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Abstract: The paper presents a computational oriented overview on the rational
interpolation problem with passive (positive real) constraints. The numerical difficulties
associated with the standard rational interpolation procedures are discussed. Some
numerical tricks to improve the numerical accuracy of the computed results are
proposed. Possible applications to model order reduction for continuous (and, by using
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a simple bilinear transformation, of discrete) linear systems are sketched.
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1.INTRODUCTION

Our paper deds with the general rationa
interpolation problem in the case when an
additiond goal is imposed, namely the
computed rational matrix must be positive real.
By using the well-known positive real lemma
(sce (Anderson and Vongpanitled, 1973),
(Hodaka et al., 2000), (Sun et al., 1994)) this
congtraint is transferred to an adequate LTI state
space model. Thus, the well known condition
for the solution existence, expressed as the
positive definiteness of a corresponding
Lyapunov equation solution (Pick matrix in
SISO case), is easly obtained. Also, this
approach alowed us to develop a concise and
reliable numerical agorithm to solve the
problem.

The paper is organized as follows. In section 2
the genera rationa interpolation problem is
briefly presented. The positive real constraint in

passivity,

model order  reduction.

the continuous time setting and the
corresponding  feasibility  conditions  are
presented in section 3. Section 4 is devoted to
the main numerica procedure to solve the
problem and the section 5 contains a detailed
algorithm which makes our approach efficient
and reliable. The discrete time case is
consdered in section 6; in fact, al the
computational procedures apply as such in this
setting, possible after a bilinear transformation
on the system data is performed. Some remarks
concerning related topics and directions for
future work conclude our presentation.

2. RATIONAL INTERPOLATION
PROBLEM

To begin with, we shall give a concise statement
for the genera rationa interpolation problem
concerning a MIMO transfer matrix represented
by a state space model. In short terms, we seek a
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n-th order linear sysem S=(A B,C,D),
with  a |"m proper transfer matrix
G(s)=C(s - A'B+D, such that the
following (dynamic) cover conditions (see

(Wonham, 1974), (lonescu and Popeea, 1986))
aresatisfied

LW =WA+ HC, D
G =WB + HD, )
wheretypically
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from (1) itresults | W' =w" +h'C,i.e
vi=h"(,1- A" i=1:N ©)
and (2) gives
g" =w"B+h"D=h"|C(I |- A*B+D|

Therefore (1) and (2) are equivaent to the so

cadled (N -point) left tangentia rationa
interpolation problem
h"G(l,)=g", i=1:N. @

Remark 1. By duality, the following well-known
observer (or dual-cover) conditions are

obtained

VL = AV + BH, (5)
G=CV +DH, (6)
where

g, 0 - 00
e u
L 280 1 04
er +
e u
a0 O I v
and
H:[Ul u, - UN]’

G=[g, 9. - gl

are given (complex) N N, m" N and,
respectively, |~ N matrices such that the pair
(H,L) isobservable. By letting

V:[vl v, e VN],
from (5) it results
v, =(,1- A *Bu;, i=1:N, )

therefore (5), (6) reduce to a (N -point) right
tangential rational interpolation problem having
theform

G(l)u =g;, i=1:N. 8
Obvioudly, the same equations (5), (6) describe
the steady state response of the linear system
S=(A B,C,D) toapersistent input

N
ut)=a ue'",
i=1
(see (Jora et al., 1996)). Also, putting H = FV
and writing (5), (6) as
VL =(A+BF)V,
G=(C+DF)V,
the well known equations for modal assignment
by state feedback are obtained.

Remark 2. Inthe 90 casg, i.e. m=1 =1, by
taking h, =1 and/or u, =1 in (1)-(4) and (5)-
(8 respectively, the classical rational
interpolation problem is obtained, which
consists of finding the transfer function G(s)
such that

G(l;)=g;, i=1:N, 9
for a given set of interpolation points

={0g)|i=tNg i

3. RATIONAL INTERPOLATION WITH
DISSIPATIVITY CONSTRAINTS

Let us consider the rationa interpolation
problem defined by (1), (2) where L is anti-

stable (Rel ; > 0) and additionally S must be
passive, i.ee m=1 and
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1. G(s) isandyticinRes>0,
2. G(s)+G'(-9)3 0, foral < suchthat
Res>0.
According to the postive rea lemma, the
following LMI
éA"P+PA PB-C" U
€ _nu L UEO, P>0
aB"P-C -(D+D")g
(10)

must be feasible. For simplicity we shall take
N=N and W =1 in (1), (2), hence
A=L - HC, B=G- HD, (11
and consider two cases.

a) If D =0 then B=G and from (10) it results
C=B"P=G"P

and

(L- HC)"P+P(L-HC)EOQO, P>0.
The quadratic matrix inequality

L"P+PL - PGH"P- PHG"P£0. (12
reduces to the linear one

LQ+QL" - (GH" +HG")£0,

where Q=P therefore the following
Lyapunov equation
LQ+QL" =GH" +HG" (13)

must have a positive definite solution Q >0.

