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Abstract: The aim of this paper is to investigate a control framework for mobile robots, operating 
in shared environment with humans. The Intelligent Space (iSpace) can sense the whole space and 
evaluate the situations in the space by distributing sensors. The mobile agents serve the inhabi-
tants in the space utilizes the evaluated information by iSpace. The iSpace evaluates the situations 
in the space and learns the walking behavior of the inhabitants. The human intelligence manifests 
in the space as a behavior, as a response to the situation in the space. The iSpace learns the be-
havior and applies to mobile agent motion planning and control. This paper introduces the appli-
cation of fuzzy-neural network to describe the obstacle avoidance behavior learned from humans. 
Simulation results are introduced to demonstrate the efficiency of this method. 
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1. INTRODUCTION 

The Intelligent Space (iSpace) is a space (room, 
corridor or street), which has ubiquitous distrib-
uted sensory intelli-gence (various sensors, such 
as cameras and microphones with intelligence) 
actuators (TV projectors, speakers, and mobile 
agent) to manipulate the space [1], [3]. 

The iSpace propagates mobile robots in the 
space, which act in the space in order to change 
the state of the space. These mobile robots are 
called mobile agents. Mobile Agents cooperat-
ing with each other and core of the iSpace to 
realize intelligent services to inhabitants. The 

intelligence in iSpace has capability of evalua-
tion of situations inside the space [2]. The 
evaluated situations are applied for learning the 
behavior of inhabitants. The evaluated behaviors 
are given to the control system of mobile agent. 
There are many definitions of the intelligence. 
The intelligence can be considered as a reaction 
against a given action.  

Behavior is a generalized mapping between 
situations (state of the space) and actions. But 
the intelligence is also means capability of learn-
ing. The iSpace integrates both types of defin i-
tions. Inhabitants in the iSpace are producing 
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intelligent reactions against instantaneous situa-
tion. 

The iSpace evaluates situations (actions-
reactions) from sensed information [4]. The 
evaluated situations are given to the learning 
system, where behaviors are concluded from 
situations. The mobile agents serve the inhabi-
tants in the space utilizes the evaluated informa-
tion by iSpace [5]. The mobile agents have sen-
sors and/or actuators with computational devices 
and computer network communication capabili-
ties. The iSpace senses the space and acting in 
the space. The sensing is done through distrib-
uted sensory network, and the acting is done by 
global actuators like projectors or speaker sys-
tems, or by local actuators like mobile agents. 

The mobile agents can sense the space and can 
act in the space locally. 

The personal communication between the iS-
pace and a certain individual is an example for 
local sensing and acting. iSpace intelligence of 
the motion planning and control are based on 
learned human behaviors. The human behaviors 
are extracted from the space by sensor system of 
iSpace. The pedestrian walking behavior in-
cludes many parts like planning activity, obsta-
cle avoidance and walking pat-tern. This paper 
focuses on obstacle avoidance behavior of pe-
destrians. The mobile agent control is derived 
from pedestrian hierarchical behavior model.  

The rest of this paper is organized as follows. 
The following section summarizes the pedes-
trian behavior models and proposes a mobile 
agent control framework. Section III explains 
the obstacle avoidance behavior and introduces 
a mathematical model to describe the particular 
behavior.  

 

 Pedestrian Mobile Robot 

Strategic Level 

(Social Behaviors) 

Activity Listing 

Long Term Percep-
tion 

Behavior Selection 

Global Sensor Fusion 

Tactical Level 

(Local Behaviors) 

Activity Scheduling 

Activity Area and 
Route Choice 

Local Behavior Arbi-
tration 

Obstacle Avoidance 

Target Scheduling 

Motion Control 
Level 

(Reactive Behaviors) 

Walking Pattern 

Attention Filtering 

Dynamics Control 

Sensor Data Filtering 

 

Table 1. Sub-Behaviors of Pedestrian Behavior, Comparison of Walking Subtasks Between Humans and Mobile 
Agents. 

 

Obstacle avoidance behavior is modeled by arti-
ficial potential fields. Fuzzy-Neural Non-linear 
Function Approximation is applied to describe 
the artificial potential functions. 

Section IV introduces the evaluation and learn-
ing capability of Fuzzy Neural Network. The 
evaluation is done by walking path extraction 
from spatially distributed camera sensors. Sec-
tion V introduces some simulation examples to 
demonstrate the effectiveness of this method. 

