes behaviour of ( )tm . It is important to 
note that 
 

( ) ( )1+
+ = nttp   ,  ( ) ( )ntptp =   , 1+< nn tt  (8) 

 
Specific form of switching sequence will be 
described in the next part of the paper. 
 
Remark 2. In [6] continuous-time model with 
unmodeled dynamic is considered  
 
( ) ( )( )( ) ( ) ( )( )( ) ( )tutBBtxtAAtx mmmm ωω ∆++∆+=

 
 
where uncertainty vector ( )tω  is Lebesque 
measurable and within an allowable bounding 
set pR∈Ω  for all [ ]∞∈ ,0t .The switching 
sequence has a more complex form then in this 
paper. 
 
Remark 3. Generally, logic part of the system 
can be described as a automata or Petry net [5]. 
If the analysis and design of the hybrid system is 
based on theory of discrete event system the 
main tool is: representation theory, supervisory 
control, computer simulation and verification. In 
this paper we will consider hibryd system from 
the clasical control theory point of view and in 
that case hybrid dynamic system can be 
interpreted as a switching control between 
analog feedback loops. 
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4.  THE SWITCHING CONTROLLERS 
 
Generally, no single controller is capable of 
solving the regulation problem for the entire set 
of process models (5). Owing that we will use 
the family of controllers [24] 
 
{ }D∈qCq :  (9) 
 
where D  is index set. It supposed that this 
family is sufficiently rich so that every 
admissible process model can be stabilized by 
controller qC  for some index  D∈q . In this 
paper will be considered the case 
  

DF =  (10) 
 
The members of family qC  are LQ controllers 
with prescribed degree of stability. Performance 
index for such controllers is 
 

( ) ( ) ( )[ ]∑
∞

=

− +=
ik

Tk
i krukQxkxJ 22λ  (11) 

 
where ( ]1,0∈λ  is degree of stability. For fixed p 
optimal controller is dermined with the solutione  
of the next equation [2] 
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Optimal analog control law is 
 

( ) ( ) ( )kx
rbSb

ASb
ku

p
T

pp
T

+
−=
λ

 (13) 

p = 1,2, …, s 
 
Optimal performance for criterion (11) and 
control law (13) is  
 

( ) ( ) ( )ixQSix p
Ti −−  2λ  (14) 

 
The discrete feedback is 
 

( ) ( ) ( ) ( ){ }kxQSkxkp p
Tk −= −+  minarg 2λ  (15) 

 
Remark 4. The control law (15) is more complex 
when in the continuous part of the system exists 
unmodeled dynamics. In that case switching 
from event p to event p1 will be decided only if 

the worst case performance for the system p1 is 
better then the best performance for system p [6] 
 
Remark  5.  Control law which is determined 
with relations (13) and (15) can be interpreted as 
supervisory control [24]. Instead of multi 
estimstor in original formulation of supervisory 
control, in this paper is used matrix Sp which is 
relevant for index performance calculation. 
 
Remark 6. The control of uncertain dynamic 
system, in the presence of input saturation, is 
considered in [10]. The uncertaintes satisfay the 
matching conditions. Robust controller is based 
on combination of switching ( picewise linear 
LQ controller), high-gain (which is incorporated 
by multiplying the gains of switching 
contrrollers with a scaling factor) and 
oversaturation. It is shown, using picewise 
quadratic Lyapunov functions, that the uncertain 
system can be exponentially stabilized.   
 
 
4. ASYMPTOTIC LYAPUNOV 

STABILITY OF SWITCHED SYSTEM 
 
It this part of the paper we will prove that multi 
model system (6) and (8)  under the feedback 
(13) and (15) is asymptotically stable in the 
Lyapunov sense. Results are formulated in the 
form of theorem. 
 
Theorem 1. Let us suppose that for hybrid 
systems (6) and (8) and hybrid controller (13) 
and (15) is satisfied 
 
1° Matrix Q is positive definite and 0>r    
               
2° For fixed  p-th subsystem, couple 
 
 [ ]b  , 1

pA−λ  
 
 is completely stabilizable 
 
3° For fixed  p-th subsystem, couple 
 

 [ ]pp DA   , 1−λ   , QDD T
pp =  

 
 is completely detectable 

 
4° For arbitrary switching   sequence   index of  

performance is bounded, i.e. for ∀ t 
 
  η≤iJ   ,  ( )∞∈ ,0η  
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Then 
 
(i) The equilibrium point 0=x   of hybrid 

system is exponentially stable in 
Lyaponov sense 

 
(ii) The performance of hybrid system 0J  is 

never worse then the performance of 
non-switching  LQ controller, i.e.  

 
00 η≤J  

 
              whereby for fixed p-th subsystem is 

 
( )( ) ( ){ }00min0 xQSx p

T −=η      
 
Proof:  Let us introduce the next transformation 

 
( ) ( )kxkx k−= λˆ  (16) 

 
( ) ( )kuku k−= λˆ  (17) 

 
 Relation (6), (11) and (13) will take the form 
 

( ) ( ) ( )kubkxAkx p ˆˆ1ˆ 1
.

