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Abstract: This paper presents an algorithm for real-time vision based autonomous navigation for mobile 
ground robots in an unstructured static environment. The obstacle detection is based on Canny edge 
detection and a suite of algorithms for extracting the location of all obstacles in robot’s current view. In 
order to avoid obstacles we designed a reasoning process that successively builds an environment 
representation using the location of the detected obstacles. This environment representation is then used 
for making optimal decisions on obstacle avoidance. 
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                             1. INTRODUCTION 

Computer vision is a field of computer science that has been 
heavily researched in the recent years. Its applications in 
robotics are diverse, ranging from face recognition to 
autonomous navigation (see Forsyth, Akella, Browning). 
General object recognition for mobile robots is of primary 
importance in order to generate a representation of the 
environment that robots can use for their reasoning processes. 
The ability to localize obstacles in real-time and with a high 
degree of accuracy based on vision provides a foundation for 
the development of many state of the art autonomous robotic 
systems (see Gopalakrishnan, Allenya, Stronger, Novischi 
2009). Directions such as optimal implementation, robust 
detection, especially when using limited performance 
cameras and optimal avoidance decisions continue to be of 
primary interest.  

This paper focuses on real-time vision based autonomous 
optimal navigation for basic mobile robots in an unstructured 
static environment (see also Zhao). Simply stated, the robot 
has to travel through an unknown environment, where still 
objects are randomly placed, in order to reach a specified 
destination. For this, the robot relies only on visual 
information for the reasoning process. Furthermore, the 
camera and the robot hardware and sensing are rather limited 
in terms of performance (see section 2). We have used for 
obstacle identification an approach based on Canny edge 
detection and a suite of algorithms for extracting the location 
of all obstacles in the robots field of view. We also designed 
a higher reasoning process that allows the robot to make 
optimal decisions to avoid collisions in order to reach the 
specified destination. 

 

In order to ensure maximum flexibility during the algorithm 
development, we implemented the main image processing 
tasks in Matlab and interfaced the robot with the Matlab. 
Thus, the robot acquires the images, sends the image to 
Matlab, which localizes the obstacles, makes an optimal 
decision and sends a trajectory update to the robot. The 
application we designed runs in real-time due to the 
efficiency of the developed algorithms. 

Of course, the algorithms can be then implemented directly 
on the robot controller and we present a processing time 
estimation for this situation. 

              2. HARDWARE & SOFTWARE USED 

The hardware used for physically implementing the robotic 
system includes a Blackfin SRV-1 robot (Fig. 1) and a 
personal computer. The SRV-1 robot is equipped with a DSP 
microcontroller running at 500 MHz, a 1.3 MP camera with 
adjustable image resolution and a Wi-fi hardware module. It 
also includes four DC brushless motors.  

Fig. 1. The Blackfin SRV-1 robot used for implementation 
and testing. 
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The application algorithms were implemented in Java and in 
Matlab. These languages were selected because of the overall 
performance and flexibility that their combination offers 
mainly: complex data structures, cross platform and fast 
matrix operations. 

In order to interface the SRV-1 robot with a PC we developed 
a Wi-fi software communication module. So, from the 
application standing point a PC can be viewed as the 
processing unit and the robot can be viewed as the sensing 
and actuating unit. This module supports requests such as 
movement commands, setting the image resolution and 
reading the data from the sensors such as the RGB colour 
image.  

                    3. APPLICATION ALGORITHMS 

3.1 The main Algorithm 

The main algorithm of our application is structured according 
to three tasks that the robot has to perform namely: the 
obstacle detection task, the decision task and the travel task. 
These tasks are interleaved in order for the robot to reach its 
given goal. The main logic of the algorithm starts from the 
idea of a permanent interaction between the robot and the 
surrounding environment. In this interaction the robot not 
only detects obstacles, but it also successively builds a 
representation of the environment in order to make an 
optimal decision to avoid certain obstacles. After an obstacle 
has been avoided the robot repositions its self to reach the 
given goal. The main algorithm diagram is presented in Fig.3 
below. 

 

Fig. 3. Main algorithm diagram. 

3.2  The Travel Task 

The travel task is responsible for driving the robot. This is 
accomplished by sending movement commands via the Wi-fi 
communication module. Due to the fact that the SRV-1 robot 
is not equipped with any odometric sensor such as encoders, 
the trajectory is not expressed in fixed coordinates, but in 
adjustable movement segments.  

 

3.3  Obstacle Detection Task 

The obstacle detection task is responsible for localizing all 
obstacles in the current field of view that are on possible 
collision courses and for signalling this to the decision task. 
For this purpose the obstacle detection is performed in two 
separate steps, namely: object feature detection and feature 
analysis. In the first step the objects edges are detected using 
a Canny edge detector. This detector was selected because of 
its higher performance in comparison with others such as: 
Solbel, Roberts or Laplacian (see Forsyth). After applying the 
Canny edge detector, we separate the edges of the objects of 
interest from the edges belonging to the objects in the 
background by selecting only the bottom part of the image. 
This is because obstacles that are closer to the robot and 
influence its travel path are always located in the bottom part 
of the 2D image plane. The algorithm for the feature 
detection and its results for every step are presented below. 