 

 

2. CONTROL FRAMEWORK OF THE 
MOBILE AGENTS 

The task of the mobile agent is to provide cer-
tain set of services to inhabitants, cooperation 
with distributed sensory intelligence. This sec-
tion focuses on the human behavior that de-
scribes walking from one place to other place. 

Understanding pedestrian behavior is essential 
in a shared environment, where the mobile ro-
bots should operate with-out disturbing humans.  

The robot has to realize the human walking in-
tentions, and avoid any collision with humans 
and other obstacles. Human walking behavior is 
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affected by the features of the environment, the 
physical conditions, and the goals [11], [13], 
[14]. 

A vertical layered model is composed from 
walking sub-behaviors [11] and applied in this 
paper as a theoretical foundation of mobile robot 
control. The layered control framework is 
adapted to the distributed feature of the iSpace. 

As a result of analysis of walking subtasks, we 
concluded a tree-layer control structure com-
parison of human behaviors with mobile agent 
control tasks (Table I.). Long term decisions are 
made in Strategic Level. The strategically deci-
sions are often made by groups of person in real 
life. Therefore, strategic decisions are made 
globally for mobile agents in iSpace. Corre-
sponding human sub-behaviors are Activity 
Listing and Long Term Perception. Activity 
listing is a series of actions to fulfill some re-
quirements of Social Behaviors while realize a 
specified goal. The long-term perception is in-
tention free but action oriented model of the 
sensed space. Long Term Behavior Selection 
and Global Sensor Fusion models the Social 
Behavior on the mobile robot side. The social 
behavior of the inhabitants is recognized by long 
term behavior selection as global behavior of the 
humans and creates cooperative or counteractive 
behavior for mobile robots. The Global Sensor 
Fusion function is the fusion of various sensor 
data into an integrated data structure which is 
describes the various aspects of the space. 

Global sensor fusion involves cooperation with 
DINDs, the distributed sensory network. 

The short term decisions are made in Tactical 
Level. Activity Scheduling is the decision 
mechanism to realize the listed activity in order 
to maximize the effectiveness of each activity. 
The Activity Area and Route Choice behavior 
modifies of the scheduling according to the local 
and instantaneous features of the space. Tactical 
level controls the mobile robot local behaviors.  

Local Behavior Arbitration takes care of the ac-
tion-reaction between the robot and its local en-
vironment. Tasks of Obstacle Avoidance and 
Target Scheduling model activity area and route 
choice behavior of pedestrian. 

Motion Control Level involves reflexive behav-
iors both for human and mobile robots. Walking 
Pattern behavior is depends on physical condi-
tion and personal characteristics. 

Many small reflexive behaviors, like balancing, 
stepping, and walking, are combined together 
for fast and accurate movement control. Atten-
tion Filtering behavior implements fast and ac-
curate selection of sensed local information to 
drive motion behaviors. Dynamical Motion 
Control belongs to this layer at the robot side. 
The task of dynamical control is external and 
internal disturbance rejection to keep the motion 
of mobile robot in stable and controllable states. 
The robot should adapt also dynamically to its 
local environment, even if the robot parameters 
or the environ-mental parameters have changed. 
Local sensors and sensor filtering functions are 
needed for fast reflexive behaviors. Sensor Data 
Filtering models the attention selection and fil-
tering behaviors of pedestrian. 

Fig. 1. shows proposed mobile control frame-
work in iSpace. The Strategic Level belongs to 
the iSpace, which has connection with the DIND 
network. The DINDs could filter specific infor-
mation from the space like human location or 
human gesture with attention filtering. The Tac-
tical Level and Motion Control Level are be-
longing to a specified mobile robot. The Global 
Sensor Fusion module receives information 
from DINDs and issues target for Target Sched-
uling module of a specified mobile robot. Global 
behavior of pedestrians is considered in Long 
Term Behavior Selection module, and corre-
sponding behavior is sent to Obstacle Avoidance 
module. Each mobile robot has Tactical Level 
control unit. The tactical control unit receives 
strategic behavior commands, and also local 
information around the specific robot from 
DIND network. For example, location of the 
robot and the object around the robot is neces-
sary for obstacle avoidance. The tactical control 
unit sends dynamical parameters, such as veloc-
ity and speed of angle to the operation level. 