+=+ −λ  (18) 
 

( ) ( ) ( )kx
rbSb
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p
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pp
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ˆˆ
+

−=
λ

 (19) 

 

( ) ( ) ( )[ ]∑
∞

=

+=
ik

T
i kurkxQkxJ 2ˆˆ ˆ  (20) 

 
From condition 4° of theorem follows 
   

( ) ( )∑
∞

=

≤
ik

T kxQkx ηˆ ˆ  (21) 

 
and using condition 1°  of theorem we have 
 

( ) { }∑
∞

=

=≤
0

1
min

2ˆ
k Q

kx η
λ

η  (22) 

 
From relation (18) and (19), for p-th closed-loop 
subsystem, we have 
 

( ) ( )kxAkx p ˆ~1ˆ =+
⋅

 (23) 
where 

( )rbSb
ASbb

AA
p

T
pp

T

pp +
−=
λλ

1~  (24) 

 
and using condition 3° of theorem one can 
conclude that subsystem (23) is asimptotically 
stable.  
Hence, all eigenvalues { }pj A~λ  of pA~  are inside 
unit circle. 
 
From relation (23) follows 
 

( ) ( ) ( )0ˆ ~ˆ xAkx k
p=

⋅
 (25) 

 
Let us introduce 
 

{ } ~  max
,...,1 pjspp Aλσ

=
=  (26) 

 
It is possible to finde a constant 0>pc  such that  
 
( ) ( ) ( )0 ˆ xckx k

ppσ≥  (27) 
 
Let us define 
 

sp ,...,1
max
=

=σ    0>pσ  (28) 

 

sp
c

,...,1
min
=

=    0>pc  (29) 

 
Then 
 
( ) ( ) ( )0ˆˆ 2 xckx kσ≥  (30) 

 
From (23) we have 
 

( ) ( ) ( )ixAkx
ik

p ˆ~ˆ −⋅
=  (31) 

 
and then 
 
( ) ( ) ( ) ( ) 222 ˆˆ ixckx ik−≥ σ  (32) 

 
Suppose that for some k > 0  
 

( )
( )2

1

1
ˆ

σ
η
c

Mkx
+

>=  (33) 

 
We have according with the (30) and (33)  
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From (22)  and (34) follows 
  

( )2
1

1 σ
η
c

M
+

≤  (35) 

 
This contradicts the hypothesis (33) and we 
conclude that 
 

( )
( )2

1

1
ˆ

σ
η
c

kx
+

≤  (36) 

 
Since the right hand side, in relation (36), is 
independent of  k , we have 
 

( )
( )2

1

1 σ
η
c

kx
+

≤
∞

 (37) 

 
For LQ problem 1η  is bounded by 
 

( )
{ } 0   ,   
0ˆ

1
min

2
1

1 >∃≤ c
Q

xc
λ

η  (38) 

 
and we have from last two relations 
 

( )
{ } ( )[ ] ( )0ˆ

1
ˆ

2
min

1 x
cQ

ckx
σλ +

≤
∞

 (39) 

 
and according with last relation 
 

( ) 0ˆlim =
∞→

kx
k

 (40) 

 
Having in mind relation (16) we can write  
 

( ) 0lim =−

∞→
kxk

k
λ  (41) 

 
and so the first statement of theorem is proven. 
 
Let us introduce  
 
( ) ( ) ( ) ( )krukQxkxkT T 2+=  (42) 

 

Let us suppose that the sequence of discrete 
state 
 

( ){ } 0  ,  ...1,0  ,  0 === tjtpp j  (43) 
 
where jt  is integer multiple of sampling period. 
The fixed switching sequence is 
 

( ) ( ) ( ){ } 0  ,    ,  ...,0 1 >∃= Ntptppp NN  (44) 
 
and index of performance, according with (11) 
and (42)  
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From switching criterion (15) follows 
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From last two relations we have 
 

( ) ( )

( ) ( )( ) ( ) ( )

( ) ( )

( )( ) ( )1

1
22

0

2

22

0

2

1

1
1

2

1

1

1

1

...

−

−
−

=

−

=

−

−

=

−

=

−

−⋅

⋅++⋅⋅⋅

+=−⋅

+++≤

−

−
−

−

−

−

∑

∑

∑∑

Ntp

N
Tt

t

tk

k

t

k

k
NtpN

T

t
t

tk

k
t

k

k
N

txQS

txkT

kTtxQStx

kTkTJ

N

N
N

N

N

N
N

N

λλ

λ

λλλ

(47)  

 
 
Using same procedure we finally have 
 

( ) ( )( ) ( ) 00 00 η=−≤ xQSxJ p
T

N  (48) 
 
and from that follows 

0lim η≤=
→∞ NN

JJ  (49) 

 
Theorem is proved  
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Remark 7. In [6] in the model description the 
analog uncertainty is considered. The proof of 
hybrid system stability, for that case, is different 
from above theorem. The proof is based on 
performance dominant condition 
 

( ) ( ) ( ) ( ) ( )( )
( ) ( ) ( ) ( )( )krukQxkxkkxc

krukQxkxkkubkxA

Tk

Tk
pp

22
2

22
1

+≤+

++≤+

−

−

λ

λ
 

 
The alternative approach, based on LMI tool, is 
proposed in [9]. 
 
 
5. CONCLUSION 

 
In this paper the problem of design of hybrid LQ 
contrroller for systems with time-delay is 
considered. It is separeted time-delay into an 
integral number of sampling periods and 
fraction part of sampling period. Such model 
covers the systems with arbitrary time-delay. 
Switching strategy is determined using index of 
performance. For uniformly bounded index of 
performance the switching controllers garantee 
stability of feedback sytem. Also, it is shown 
that performance of hybrid control systems is no 
worse then the best non-switching strategy.  
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