
CEAI, Vol.13, No.2, pp. 26-31 , 2011 Printed in Romania

Vision Based Autonomous Navigation in Unstructured Static Environments for
Mobile Ground Robots

D. Novischi*, C. Ilas*, S. Paturca*, M. Ilas**

*Dept. of Electrical Engineering, Politehnica University of Bucharest,
Bucharest, Romania (e-mail: dan.novischi@ gmail.com, constantin.ilas@upb.ro, sanda.paturca@upb.ro).

**Dept. of Electronics and Telecommunications, Politehnica University of Bucharest,
Bucharest, Romania (e-mail: m.ilas@hlx.ro)

Abstract: This paper presents an algorithm for real-time vision based autonomous navigation for mobile
ground robots in an unstructured static environment. The obstacle detection is based on Canny edge
detection and a suite of algorithms for extracting the location of all obstacles in robot’s current view. In
order to avoid obstacles we designed a reasoning process that successively builds an environment
representation using the location of the detected obstacles. This environment representation is then used
for making optimal decisions on obstacle avoidance.

Keywords: autonomous robot, robot vision, image processing algorithms, unstructured environment,
Canny edge detection, agglomerative clustering.

 1. INTRODUCTION

Computer vision is a field of computer science that has been
heavily researched in the recent years. Its applications in
robotics are diverse, ranging from face recognition to
autonomous navigation (see Forsyth, Akella, Browning).
General object recognition for mobile robots is of primary
importance in order to generate a representation of the
environment that robots can use for their reasoning processes.
The ability to localize obstacles in real-time and with a high
degree of accuracy based on vision provides a foundation for
the development of many state of the art autonomous robotic
systems (see Gopalakrishnan, Allenya, Stronger, Novischi
2009). Directions such as optimal implementation, robust
detection, especially when using limited performance
cameras and optimal avoidance decisions continue to be of
primary interest.

This paper focuses on real-time vision based autonomous
optimal navigation for basic mobile robots in an unstructured
static environment (see also Zhao). Simply stated, the robot
has to travel through an unknown environment, where still
objects are randomly placed, in order to reach a specified
destination. For this, the robot relies only on visual
information for the reasoning process. Furthermore, the
camera and the robot hardware and sensing are rather limited
in terms of performance (see section 2). We have used for
obstacle identification an approach based on Canny edge
detection and a suite of algorithms for extracting the location
of all obstacles in the robots field of view. We also designed
a higher reasoning process that allows the robot to make
optimal decisions to avoid collisions in order to reach the
specified destination.

In order to ensure maximum flexibility during the algorithm
development, we implemented the main image processing
tasks in Matlab and interfaced the robot with the Matlab.
Thus, the robot acquires the images, sends the image to
Matlab, which localizes the obstacles, makes an optimal
decision and sends a trajectory update to the robot. The
application we designed runs in real-time due to the
efficiency of the developed algorithms.

Of course, the algorithms can be then implemented directly
on the robot controller and we present a processing time
estimation for this situation.

 2. HARDWARE & SOFTWARE USED

The hardware used for physically implementing the robotic
system includes a Blackfin SRV-1 robot (Fig. 1) and a
personal computer. The SRV-1 robot is equipped with a DSP
microcontroller running at 500 MHz, a 1.3 MP camera with
adjustable image resolution and a Wi-fi hardware module. It
also includes four DC brushless motors.

Fig. 1. The Blackfin SRV-1 robot used for implementation
and testing.

CONTROL ENGINEERING AND APPLIED INFORMATICS 27

The application algorithms were implemented in Java and in
Matlab. These languages were selected because of the overall
performance and flexibility that their combination offers
mainly: complex data structures, cross platform and fast
matrix operations.

In order to interface the SRV-1 robot with a PC we developed
a Wi-fi software communication module. So, from the
application standing point a PC can be viewed as the
processing unit and the robot can be viewed as the sensing
and actuating unit. This module supports requests such as
movement commands, setting the image resolution and
reading the data from the sensors such as the RGB colour
image.

 3. APPLICATION ALGORITHMS

3.1 The main Algorithm

The main algorithm of our application is structured according
to three tasks that the robot has to perform namely: the
obstacle detection task, the decision task and the travel task.
These tasks are interleaved in order for the robot to reach its
given goal. The main logic of the algorithm starts from the
idea of a permanent interaction between the robot and the
surrounding environment. In this interaction the robot not
only detects obstacles, but it also successively builds a
representation of the environment in order to make an
optimal decision to avoid certain obstacles. After an obstacle
has been avoided the robot repositions its self to reach the
given goal. The main algorithm diagram is presented in Fig.3
below.