Motion Control Level handles the robot dynam-
ics. The aim of motion control level is  a dy-
namical motion control against the parameter 
uncertainties of the robot's body and external 
disturbances. 
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3. MODELING OBSTACLE AVOIDANCE 
BEHAVIOR 

Let us consider two typical styles (Fig. 2.). 

 
Fig. 2. Basic obstacle avoidance strategies: “As Far 

As Possible” (left) and “As Close As Possible” 
(right) 

One, main navigation behavior of an aircraft 
carrying dangerous material is to keep "as far 
from the mountains as possible" 

Two, remaining in secret while seeking a mouse 
leads to the opposite behavior for a cat, namely, 
"get as close to the object as possible" 

A simple combination of these basic behavior 
styles can characterize the main rule of a traffic 
system: "keep close to the right or the left side". 
Let’s consider a simple example to illustrate the 
importance of this knowledge. Let's assume that 
Japanese and American person are walking to-
wards each other. Recognizing this situation, 
they try to avoid each other. Using their national 
traffic rule, the Japanese person keeps left and 
the American keeps right and they are again in 
front of each other. It might be ended in a colli-
sion. (see Fig. 3.). 

 

 
Fig. 3. Two Different Obstacle Avoidance Strategy 

May Result Dangerous Situation 

 

If the iSpace can observe and learn the behav-
ior of a human being, then it can send a proper 
command to the Mo-bile Agent in such situation 
and the Mobile Agent avoids the collision. The 
Mobile Agents can change its obstacle avoid-
ance behavior according to the local situation 
around the agent. 

3.1. Direct Evaluation of Sensor Information 

Artificial potential based guiding approach is 
applied to handle the dynamic and uncertain 
environment around the robot ([6] and [7]). The 
robot can detect objects in the scanned area (Fig. 
4.). 

 

 

 

 

Fig. 4. Scanning Area of the Robot (left), Direct 
Evaluation of Sensor Information (right) 

The scanned area is divided into n scanned lines 
that are pointed into directions of ier  (unique 
vectors, where i = 1… n). The radial scanned 
lines structure has an important advantage that 
spatial density of the scanning is growing with 
the decreasing distance between the obstacle and 
the robot. The sensor system provides the dis-
tance between the robot and the object on the 
scanned lines [10]. The main idea of the poten-
tial based guiding is to repulse (or attract) the 

 

                                    Fig. 1. Mobile Robot Control Framework 
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robot from/to the obstacles [8]. The objects and 
the target generate imaginary forces ( iy , 
i=1…n) acting on the robot. Summing the effect 
of these virtual forces, the desired moving direc-
tion can be obtained. The virtual vectors must be 
calculated for each location as quickly as possi-
ble to achieve a smooth and reactive guiding. 
The magnitudes of the repulsive forces are usu-
ally inversely proportional to the distance be-
tween the obstacles and the robot but they can 
be described by any non-linear functions. 

The virtual force along the scanned line: 

iiii exwy rr )(=              (1) 

where i = 1…n  (n is the number of scanned 
lines) from the measured distances ( ix ) to each 
scanned lines. The )( ii xw  is the weight function 
of the scanned line. The virtual force vectors are 
pointed into the opposite of the scanned direc-
tion (key idea of potential based guiding), and 
their absolute values depending on the detected 
distances are: )( iii xwy =

r . The overall force is 
the summation of the virtual forces along the 
directions of the scanned lines:   

∑
=

=
n

i
iii exwy

1

)(
rr .                        (2) 

In many cases this kind of evaluation is not ef-
fective. For example let the weight function on 
each scanned line the same. Applying (2) to 
symmetrically located obstacles, will result at-
tractive and repulsive force, and the sum results 
zero vector (see Fig. 5.).  

 
 

Fig. 5. Local Minimum Point of the Potential Based 
Guiding 

The attractive force represents the goal reaching 
behavior, while the repulsive force represents 
the obstacle avoidance behavior. Choosing one 
of the iyr , what is perpendicular to the attractive 
and repulsive force, in the evaluation would lead 
to escape from the local minimum. 

