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Abstract: A method for automatic tuning of the PID controllers, usually called auto-tuning, is 
presented. The method is based on a frequency domain model of the process to be controlled and 
uses a single point on the Nyquist curve. The identification of this point is performed using a relay 
connected in a feedback loop with the process, forcing the process output to oscillate. The 
controller design is based on the dominant closed-loop poles method. No apriori information on 
the process parameters is required. Simulations compare the proposed method with two other 
tuning methods: Ziegler-Nichols method and internal model method applied to PID control. A 
variant using two points on the Nyquist curve is also presented. Some experimental results are 
shown for auto-tuning control of a thermal process. 
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1. INTRODUCTION 

Despite the development of more advanced 
control strategies, the majority of controllers 
used in industrial instrumentation still are of the 
PID type. Their popularity is easy to understand 
- they have a simple structure, their principle is 
well understood by engineers and their control 
capabilities have proven to be adequate for most 
control loops. Moreover, due to process 
uncertainties, a more sophisticated control 
scheme is not necessarily more efficient than a 
well-tuned PID controller. However, it is 
common that PID controllers are often poorly 
tuned because the choice of controller 

parameters requires professional knowledge by 
the user. 

For industrial process control there are now 
many PID controllers with features like self-
tuning and auto-tuning. These features provide 
easy-to-use controller tuning and have proven to 
be well accepted among process engineers. 
For the automatic tuning of the PID controllers, 
several different methods have been proposed. 
Some of these methods are based on 
identification of one point of the process 
frequency response, while the others are based 
on the knowledge of some characteristic 
parameters of the open-loop process step 
responses. The identification of a point of the 
process frequency response can be performed 
either using a proportional regulator, which 
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brings the closed-loop system to the stability 
boundary or, by a relay forcing the process 
output to oscillate. Aström (1984) reports an 
important and interesting approach. The method 
is based on the Ziegler and Nichols frequency 
domain design formula. A relay connected in a 
feedback loop with the process is used in order 
to determine the critical point. 
The performance of the controllers tuned 
according to ZN rules depend strongly on the 
value of the process normalized dead-time (the 
normalized dead-time is defined for stable 
processes as the ratio of the apparent dead-time 
to the apparent time constant [3]). ZN rules 
often give poor damping and excessive 
overshoot in response to setpoint change for 
processes with small values for normalized 
dead-time [1]. For this type of processes we 
developed a method based on dominant pole 
design. 
Dominant pole design methods find controller 
parameters which place the dominant poles of 
the closed-loop system (the complex conjugate 
closed-loop poles closest to the jω axis) in 
specified locations. 

2. PROCESS 

In many practical cases the process model is a 
first, second or a third order with no delay (tank 
level control, temperature control in: stirred tank 
heating processes, heat exchangers, thermal 
treatment furnaces).  
Strictly applying theory, not all of these 
processes can be forced to oscillate by a relay. A 
relay without hysteresis can be used only if 
process Nyquist curve crosses the negative real 
axis, while a relay with hysteresis is suitable if it 
crosses the negative imaginary axis. In fact, 
considering that in any digital controller 
implementation the sampling process itself 
introduces a phase lag and that in real situations 
the process output is filtered it can be assumed 

that all the processes in practical cases will 
oscillate when a relay controller is connected. 
Unfortunately, the relay experiment gives small 
values for the amplitude and the period of 
oscillation in absence of hysteresis. In these 
conditions the tuning obtained by the ZN 
methods can often be improved significantly by 
using other methods.  
In this paper, a continuous time process 
described by a rational transfer function is 
considered, and this transfer function is assumed 
to have essentially only real, stable poles: 
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where  Tj >0  ( j=1, …, n). Satisfactory control 
performances are obtained even if the transfer 
function has some complex, stable poles. 
No a priori information about the value of any 
model parameter is supposed to be known. 

