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Abstract: One of the main problems of Smith predictor control of time-delay 
processes is, that it does not handle the disturbances, especially in case the process 
has an integrator. In this case, the Smith predictor is not able to reset the steady state  
error. In this paper a modified Smith predictor control based on a variable structure 
algorithms for nominal controller and an approximate model for process is 
proposed. It is shown that the proposed method can assure the robustness of system 
even in presence of dead-time uncertainty. 
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1. INTRODUCTION 

A time delay system is a special case of infinite 
dimensional system which has an infinite 
number of poles. The easiest way to control 
time-delay system is to remove the effects of 
delay elements so that the well-developed 
control techniques for finite dimensional 
systems can be applied. 

A predictor that generates future outputs of the 
process is usually employed in the feedback loop 
of delay compensation in order to cancel the 
effects of delay. The Smith predictor is one of 
the most widely-used delay compensation 
methods based on the concept (Marshall, 1979). 
In this case, the model of the process is 

incorporated in the controller to predict the 
effects of the actual process output. As a result, 
time-delay is eliminated from the characteristic 
equation of closed-loop system and thus the 
controller can be designed without considering 
time-delay. 

Conventional design methods for delay-free 
systems are directly applicable and the output 
responses after the delay duration can be 
adjusted as desired. 

In practical control systems, there exists 
inevitable disturbances and modeling error. They 
affect the prediction of the effect of the current 
control actions. Though the Smith predictor 
offers potential improvement in  the closed loop 
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performances over the conventional controllers, 
it suffers from a sensitivity problem. In the face 
of inevitable mismatches between the model and 
actual process, the closed loop performances can 
be very poor (Marshall, 1992). A lot of work has 
been done in relations to the robustness issues of 
the Smith predictor system. For example, 
(Santacesaria, 1993) presented a simple criterion 
for the tuning of Smith predictor when the time 
delay is not precisely known; (Dumitrache et al., 
1998) developed a compensation procedure  of 
time-delay and time-constant uncertainties based 
on mismatched model.  

A further problem is, that Smith predictor does 
not handle the disturbances, especially in case 
the process has an integrator. In this case, the 
Smith predictor is not able to accommodate a 
load disturbance on the process input. In fact, it 
can be proved that in steady state the ratio 
between the process value and the load 
disturbances is proportional to the model gain 
and time delay. This means that the integral of 
the load disturbance will not be compensated; or 
in other word, that the controller is not able to 
reset the steady state  error. To improve the 
steady state  characteristics of Smith predictor 
control, several modified Smith predictor control 
have been  introduced  (Watanabe, 1981, 
Weidong, 1996).  

This paper is organized as follows. In the 
following section the assessment of the 
achievable performance of classical Smith 
predictor is formulated. In the third section the 
proposed structure is presented. The robustness 
is discussed in section 4, and concluding 
remarks are presented in section 5. 
 
 
2. SMITH PREDICTOR CONTROLLER 

 
The most usual models for slow and very slow 
processes are: 
 

1
)(1 +

=
−

sT
ek

sH
P

s
P

τ

                                   (1) 

)1(
)(2 +

=
−

sTs
ek

sH
v

s
v

τ

                       (2) 

sv e
s

k
sH τ−=)(3                                 (3) 

Fig. 1 shows a control block diagram using 
Smith predictor method.  
 

 
 
 
 
 
 

 
 

Fig.1. Classical Smith predictor control structure 
 
If we consider the transfer function model of the 
process: 
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where )(' sH p  is strictly proper, stable, and 
rational function, the Smith predictor controller 
transfer function is 
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where )(' sHR  represents the controller designed 

for )(' sH pm only (i.e. the process without time-
delay). 
 
If the model and the actual process are identical, 
i.e. 
 

)()( '' sHsH pmp = , ττ =m  
 
the control structured illustrated in fig.1 leads to 
the closed-loop transfer function: 
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which shows that the time-delay is decoupled 
from the control-loop. 
For the controller )(' sHR a conventional design 
methods (Wang, et al., 1997) based on delay-
free part of process model is used: 
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The corresponding control algorithms for the 
models taken into account are: 

- for process 1 a PI controller with 
p

p
R k

Tk
k 0=  

and pi TT = ; 

- for process 2 a PD controller with 
v

R k
k

k 0=  

and vd TT = ; 

- for process 3 a P controller with 
v

R k
k

k 0= . 

 
Assuming that disturbance signal affect on the 
process input the closed loop function for exact 
model matching is as follows: 
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Note that the transfer functions ( )sHom  and 

( )sHov  have the same characteristic equations. If 
the plant is asymptotically stable (process type 
(1)) and the controller has an integrator (PI) with 
a good process model ( ( ) ( )sHsH PmP = ), the PI 
controller can be tuned as it would be for a 
process without a time delay. Even in presence 
of parametric uncertainty, with methods 
presented in (Dumintrache and Mihu, 2000) the 
robustness is preserved. In Fig. 2 it is shown the 
setpoint and disturbances step responses for 
process (1) and PI controller tuning according 
procedure presented in (Dumitrache and Mihu, 
2000).  