 

 

3.2. Indirect Evaluation of Sensor Information 

To avoid the local minimum problem (Fig. 5.) 
an extension of the above mentioned method is 
introduced. All sensor information is propagated 
to all outputs (Fig. 6.). Weight function is intro-
duced between scanned inputs i and the output 
nodes j (j=1… m): 

∑
=

=
n

i
iiij exwy

1
, )(

rr                         (3) 

The summarized vector output is calculated as in 
(2), but with extended weight functions as in (3): 

∑∑
= =

=
m

j

n

i
iiij exwy

1 1
, )(

rr                        (4) 
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Fig. 6. Fuzzy Approximation of Indirect Evaluation  
of Sensor Information 

3.3. Fuzzy-Neural Approximation 

The weight functions are approximated by fuzzy 
sets. The fuzzy approximation gives piece-wise 
linear approximation in case of triangular ante-
cedent fuzzy set. The number of antecedent 
fuzzy sets are denoted with k , where k=1… l. 
Fuzzy approximation of direct sensor evaluation 
is shown first. The weight function of direct 
evaluation of sensor input [9]: 

∑
=

=
l

k
kiiAii bxxw

ki
1

,)()(
,

µ            (5) 

The )(
, iA x
ki

µ  is the membership values of the 

sensor value, ix  case of antecedent set k , and 
direction of scanned line i. The kib ,  is the conse-
quent set for antecedent set k , and direction of 
scanned line i. In this model the consequent set 
is only one value set. The virtual vector along 
the scanned line i is generated by: 
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Where ier  is a unique vector pointed into the di-
rection of scanned line as in (2). Summarized 
vector output (2) approximated by fuzzy sets: 
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The indirect evaluation of sensor information 
can be approximated by a generalized forward 
neural network that is general in the sense that it 
has various weighting functions set on the con-
nections among the neurons [10]. 

One weight function which connects the sensor 
input i and the output node j: 

∑
=

=
l

k
kijiAiji bxxw

ki
1

,,, )()(
,

µ                       (8) 

In equation (8) the antecedent sets ( kiA , ) are 
depend only the scanned lines i, but independ-
ents from the output nodes j. The consequent 
sets depend both on the scanned lines i, and the 
output nodes j. Vector output along one output 
node j: 
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Summarized vector output of the fuzzy-neural 
network: 

∑∑∑
= =

=
m

j

n

i

l

k
ikijiA ebxy

ki

1 1
,,)(

,

rr
µ                     (10) 

Fig. 6 illustrates the applied fuzzy neural net-
work architecture. Each sensor data ( niX i ...1, = ) 
is distributed to each sensor node ( iyr ) via the 
weight function, )(, iij XW . Weight functions are 
piece-linear approximated by fuzzy sets. The 
input fuzzy set are is Ruspini partitions in our 
case. The consequent fuzzy sets are one valued 
fuzzy sets. This simple architecture enables fast 
computation, and simple implementation algo-
rithm. 

4. EVALUATION AND LEARNING OF 
PEDESTRIAN BEHAVIORS 

This section illustrates the learning capability of 
the obstacle avoidance behavior of mobile robot. 
The learning capability enables by the fuzzy-

neural network which is applied for approxima-
tion of direct and indirect sensor evaluation. 

 

4.1. Evaluation and Learning Framework 

Fig. 7 shows the actual configuration of learn-
ing. The picture of the human walking is taken 
by the DIND and sent to the Human Localiza-
tion Module. The module calculates the human 
position and sends to the Learning module. The 
result of the leaning is a potential function, what 
is given to the robot control module. 

iSpace

CCD#1 CCD#2
Potential
Function

Human
Localization

Robot
Control

LearningPicture Path

 

Fig. 7. Learning and Evaluation Framework in iS-
pace 

4.2. Learning Method of Fuzzy Neural Net-
work 

Learning method is introduced for indirect sen-
sor evaluated control (Section III-B). The human 
walking path (p[t]) calculated by Human Local-
ization module. The walking path is a discrete 
series of position, along time series 
t:={t=t(k)|k=1… z}. The path is scaled to the 
obstacle avoidance control: 

|][|
][

|][|][
tp
tp

tytd v
rrr

= ,                     (11) 

where ][t•
r

 denotes vector value at t=t(k) time 
instance. |][| tyr  is the absolute value of obstacle 
avoidance initial rule base. The training algo-
rithm does not tune all sets, but the absolute 
value of the consequent vectors, namely values 