3. AUTOMATIC TUNING METHOD 

A standard PID control system with single input, 
single output, as shown in figure 1 is considered. 
The PID controller has a non-interacting 
structure 
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The transfer function of the closed loop system 
from the reference signal to the output is given 
by 
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with: 

(s)H(s)H   = (s)H cpl ⋅ . (4) 
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Fig. 1. Control system structure. 
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A simple method will be proposed for 
approximate determination of the controller 
parameters so that the transfer function of the 
closed-loop system has desired dominant poles, 
using some knowledge of the Nyquist curve of 
the process transfer function Hp(s).  
Before continuing, some preliminaries are useful 
to define the context in which the tuning method 
is derived. 
The pole placement design methods are usually 
used to assign all closed-loop poles. One 
difficulty with these methods is that complex 
process models lead to complex controllers. 
Several papers on PID control are based on the 
idea of positioning a few closed-loop poles. The 
reason for this is that the dynamics of complex 
systems can often be characterized by a few 
poles. If a pair of complex poles is dominating, a 
second-order model can be used as a reasonable 
approximation of the closed-loop system.  
We assume that the closed-loop has a standard 
second order model  
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The closed-loop pole locations are 
parameterized with 

dd
2
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where:

10,1, 2
ndnd <ζ<ζ−ω=ωζω−=σ , 

ζ represents the damping ratio, ωn - the 
undamped natural frequency, σd - the 
exponential decay and ωd - the damped natural 
frequency of the step transient response term. 
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Fig. 2. Hl plane. 
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Fig. 3. The ratio βs=ωs/ωd.

Consider the open-loop transfer function Hl(s) as 
a mapping from the s-plane to the Hl plane. The 
constant-σ lines and constant-ω lines in the s 
plane map into curves shown in figure 2. The 
constant-σ lines map into curves that are similar 
to the Nyquist plot and are in a sense parallel to 
the Nyquist plot. The σ=0 line (the jω axis) in 
the s-plane is mapped into the Nyquist plot in Hl 
plane. The closed-loop poles are mapped into 
the (-1, j0) point in the Hl plane. Since the 
constant-ω line that passes trough the (-1, j0) 
point in the Hl plane actually corresponds to the 
damped natural frequency ωd, we can 
approximate that the point Hl(jωd) is the closest 
point of the Hl(jω) locus to the (-1, j0) point. 
Regarding the error involved in this 
approximation, considering ωs as the exact 
frequency value at the point of nearest approach 
of the Hl(j ω) locus to the (-1, j0) point, figure 3 
shows the ratio βs=ωs/ωd as a function of the 
relative damping ζ. For small ζ, ωs does not 
differ significantly of ωd so no correction is 
necessary. 
In order to tune the PID controller it is assumed 
that the value of the process transfer function at 
frequency ω1 is known, i.e., 

 jba = )j(H 111p +ω  (7) 

The parameters a1 and b1 can be obtained using 
a relay connected in a feedback loop with the 
process, forcing the process output to oscillate 
[2]. The condition for oscillation is given by  

 1 = )j(H)a(N pr −ω⋅  (8) 

or 
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is the negative inverse of relay describing 
function, dr is the relay amplitude, ar the 
amplitude of the oscillation in the process output 
and εr is the relay hysteresis width. 
For the given values dr1 and εr1 we will obtain 
oscillation with amplitude ar1 and period T1. 
With a pure relay (no hysteresis, εr1=0) it is 
possible to determine the point (-πar1/4dr1, j0) 
where the Nyquist curve of the process transfer 
function intersects the negative real axis at the 
frequency ω1 = 2π/T1. Having a relay with 
hysteresis (εr1≠0), we can determine the point 
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where the Nyquist curve of the process transfer 
function intersects a straight line parallel to the 
real axis at the frequency ω1 = 2π/T1. 
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The auto-tuning method proposed in this paper 
has three variants. 

4.1. Fixing one point on the Nyquist curve 
(NP1). 

The design problem is then to determine a 
controller so that the frequency response 
function of the open-loop system (process and 
controller) has a desired value at a given 
frequency, i.e. 

 idc )i(H )i(H = )i(H 111c1p1l +=ωωω  (12) 

Let the transfer function of the PID controller be 
parametrized as 
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To simplify the calculus, the noise filter time 
constant is neglected. In the simulation it will be 
set at 0.2Td . Also, it was assumed that Td  = αTi. 
Substituting (7) and (13) into (12) we obtain: 
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If α is specified a priori, then the parameters Kc  
and Ti of the PID controller can be determined. 