Conversdly, if (13) has a (unique) solution
Q >0 then thelinear system

A=L - HC, B=¢G,

C=G"Q", D=0

is (loseless) positive real and satisfies the
interpolation conditions (1), (2).

(14)

Remark 3. In the 90 case, when G and H
are column vectors, we can take (see Remark 1)

H=[1 1 1]" and the matrix Q is the
Pick matrix P given by
égl+@ gl-'-gnltJ
gty litTog
=a S0 (15)
egn-l-gl gn+gn[;|
&, +, |+, 0

b) Now lee D be any matrix such that
D + D" > 0; inthis case (10) is equivaent to

A"P+PA+
+(PB-C")YD+D")*(B"P-C)<0 (16)
where, in order to satisfy (1), (2), the pair
(A,B) is given by (11). With little insight we
shall teke

C=(DH" +G")P o
and after some simple algebraic manipulations
the same necessary and sufficient condition

Q >0 is obtained, where Q = P™* is given by

(13). Clearly, if D=0 then (11) and (17)
reduce to (14), therefore by continuity (11) and
(17) ae vdid for any D such that

D+ D" 3 0. In fact, we can take D = G(¥)
if the vaue of G(s) in the additional
interpolation point | ,, =¥ isknown.

4. COMPUTING PROCEDURE

Let the lower triangular N° N matrix M bethe
Cholesky factor of the positive definite matrix

Q.,i.e Q=MM" . From (13) we have

LMM " + MM"L" =GH" + HG" (189
and, by left multiplying with M ™' and right
multiplyingwith M " | (18) becomes

L+L" =GH" + HG" (19)

where

L=MIM, G=MG, H=M'H.
(20

From (11) and (17), where P = Q"*, we obtain
A=M"LM- M*HCM =L - HC,
B=M"'G- M"'HD =G - HD,
C=(DH" +G") MM ") M =

=DM *H)" +(MG)" =DH" +G",
D=D.
Therefore we can compute a passive linear
system whose transfer matrix interpolates the

given data by using the following numerical
procedure.

Algorithm 1. Given the (complex) numbers |
i =1:n, and (complex) n” | matrices H and
G, the algorithm computes (if a solution exists)
apositive real linear system S = (f&, B.C, 5) ,
a lower triangular matrix L and the matrices
H and G , such that the (cover) conditions (1),
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(2) are satisfied for W =1_,ie L = A+HC,
G=B+HD.
1. Compute the solution Q of the
Lyapunov equation (13).
2. if Q isnot positive definite
1 print The problem has no
solution’

2. return
3. Compute the Cholesky factor M of Q.

4. Compute the transformed data L,G,
H according to (20).

5. Take D suchthat D+ D" 3 0.

6. Compute the positive real linear system
A=L-HC, B=G-HD
C=DH" +G", D=D.

Remark 4. If in the above algorithm we take

D =0, then a loseless positive real system is
obtained such that

A"P+PA=0, PB=C",

see (10), i.e.

A" +A=0, B=C".

To sum up, by using the agorithm 1, the

interpolation conditions are satisfied and the
computed system is positive real for all D such

that D+ D" 3 0. The system can be written as
x(t) =|C - A(DA" +G*)x@) + (G- AD)u(t)
= Ix(t) + Gu(t) - H|(DA™ +G")x(t) + Du(t)|
y(t) =(DH +G")x(t) + Du(t) =

=G x(t) + D(u(t) + H"x(t)).

5. COMPUTATIONAL DETAILS

We now present some details for an accurate
implementation of the first four statements of
the above agorithm. The best method to check

if the matrix Q is positive definite is to see if

the Cholesky factorization Q =MM " can be
caried out to completion. For obvious
numerical reasons, we will avoid the explicit
computation of the matrix Q (in the SISO case
of the Pick matrix).

Instead we shall compute the Cholesky factor
M directly from the given data. To do this, let

denote A, =L, and observe that from (18),
written as

AMM™ +MM P A =GH"™ + HG", (21
the equality for the (1,1) entries gives

— 4=
l lrnlzl+rnlzll 1= a (gljhlj +hlj O )-
j=1

If Q ispositive definite then

|
]

a Re(g;hy)
a :]:l— >0

Rel ,
and, hence, m, is a postive real number given
by
m, =+a.
Conversdy, if a £0, the matrix Q is not
positive definite.

The equality (21) for (i,]), i =2:n entries of
the above matrix equation gives

|

o N —

a (g;hy; +1,qy)

_ 7 C_ 5.
m, = — , 1=2:n.
m, (1 +1)

We have computed the first column of the
Cholesky factor M .