 
Fig. 2. The step setpoint and disturbance response of 

system 1 
 
As we can see the robustness is preserved in 
presence of dead-time uncertainty. 
 

It must be emphasized that in case the process 
has an integrator the steady state error is not 
zero, even the controller has an integrator.  
 
The equation (9) is rewritten as: 
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For the plant described by (3) and a PI 
controller, the term ( ) ( )[ ]s

PP esHsH τ−− ''  from 
equation (10) when 0→s  becomes: 
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From this results: 
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That implies the disturbance steady state error is 
nonzero. More, it could be demonstrated 
(Watanabe, 1990) that the feedback  control 
system is internally instable. 

 
 

3.  THE MODIFIED SMITH PREDICTOR  
CONTROLLER 

 
In order to stabilize the control system and to 
obtained disturbances steady state error an 
approximate model is adopted (Astrom, 1993), 
i.e. 
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The transfer function ( )sH v0  (from (10)) 
becomes: 
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With a PI nominal controller ( ( )sHR

' ), when 
0→s : 
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The step setpoint and disturbance responses are 
presented in Fig. 3. 
 

 
 

Fig. 3. The step setpoint and disturbances response 
 
The steady state error is zero, but the transient 
performances are very poor. 
 
In order to improve performances, both to the 
references and disturbances, we consider for 
nominal controller a variable structure, as shown 
in Fig. 4. 
 
 
 
 
 
 
 
 
 
 

Fig. 4. The variable control structure 
 
The two controllers in the control structure are 
considered as follows: 
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and 
 

( ) RR ksH =' .                             (15) 
 
The variable control structure was designed 
considering that the dominant exogen variable is 
the disturbance. 
 
The variable control structure works as follows: 
- the P controller ( ( )sHR

' ) is connected until 
the system reaches a nominal regime; 

- when the nominal regime is reached, the PI 
controller ( ( )sHRv ) is connected to assure the 
disturbance rejection. 

 
In Fig. 5 is presented the step setpoint and 
disturbance response for the proposed variable 
control structure. 
 

 
Fig. 5. The time domain response of the proposed 

control structure 
 
We can see a considerable improvement of the 
performances comparing with modified Smith 
predictor with approximate model proposed in 
(Astrom et al., 1993). 
 
Taking into account the possibility to develop 
application programs, it is not a problem to 
realize software such a variable control structure 
and to assure no wind-up when switching 
between the two controllers. 
 
 
4.  THE ROBUSTNESS OF THE CONTROL 

SYSTEM 
 
First we consider the robustness with regard to 
the setpoint, i.e. the Smith controller structure 
with nominal controller of proportional type. 
 
In order to provide robust stability, the necessary 
and sufficient condition is  
 

1)()( <ωηω jjLM                        (16) 
 
where LM(s) represent the multiplicative 
uncertainty and )( jωη is named the 
complementary of the sensit ivity function. In the 
case of modified Smith predictor control system: 
 

)()( 0 jHj m ωωη = . 
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For process (3), LM(s) is: 
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As shown in Fig. 6, the condition (16) is 
fulfilled, not only for the time delay matching (--
), but also for dead time uncertainties (++). The 
numerical values are: 1.0=Rk , 1== vmv kk , 

2=δ , 5=mτ , 7=τ , 5=a . 

Fig. 6. The robustness characteristic 
 
For robust stability with regard to disturbances 
in presence of dead time uncertainties, we 
consider the Nyquist plot of the open loop 
transfer function: 
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with ( )sHRv  from relation (14) and ( )sH p

'  from 
relation (3). 
 
In Fig. 7 is presented the Nyquist plot of the 
above open loop transfer function. 
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Fig. 7. The Nyquist plot for dead time model match 

 
The numerical values of the parameters are: with 
the following numerical values for the 
parameters: 1.0=Rvk , 20=ivT  1=vk , 

05.0=vmk , 0=δ , 5== mττ , 5=a . 
 
The Nyquist plot of the open loop transfer 
function in presence of dead time uncertainties 
( 2=−= mττδ ) and for the same numerical 
values of the parameters as before is presented in 
Fig. 8. 
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Fig. 8. The Nyquist plot with dead time uncertainties  
 
We can see that in the presence of dead time 
uncertainties the stability reserve, i.e. AM  and 

ΦM , is preserved. 
 
From time domain response of the control 
system shown in Fig. 9, it can be seen that in 
presence of dead time uncertainties the dynamic 
performances are slightly different compared 
with the response in the case of dead time match 
(Fig. 5). 
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Fig. 9. The time domain response of the proposed 
control system in presence of dead time incertainties 

 
 
5. CONCLUSIONS 
 
This paper proposes a variable control structure 
for time-delay process based on modified Smith 
predictor controller. The proposed structure 
offers substantial improvement in the closed 
loop performances over the conventional Smith 
predictor. 
 
It was shown that the proposed method can 
assure the robustness of the control system with 
regard to disturbances, even in the case when the 
process has an integrator. It should be mentioned 
that the program application must realize the 
control signal equilibration when switching from 
a controller to another. 
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