  

  a   b 

  

c   d 

Fig. 4. SRV-1 camera images: a – RGB colour image, b – 
gray scale image, c – edge image, d – bottom part of edge 
image. 

Objects Feature Detection Algorithm  

Get RGB image from the robot 

Transform the image to gray scale 

Apply the Canny edge detector 

Select the bottom part of the image 

In the second step we analyze the detected edges in order to 
compute the location of the obstacles in the 2D image plane. 
In the ideal case where object edges are perfectly detected, 
such as the one in Fig. 5, we could compute the objects 
coordinates in the 2D image plane.  
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Fig. 5. Ideal case edge detection: left – bottom part of the 
camera captured image and right – ideal edge image. 

Despite the fact that tests were conducted in an office 
environment (see also Tanaka), the detection of edges is 
influenced by various factors such as ambient light 
conditions, shadows and similar overlapped objects. Due to 
these factors the object edges appear as in Fig. 6.  

 

Fig. 6. Real case edge detection: left – bottom part of the 
camera captured image and right – real edge image. 

In order to distinguish which edges belong to which object 
we developed a modified version of the bottom-up 
agglomerative clustering algorithm. The elements that are 
clustered in this algorithm are the individual edge pixels. The 
merging step of two clusters is based on a threshold rather 
than on a rule such as single linkage of the standard 
algorithm. The modified version of the algorithm is presented 
below: 

Agglomerative Clustering Algorithm 

Put each edge pixel into its own cluster 

Compute the distance matrix  

While (! no cluster to merge) 

For every cluster i 

For every cluster j 

If ( distance between clusters < = threshold) 

Merge clusters 

Update distance matrix 

The output of this algorithm is separate edge images which 
contain individual objects. The results for the images in Fig. 
6 are shown in Fig. 7 below. 

  

Fig. 7. Agglomerative clustering results. 

After the image segmentation into individual obstacles, the 
coordinates of each obstacle are computed in the 2D image 
plane. Then we compute the coordinates of a central obstacle 
which includes all obstacles that are on the direct collision 

course with the robot. This approach is depicted in the Fig. 8 
below. Finally, the central obstacle is merged with some of 
the obstacles that are not on the direct collision course, but 
for which the distance between them and the central obstacle 
is smaller than the robot width and thus, the robot could not 
pass between these obstacles. 

 

Fig. 8. Obstacle localization diagram – including obstacle 
merging for close obstacles (O1, O2 and O4). 

The algorithm for obtaining the location of the merged 
obstacle in the 2D image plane is presented below: 

Obstacle Localization Algorithm 

Segment the image into individual obstacles 

Compute each obstacle coordinates 

Compute the coordinates of the central obstacle 

Merge obstacles  

3.3. The Decision Task 

The decision task is responsible for successively making 
optimal decisions on how to avoid obstacles in order to reach 
a given goal. This means that ideally, the shortest travelling 
path should be selected. In order to make such decisions 
when avoiding the obstacles, we maintain and successively 
update an environment representation in form of a graph. In 
this graph the nodes represent the possible positions that the 
robot can reach and the edges weights represent the distances 
the robot must travel in order to reach these positions. These 
distances are estimated from the processed image, by 
counting the number of pixels between given pair of 
positions. Making an optimal decision as to which successive 
positions the robot must reach in order to avoid the obstacles 
is based on Dijkstra’s single source shortest path algorithm 
(see also Dumitrescu 2009). To correctly compute the 
shortest path, the graph is updated after each obstacle 
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detection and the start node is set before the computation in 
question.   

When the robot first starts the graph is initialized to contain 
only two nodes, namely: the start node and the goal node, 
depicted in figure 9. 

 

Fig. 9. Environment graph for path decision task; Initial 
graph – V1 is start node and V2 is the goal node. 

As the robot travels and detects obstacles on its travel path, 
the graph is successively updated according to two situations: 
the detection of a new obstacle and the detection of a 
secondary obstacle. A new obstacle is the obstacle detected 
while the robot is moving straight toward the goal. By 
secondary obstacle, we refer to an obstacle detected while the 
robot is trying to avoid a previously detected obstacle. In the 
first situation, the graph is updated with two nodes that are 
placed between the start node and the goal node. These nodes 
correspond to the left and right positions that the robot can 
reach in order to avoid the obstacle edges, as depicted in the 
Fig. 10 below. 

        

Fig. 10. Found new obstacle graph update: left – the nodes 
position relative to the obstacle and the robot, right – the 
updated graph. 

The algorithm for this graph update is presented below.  