][,, tb kij . The t-th training pattern contains input 
values ][txi  and the desired output direction 

][kd
r

. The error criteria is the instantaneous er-
ror between the reference vector and the robot 
(Fig. 8.): 
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Fig. 8. Evaluation of Error Vector, difference be-
tween the Reference Vector and the Robot Vector 
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The instantaneous gradient: 
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In order to tune values ][,, tb kij  the gradient de-
scent method is applied as: 

iiA

iiAkjkij

ettxp

etxtptpkb

ki

kirr
rrr

][])[(

])[(][2][ˆ][

,

,,,,

εµ

µε

=

=′−=∇′−=∆

           (14) 

where p=2p’ is the learning parameter. In (14) 
the vector product can be calculated as: 

])[cos(|][|][ ttet ii ϑεε
rrr

=                      (15) 

Consequently, the tuned consequent sets: 

 

])[cos(|][|])[(][]1[
,,,,, tttxptbtb iiAkijkij ki

ϑεµ
r

+=+

           (16) 

where ][iiϑ  is the angle of the error vector ][tε
r

 
and the unique vector ier . 

Fig. 9 shows the obstacle avoidance behavior 
learning method. The error defines as the differ-
ence between, the reference moving direction 
(Reference vector) (walking habit from the ob-
served path) and the Robot's moving direction 
(Robot vector). This error vector is evaluated 
back to the direction of the sensors, and tunes 
the weight constants, ][,, tb kij . 

 
Fig. 9 shows the convergence of the training 
procedure with different values of learning pa-
rameters, P. When P=2 almost 10 learning itera-
tions is necessary with the same training data for 
small error. Increasing learning parameter, P 
may not means faster learning. In this training 
session, P=5 gives faster learning, than P=7. 
The learning parameter should be tuned for each 
training session, as a conclusion of training 
process. 

 

Fig. 9. Speed of Learning: fall of error vector abso-
lute value at different learning parameters (P) 

5. EXAMPLES 

Tactical Level Control of Mobile Agent is con-
sidered in this section. The control framework 
for tactical control is shown in Fig. 10. The out-
put of this layer is Moving Vector which points 
toward the moving direction, and its absolute 
value represents the desired instantaneous trav-
eling speed. 

 

Fig. 10. Tactical Level Control of Mobile Agent 

The Moving Vector (M
r

) is weighted summary 
of the Obstacle Vector ( yr ) and the Target Vec-
tor ( T

r
): 

)()()( tTbtyatM
rrr

+=          (17) 

To approach the target and avoid objects behav-
ior can be tuned by the weight parameter a and 
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b. If b is positive, then the mobile agent ap-
proaches the target even there is no obstacle 

0=yv . The mobile agent is pushed by the target, 
if b is negative. 

Fig. 11 shows a basic example of obstacle 
avoidance. The robot moves from start position 
to goal position. The robot can not move directly 
form start to goal position because of corner. 
Fig. 11(a) shows the resulted path according to 
(17). The resulted path and the resulted behavior 
can be changed by parameter a and b. 

 

 

 

 

Fig. 11. Path of the Mobile robot (up) and the Obsta-
cle Vectors along the path (down) 

 

Fig. 12 shows three cases of trained obstacle 
avoidance behavior. The basic obstacle avoid-
ance behaviors of manual control were: 1) keep 
on left side. 2) keep on right side. 3) get as far 
from the objects as necessary. Fig. 12 shows the 
obstacle avoidance behavior of the three trained 
mobile agent among the new set of objects. We 
concluded that the robot is able to pick up the 
main human obstacle avoidance behaviors. 

 

 

Fig. 12. Path of the Mobile robot (left) and the Ob-
stacle Ve ctors along the path (right) 

6. CONCLUSION 

The aim of this paper is to investigate a control 
framework for mobile robots, operating shared 
environment with humans. The principle of con-
trol framework is derived from pedestrian be-
havior model. The obstacle avoidance behavior 
is a characteristic feature of the proposed 
framework. Virtual potential based obstacle 
avoidance method is applied to describe the ob-
stacle avoidance behavior. The virtual potential 
method is approximated by fuzzy-neural net-
work. The learning capability of fuzzy-neural 
network, and learning methods is also presented. 
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