Using c1/d1 ratio, equations (14) give a second-
order equation from which Ti is solved. The 
controller gain Kc  is then obtained. 
The method is thus based on the idea to 
determine a controller that moves the point (a1, 
jb1) to the point (c1, jd1). It is the same idea as 
for the ZN frequency response method but using 
different values for the point co-ordinates. The 
ZN method uses a pure relay (εr=0) experiment 
and moves the ultimate point to the point (-0.6, -
0.28j). We suggest to chose the point (c1, jd1) the 
closest point of the Hl(j ω) locus to the (-1, j0) 
point (A point in figure 4). Moreover, the 
shortest distance from the Nyquist curve to the 
critical point (-1, j0) represent the inverse of the 
sensitivity.  
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Fig. 4. Placement of (c1, jd1) point. 

Putting the frequency ωs at the A point is equal 
to ω1 obtained using the relay feedback 
experiment (with or without hysteresis), and 
taking into consideration the βs ratio given in 
figure 3, it is possible to calculate the desired 
frequency of the closed-loop dominant poles ωn

2
s

1
2

s

s
n

11 ζ−β

ω
=

ζ−β

ω
=ω  (15) 

Since the second-order system (5) has the 
following open-loop transfer function  
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for s=j ω1 , we obtain the A point co-ordinates 
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The design method is based on specification of 
only one parameter, the relative damping ζ. For 
ζ=0.7 we have c1= -0.28 and d1=-0.31. 
Let us now note that Hp(j ω1), Hc(j ω1) and Hl(j 
ω1) are complex quantities and can be written as 
follows: 

pj
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and finally we have another possibility, different 
from (14) to determine the controller parameters 
[1]: 
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4.2. Fixing one point and the slope (NPS), or 
two points (NP2)of the Nyquist curve. 

In order to tune the PID controller it is assumed 
that the values of the process transfer function at 
two neighboring frequencies ω1 and ω2 are 
known, i.e., 
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The frequency of the second point ω2 and his co-
ordinates (a2, jb2) are determined in the same 
manner like in the first point (a1, jb1) case (11), 
using a relay feedback experiment with εr2> εr1. 
Fixing the value of the open-loop transfer 
function at one frequency the method gives only 
two unique parameters of the controller. This is 
the reason why the condition Td = αTi was 
introduced in (13). The transfer function of the 
PID controller will be now parametrized as 
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To obtain unique parameter values one 
possibility is to position one point and to fix the 
slope of the Nyquist curve at this point. As we 
discussed, the fixed point (c1, jd1) is the closest 
point of the Hl(jω) locus to the (-1, j0) point 
(figure 4). A natural requirement is that the 
slope at frequency ω1 should be orthogonal to 
the line 1+Hl(jω1).  

Differentiating the open-loop transfer function 
with respect to jω from (4) we obtain  
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Approximating the term dHd (jω) by a difference 
between the two closed points on the Nyquist 
curve the following relation is obtained 
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Differentiating the open-loop transfer function 
with respect to jω from (16), for ω=ω1 and ζ 
=0.7 we obtain  
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From (25) and (26) we obtain 
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From (14) and (27) we obtain  

i2d13

i11d111c1

i11d111c1

TqTqq
)TaTab(Kd
)TbTba(Kc

+=
ω−ω+=
ω+ω−=

 (28) 

and the parameters Kc , Ti and Td of the PID 
controller can be now determined. 
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From the figure 4 we notice that is possible to 
approximate δ by the value δ = -d1/(-1-c1)=-0.43. 
Notice also that is possible to obtain negative 
values for Ti . In this case we have to increase 
iteratively the value of δ and to recalculate Ti 
until a positive value is obtained. This will 
increase the computational effort considerably. 
The calculus is simplified fixing two 
neighboring points of the Nyquist curve: (c1, jd1) 
and (c2, jd2).  In this case the parameters Kc , Ti, 
Td and Tf are determined from: 
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4. SIMULATION 

The proposed auto-tuning algorithms have been 
tested by simulated examples. The performances 
are evaluated and compared with two other 
tuning methods: Ziegler-Nichols method (ZN) 
and internal model method applied to PID 
control (IMC). Notice that IMC can be 
considered as a kind of reference but this is not 
an auto-tuning method (it requires the full 
process model). Different aspects, such as 
process dynamics, setpoint changes and load 
disturbances are analyzed. 
The simulations were carried out in MATLAB 
environment. The amplitude of the setpoint and 
the load disturbance is 1. For the first relay 
experiment the amplitude of the relay was set to 
0.1u0 and the hysteresis to 0.01 y0 (u0, y0 - input 
and output steady-state values). For the second 
experiment the relay hysteresis was doubled. 
Example I 
The process is described by a second-order 
transfer function with a large time constant 
specific to the process and a small time constant 
due to the sensor response time: 