Found New Obstacle Graph Update Algorithm 

Estimate distances to avoid the obstacle from 2D image plane 
obstacle coordinates 

Create two nodes 

Update source adjacencies and edge weights 

Update the new nodes adjacencies and edge weights 

In the second situation the robot detects an obstacle while 
trying to avoid another. The graph representation in this case 
is updated with only one node corresponding to the current 
position of the robot. This node is placed between the starting 
node and the node that the robot was trying to reach. The 
later node is also updated so that it corresponds to the  

 

position for avoiding the intermediary obstacle on the same 
side as the previous obstacle. This situation is presented in 
Fig. 11 below, where the intermediary obstacle is detected 
after the robot tried to avoid the first obstacle on the right 
side. 

 

           

 

Fig. 11. Found intermediary obstacle graph update: left – the 
node’s position relative to the obstacle and the robot, right – 
the updated graph. 

The algorithm for this graph update is presented below. 

Found Intermediary Obstacle Graph Update Algorithm 

Estimate distances to avoid the obstacle from 2D image plane 
obstacle coordinates 

Create a new node 

Update source adjacencies and edge weights 

Update adjacencies and edge weights for the new node 

Update adjacencies and edge weights for the node that the 
robot was trying to reach 

4.  RESULTS 

In the experiments that we conducted the behaviour of the 
robot was tested in various obstacle configurations. In this 
section we present two of the environment settings (obstacle 
configurations) that are representative for the application that 
we designed. The objects that were used as obstacles in the 
two settings are: various cups and glasses, small packages 
and note pads.  

In the first setting we placed the obstacles so that the robot 
would successively detect only new obstacles on the 
travelling path to the goal object. This setting and the travel 
path of the robot from the start to the goal is shown in the 
Fig. 12.  

The graph representation of the environment built by the 
robot for this obstacle course is presented in Fig. 13. It can be 
seen that the trajectory that corresponds to the smallest 
distance on the graph matches the trajectory depicted in Fig. 
12. 
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Fig. 12. Obstacle setting 1 and the robot travel path. 

 

Fig. 13. The graph representation of the environment built by 
the robot for the path shown in Fig. 12. 

In the second setting the objects were placed such that the 
robot would detect also a secondary obstacle and the distance 
to avoid that obstacle would be greater than the distance to 
avoid the first obstacle on the other side. Thus the optimal 
decision made by the robot in this case is to turn back and 

avoid the first obstacle on the other side. This can be seen 
from the Fig. 14 below: 

 

Fig. 14. Obstacle setting 2 and the robot travel path. 

The graph representation of the environment built by the 
robot for this obstacle course is presented in Fig 15. 

 

Fig. 15. The graph representation of the environment built by 
the robot for the path shown in Fig. 14. 

The computational complexity of the application that we 
designed is in principal given by the image transformation to 
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gray scale and the three core algorithms, namely: the Canny 
edge detection algorithm, the agglomerative clustering 
algorithm and the single source shortest path algorithm. The 
gray scale image transformation and the edge detection are 
the prime contributors to the application computational 
overhead, because there computational complexity is O(mxn) 
where m = 240 and n = 320 (for an input image of 320x240). 
The agglomerative clustering has a computational complexity 
of  O(n2) where n is variable and equals the number of edge 
pixels. The average number of the edge pixels equals 1000. 
Thus, the agglomerative clustering algorithm generates a 
smaller overhead because the input size is considerably 
smaller compared to that of the canny edge detection. The 
single source shortest path algorithm generates the smallest 
overhead in relation with the application and has a 
computational complexity of O(n log n) The algorithm’s 
input size comprises of number of nodes and the number of 
edges in the graph at a given moment.  

In order for the robot to avoid a certain obstacle, these 
algorithms are executed in a sequential order. So, the running 
time of each processing step depends on the sum of machine 
instructions given by each algorithm computational 
complexity. This sum, in an average equals approximately 
480k machine instructions. For the SRV-1 robot DSP 
microcontroller at 500MHz the running time of the algorithm 
is around 0.96 milliseconds.  

For comparison, the round trip exchange of information and 
processing using Matlab is around 1s, which still ensures a 
smooth movement of the robot. 

5. CONCLUSIONS 

This paper presents a real-time application of a vision based 
autonomous navigation in unstructured static environments 
for mobile robots.  

The results showed that the robot successfully navigates in 
unstructured environment making optimal decisions to avoid 
all the obstacles. 

The application was structured according to the tasks the 
robot has to perform. The main idea was a continuous 
interaction between the robot and the surrounding 
environment.   

Obstacles on the robot travel path were localized in two steps. 
In the first step we detected and separated edges of the 
objects of interest. In the second step we analyzed these 
edges to determine the individual objects and compute their 
coordinates. The detection of edges is based on Canny edge 
detector and the edge analysis is based on a modified bottom-
up agglomerative clustering algorithm. 

In order to make an optimal decision to avoid a certain 
obstacle we maintain and successively update a graph-based 
representation of the environment. The collision avoidance 
decisions are based on the Dijkstra’s single source shortest 
path algorithm. 

The overall obtained results prove that autonomous 
navigation in unstructured environments is possible with low 
cost hardware such as the SRV-1 robot. Therefore in the 
future we expect for many such robotic systems to be used in 
an unlimited number of applications, thus continuing to have 
an increasingly impact in people lives. 
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