Now, to compute, in the same manner, the
second column of M, let transform the
equation (21) in
P.(AP'PMM ™ + MM "R " AR =

=R (HG" +GH")R",
or
A1|v|l'v|1H + MlMlHA& = H1(31H +GlH1H7
where
A =RAPR', M, =RM,
H, = RH, G, =RG,
and P =1_- pe/, isagaussan dementary
lower triangular transformation such that
(EM)(i,D) =0, i=2:n,

i.e. the column vector p, is defined by
=0 py o Pl with
P, :ﬂ, i=2:n.

My,

Because M and P and P =1+ pg are

triangular, the matrices A and M, have the
structure
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é 0 u
A=g I
& A@:n2:n)
€ 0 )
M u

T8 M@:in2:n¥

with ©  denoting generic nonzero entries.

Hence, retaining only the block (2:n,2:n)
equdlity of (25), we have

ANMM " +MMPAY =HG" +GH", (26)
where we have denoted

A =A(2:n2:n), M=M(2:n2:1),

H = H,(2:n,:), G =G,(2:n,:).

This equation is structuraly identical with (25)

but of less order n- 1. So we can compute, in
the same manner as above, the first column of

M which is the nonzero pat of the second
columnof M.

By obvious induction arguments, we can
continue the procedure to finally compute the
Cholesky factor M and the lower triangular

matrix A,_,, the diagonal matrix M, and the
matrices H,,_;, G,.; which satisfy
A1—1M n—1Mr:-I—1 +M n—lM r:-—IlArl':l =

= Hn—lGrl:l + Gn—le::l’ (24)

where

A ,=PAP*' M_,=PM=dag(M),
H,,=PH, G, , =PG,

and P isaunit lower triangular matrix given by

P= Pn-l"'Pzpl-
where
P —élk‘l 0 l;l
=a ,
&0 R¥y

with P® the (n- k+1)" (n- k+1) gaussian
transformation matrix used at the step K .

We can go further and compute a lower

triangular matrix A and the matrices H and G
so that the Lyapunov equation

AQ+QA" = AG" +GA™,

hasthe solution Q=1 ,i.e.
A+AM = 1G" +GA".

To do this, observe that if
D=M,, =dag(M),

then

A=D"'A D,
H=D'H_,, G=D'G_,.
Hence

i,j)m.
é:ij :M’ i=1.n, j=1:i,

m;
= _H,.,(,))
h, _rln—

i, i=1:n, j=1:I.
~ _ G, (i,J) :
g =

m;

Usng the array A for the matrices A,

k=0:n-1land A andthearays H and G
for the matrices H, , G,, k =0:n-1and H,

G, the computations are as follows.

Algorithm 2. Given the set {I,,1,,...,1 .}

andthe n” | matrices H and G, the agorithm
computes the Cholesky factor M of the

solution Q of the Lyapunov equation (13) if the
matrix Q is postive definite. Otherwise an
error message is furnished. Also, the algorithm
computes the lower triangular matrix

A=~ A=M tdiag(l,,!,,...,| ,)M
and overwrites
H- H=M'H,G- G=M"G.

1 fori=1:n
1.for j=1:n
1a;=0.
2.q; =1,
2. fork=1:n
Re(g,h))

j=1

Qo-

l.a=
Rel

2.ifa <0
1. print Thematrix Q isnot
positive definite.'
2. return

3m, =a
4.fori =k+1:n
I _
a (g;h, +h.3,)
j=1
m, (I, +1,)

k

1.m, =
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m
2.t = —%

My
3.8, =-tl,
4.for j =1:Kk

1. a; = a; +taN.
5.for j =1:1
1. h; =h; +th,

2.9; =g, ttgy
3.fori=1:n
1 for j=1i-1
1.a. :m

ij m.

2. for j =1:1

9
2.9; :m_J

It is clear that this agorithm implements in a
concise and reliable computational manner the
first four statements of the rational interpolation
procedure given in section 4. We have
performed alot of numerical experiments which
confirm the good performances of al the
proposed procedures.

6. DISCRETE CASE

In this case the main computationa procedure
remain vaid if the discrete time system
S=(A B,C,D) is converted to a continuous
one, by wusing the wel known bilinear
transformation.  Also, the computational
improvements presented in section 3 have
obvious correspondents.

7. CONCLUDING REMARKS

The  numerica  results confirm  our
computational oriented approach to the rationa
interpolation with passivity constraints. The
direct computing of Cholesky factor and the
other numerical improvements significantly the
results accuracy.

The future author's investigations will be
oriented on the possble applications of the

rational interpolation problem, such as linear
systems order reduction.
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