Fig. 3. Main algorithm diagram.

3.2 The Travel Task

The travel task is responsible for driving the robot. This is
accomplished by sending movement commands via the Wi-fi
communication module. Due to the fact that the SRV-1 robot
is not equipped with any odometric sensor such as encoders,
the trajectory is not expressed in fixed coordinates, but in
adjustable movement segments.

3.3 Obstacle Detection Task

The obstacle detection task is responsible for localizing all
obstacles in the current field of view that are on possible
collision courses and for signalling this to the decision task.
For this purpose the obstacle detection is performed in two
separate steps, namely: object feature detection and feature
analysis. In the first step the objects edges are detected using
a Canny edge detector. This detector was selected because of
its higher performance in comparison with others such as:
Solbel, Roberts or Laplacian (see Forsyth). After applying the
Canny edge detector, we separate the edges of the objects of
interest from the edges belonging to the objects in the
background by selecting only the bottom part of the image.
This is because obstacles that are closer to the robot and
influence its travel path are always located in the bottom part
of the 2D image plane. The algorithm for the feature
detection and its results for every step are presented below.

 a b

c d

Fig. 4. SRV-1 camera images: a – RGB colour image, b –
gray scale image, c – edge image, d – bottom part of edge
image.

Objects Feature Detection Algorithm

Get RGB image from the robot

Transform the image to gray scale

Apply the Canny edge detector

Select the bottom part of the image

In the second step we analyze the detected edges in order to
compute the location of the obstacles in the 2D image plane.
In the ideal case where object edges are perfectly detected,
such as the one in Fig. 5, we could compute the objects
coordinates in the 2D image plane.

28 CONTROL ENGINEERING AND APPLIED INFORMATICS

Fig. 5. Ideal case edge detection: left – bottom part of the
camera captured image and right – ideal edge image.

Despite the fact that tests were conducted in an office
environment (see also Tanaka), the detection of edges is
influenced by various factors such as ambient light
conditions, shadows and similar overlapped objects. Due to
these factors the object edges appear as in Fig. 6.

Fig. 6. Real case edge detection: left – bottom part of the
camera captured image and right – real edge image.

In order to distinguish which edges belong to which object
we developed a modified version of the bottom-up
agglomerative clustering algorithm. The elements that are
clustered in this algorithm are the individual edge pixels. The
merging step of two clusters is based on a threshold rather
than on a rule such as single linkage of the standard
algorithm. The modified version of the algorithm is presented
below:

Agglomerative Clustering Algorithm

Put each edge pixel into its own cluster

Compute the distance matrix

While (! no cluster to merge)

For every cluster i

For every cluster j

If (distance between clusters < = threshold)

Merge clusters

Update distance matrix

The output of this algorithm is separate edge images which
contain individual objects. The results for the images in Fig.
6 are shown in Fig. 7 below.

Fig. 7. Agglomerative clustering results.

After the image segmentation into individual obstacles, the
coordinates of each obstacle are computed in the 2D image
plane. Then we compute the coordinates of a central obstacle
which includes all obstacles that are on the direct collision

course with the robot. This approach is depicted in the Fig. 8
below. Finally, the central obstacle is merged with some of
the obstacles that are not on the direct collision course, but
for which the distance between them and the central obstacle
is smaller than the robot width and thus, the robot could not
pass between these obstacles.

Fig. 8. Obstacle localization diagram – including obstacle
merging for close obstacles (O1, O2 and O4).

The algorithm for obtaining the location of the merged
obstacle in the 2D image plane is presented below:

Obstacle Localization Algorithm

Segment the image into individual obstacles

Compute each obstacle coordinates

Compute the coordinates of the central obstacle

Merge obstacles

3.3. The Decision Task

The decision task is responsible for successively making
optimal decisions on how to avoid obstacles in order to reach
a given goal. This means that ideally, the shortest travelling
path should be selected. In order to make such decisions
when avoiding the obstacles, we maintain and successively
update an environment representation in form of a graph. In
this graph the nodes represent the possible positions that the
robot can reach and the edges weights represent the distances
the robot must travel in order to reach these positions. These
distances are estimated from the processed image, by
counting the number of pixels between given pair of
positions. Making an optimal decision as to which successive
positions the robot must reach in order to avoid the obstacles
is based on Dijkstra’s single source shortest path algorithm
(see also Dumitrescu 2009). To correctly compute the
shortest path, the graph is updated after each obstacle

CONTROL ENGINEERING AND APPLIED INFORMATICS 29

detection and the start node is set before the computation in
question.