  
)1s30(  )1s270(

 2 = (s)Hp ++
 (30) 

The closed loop step response using ZN method 
is not well damped (Figure 5). The step 
responses obtained using the proposed methods 
are comparable with IMC response. The fastest 
response for load disturbance is obtained with 
ZN method; the proposed methods lead to a 
slow response but not so slow like the IMC 

method. The load disturbance rejection, using 
NP1 method is quite satisfactory. The design 
parameter has been set at ζ =0.7.  
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Fig. 5. Comparison of the NP1(1), NP2(2), NPS(3), 
IMC (4), and ZN(5) methods, a) - step response, b) - 

load disturbance response. 

For ζ =0.5 faster responses for load disturbance 
are obtained but the overshoot of the step 
response increased (Figure 6). 
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Fig. 6. Comparison of the NP1(1), NP2(2), NPS(3), 
IMC (4), and ZN(5) methods, a) - step response, b) - 

load disturbance response. 

Example II 
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Fig. 7. Comparison of the NP1(1), NP2(2), NPS(3), 
IMC (4), and ZN(5) methods, a) - step response, b) - 

load disturbance response. 

The process is described by a second order 
transfer function with two not too different time 
constants: 
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The step response obtained using ZN method is 
not well damped, as in the previous example 
(Figure 7). The NP methods give much better 
response. The load disturbance rejection, using 
NP1 and NPS is not so fast like ZN but is quite 
satisfactory (ζ =0.7). 

Example III 
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Fig. 8. Comparison of the NP1(1), NP2(2), NPS(3), 
IMC (4), and ZN(5) methods, a) - step response, b) - 

load disturbance response. 

For more complex processes, third order for 
example: 
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  2 = (s)Hp +++
 (32) 

the NP1 gives better results than NP2 and NPS 
because the last two design methods are too 
restrictive. (Figure 8; ζ =0.5) 
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5. EXPERIMENTAL RESULTS 

For experimental results the auto-tuning 
algorithm was implemented on a PC computer 
equipped with a data acquisition board and 
simple laboratory processes were controlled. 
Figure 9 shows the results when the auto-tuner 
was applied to temperature control of a 
soldering hammer.  
The soldering hammer was first brought to 
steady-state conditions in manual control 
(θ0=200ºC, u0=0.18). A sampling period of 1 
second was used in all of the experiments. For 
the first experiment the amplitude of the relay 
was set to 0.1u0 (dr1=0.2) and the hysteresis to 
0.01 θ0 (εr1=2ºC). After a permanent oscillation 
of θ(t) occured we measured the period and 
amplitude of this oscillation and obtained 
T1=150 sec and ar1=3.1ºC. For the second 
experiment the relay hysteresis was increased to 
εr2=3ºC and T2=270 sec, ar2=3.5ºC were 
obtained. Finally, PID parameters were 
computed according to the control performance 
specifications, e.g. the desired damping ratio (ζ 
=0.7) using the three methods presented in this 
paper.  
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Fig. 9. Comparison of the NP1(1), NP2(2), NPS(3), 
IMC (4), and ZN(5) methods, temperature control of 

a soldering hammer, step response (200ºC). 

6. CONCLUSIONS 

Some relay based algorithms for auto-tuning of 
PID controllers have been presented, assuming a 
process model structure and achieving the 
regulator tuning by identifying one or two points 
of the process frequency response.  
The auto-tuner is an extension of the Ziegler-
Nichols relay approach. As seen in simulation 
and experimental results, the performances are 

comparable with those obtained using IMC and 
better than those obtained using the Ziegler-
Nichols method. That means small overshoot in 
response to setpoint change for processes 
specified in section 2. If the main goal of the 
controller design is to obtain a faster response 
for load disturbances then the value of the 
design parameter ζ can be decreased. 
This auto-tuning method yield PID parameters 
only for a restricted class of process models. It is 
not a general methodology for arbitrary process 
models. 
Concerning the complexity of the method, the 
proposed methods involve calculations more 
complicated than ZN, but the experiments are 
easy to be performed. 
Experiments and simulation studies have 
indicated that the presented self-tuners perform 
well and can be easily used even by people who 
are not specialist in automatic control. 
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