When the robot first starts the graph is initialized to contain
only two nodes, namely: the start node and the goal node,
depicted in figure 9.

Fig. 9. Environment graph for path decision task; Initial
graph – V1 is start node and V2 is the goal node.

As the robot travels and detects obstacles on its travel path,
the graph is successively updated according to two situations:
the detection of a new obstacle and the detection of a
secondary obstacle. A new obstacle is the obstacle detected
while the robot is moving straight toward the goal. By
secondary obstacle, we refer to an obstacle detected while the
robot is trying to avoid a previously detected obstacle. In the
first situation, the graph is updated with two nodes that are
placed between the start node and the goal node. These nodes
correspond to the left and right positions that the robot can
reach in order to avoid the obstacle edges, as depicted in the
Fig. 10 below.

Fig. 10. Found new obstacle graph update: left – the nodes
position relative to the obstacle and the robot, right – the
updated graph.

The algorithm for this graph update is presented below.

Found New Obstacle Graph Update Algorithm

Estimate distances to avoid the obstacle from 2D image plane
obstacle coordinates

Create two nodes

Update source adjacencies and edge weights

Update the new nodes adjacencies and edge weights

In the second situation the robot detects an obstacle while
trying to avoid another. The graph representation in this case
is updated with only one node corresponding to the current
position of the robot. This node is placed between the starting
node and the node that the robot was trying to reach. The
later node is also updated so that it corresponds to the

position for avoiding the intermediary obstacle on the same
side as the previous obstacle. This situation is presented in
Fig. 11 below, where the intermediary obstacle is detected
after the robot tried to avoid the first obstacle on the right
side.

Fig. 11. Found intermediary obstacle graph update: left – the
node’s position relative to the obstacle and the robot, right –
the updated graph.

The algorithm for this graph update is presented below.

Found Intermediary Obstacle Graph Update Algorithm

Estimate distances to avoid the obstacle from 2D image plane
obstacle coordinates

Create a new node

Update source adjacencies and edge weights

Update adjacencies and edge weights for the new node

Update adjacencies and edge weights for the node that the
robot was trying to reach

4. RESULTS

In the experiments that we conducted the behaviour of the
robot was tested in various obstacle configurations. In this
section we present two of the environment settings (obstacle
configurations) that are representative for the application that
we designed. The objects that were used as obstacles in the
two settings are: various cups and glasses, small packages
and note pads.

In the first setting we placed the obstacles so that the robot
would successively detect only new obstacles on the
travelling path to the goal object. This setting and the travel
path of the robot from the start to the goal is shown in the
Fig. 12.

The graph representation of the environment built by the
robot for this obstacle course is presented in Fig. 13. It can be
seen that the trajectory that corresponds to the smallest
distance on the graph matches the trajectory depicted in Fig.
12.

30 CONTROL ENGINEERING AND APPLIED INFORMATICS

Fig. 12. Obstacle setting 1 and the robot travel path.

Fig. 13. The graph representation of the environment built by
the robot for the path shown in Fig. 12.

In the second setting the objects were placed such that the
robot would detect also a secondary obstacle and the distance
to avoid that obstacle would be greater than the distance to
avoid the first obstacle on the other side. Thus the optimal
decision made by the robot in this case is to turn back and

avoid the first obstacle on the other side. This can be seen
from the Fig. 14 below:

Fig. 14. Obstacle setting 2 and the robot travel path.

The graph representation of the environment built by the
robot for this obstacle course is presented in Fig 15.

Fig. 15. The graph representation of the environment built by
the robot for the path shown in Fig. 14.

The computational complexity of the application that we
designed is in principal given by the image transformation to

CONTROL ENGINEERING AND APPLIED INFORMATICS 31

gray scale and the three core algorithms, namely: the Canny
edge detection algorithm, the agglomerative clustering
algorithm and the single source shortest path algorithm. The
gray scale image transformation and the edge detection are
the prime contributors to the application computational
overhead, because there computational complexity is O(mxn)
where m = 240 and n = 320 (for an input image of 320x240).
The agglomerative clustering has a computational complexity
of O(n2) where n is variable and equals the number of edge
pixels. The average number of the edge pixels equals 1000.
Thus, the agglomerative clustering algorithm generates a
smaller overhead because the input size is considerably
smaller compared to that of the canny edge detection. The
single source shortest path algorithm generates the smallest
overhead in relation with the application and has a
computational complexity of O(n log n) The algorithm’s
input size comprises of number of nodes and the number of
edges in the graph at a given moment.

In order for the robot to avoid a certain obstacle, these
algorithms are executed in a sequential order. So, the running
time of each processing step depends on the sum of machine
instructions given by each algorithm computational
complexity. This sum, in an average equals approximately
480k machine instructions. For the SRV-1 robot DSP
microcontroller at 500MHz the running time of the algorithm
is around 0.96 milliseconds.

For comparison, the round trip exchange of information and
processing using Matlab is around 1s, which still ensures a
smooth movement of the robot.

5. CONCLUSIONS

This paper presents a real-time application of a vision based
autonomous navigation in unstructured static environments
for mobile robots.

The results showed that the robot successfully navigates in
unstructured environment making optimal decisions to avoid
all the obstacles.

The application was structured according to the tasks the
robot has to perform. The main idea was a continuous
interaction between the robot and the surrounding
environment.

Obstacles on the robot travel path were localized in two steps.
In the first step we detected and separated edges of the
objects of interest. In the second step we analyzed these
edges to determine the individual objects and compute their
coordinates. The detection of edges is based on Canny edge
detector and the edge analysis is based on a modified bottom-
up agglomerative clustering algorithm.

In order to make an optimal decision to avoid a certain
obstacle we maintain and successively update a graph-based
representation of the environment. The collision avoidance
decisions are based on the Dijkstra’s single source shortest
path algorithm.

The overall obtained results prove that autonomous
navigation in unstructured environments is possible with low
cost hardware such as the SRV-1 robot. Therefore in the
future we expect for many such robotic systems to be used in
an unlimited number of applications, thus continuing to have
an increasingly impact in people lives.

REFERENCES

Akella, M.R.(2005) Vision-Based Adaptive Tracking Control
of Uncertain Robot Manipulators. Robotics, IEEE
Transactions on, Volume: 21 , Issue: 4. pp: 747 – 753.

Alenya, G.; Escoda, J.; Martinez, A.B.; Torras, C.(2005)
Using Laser and Vision to Locate a Robot in an Industrial
Environment: A Practical Experience. Robotics and
Automation. Proceedings of the 2005 IEEE International
Conference on. pp: 3528 - 3533

Browning, B.; Veloso, M.(2005) Real-time, adaptive color-
based robot vision. Intelligent Robots and Systems, 2005.
IEEE/RSJ International Conference on. pp: 3871 – 3876.

Dumitrescu, E., Paturca, S., and Ilas, C., (2009) Optimal Path
Computation for Mobile Robots using MATLAB, Revista
de Robotica si Management, vol. 14, nr.2, pg.36, 2009

Forsyth D. and Ponce J. (2003), Computer Vision: A Modern
Approach. Upper Saddle River, New Jersey: Prentice
Hall.

Gopalakrishnan, A.; Greene, S.; Sekmen, A. (2005) Vision-
based mobile robot learning and navigation. Robot and
Human Interactive Communication, 2005. IEEE
International Workshop on. pp: 48 – 53.

Novischi, D., Ilas, C., and Paturca, S., (2010) Obstacle
Avoidance based on vision with Low Level Hardware
Robots. Performance Comparison, Eurobot International
Conference, Rapperswill, Switzerland, 2010.

Novischi, D., Paturca, S., and Ilas, C. (2009), Obstacle
Avoidance Algorithm for Autonomous Mobile Robot,
Revista de Robotica si Management, vol. 14, nr.2, pg.40,
2009

Stronger, D.; Stone, P. (2007) A Comparison of Two
Approaches for Vision and Self-Localization on a Mobile
Robot. Robotics and Automation, 2007 IEEE
International Conference on. pp: 3915 – 3920.

Tanaka, K.; Yamano, K.; Kondo, E.; Kimuro, Y.(2004) A
vision system for detecting mobile robots in office
environments. Robotics and Automation, 2004.
Proceedings. 2004 IEEE International Conference on.
Volume: 3. pp: 2279 – 2284.

Zhao, Y.; Cheah, C.C.; Slotine, J.J.E.(2007) Adaptive Vision
and Force Tracking Control of Constrained Robots with
Structural Uncertainties. Robotics and Automation, 2007
IEEE International Conference on. pp: 2349 – 2354.

