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Abstract: In this paper we present a suite of algorithms for determining the possible trajectories of an 
autonomous robot while navigating through obstacles. For this, we first identify the obstacle orientation 
and then determine the distance between each two obstacles and compare it with the robot width. The 
results of these algorithms are intended to be used by the robot path planning, for selecting the best 
trajectory. The algorithms are relatively simple and accurate and can work successfully even on robots 
with medium computational resources. 
Keywords:. autonomous robot, robot vision, image processing algorithms, Canny edge detection, K-
Means clustering. 



1. INTRODUCTION 

Image processing applications have become extremely 
important in robotics over the last 15 years. Image processing 
algorithms have been introduced for a multitude of tasks, 
such as navigation, orientation, object and surrounding 
identification (see Forsyth, Florczyk, Browning).   

In many such algorithms it is important to extract the 
essential image information, such as the presence of objects, 
their properties, including their size and position. There are 
several approaches for this (see Florczyk). In camera 
calibration, the goal is to determine the parameters of a 
camera model, in order to explain the projection of the 3D 
image to the 2D plane and to allow object reconstruction, 
including determining info on their size and position (see 
Forsyth, Florczyk, Vincent, Ji, Kolesnik, Ma). Calibration 
itself can be split in two main categories: test-area 
calibration, based on using a known, test environment and 
self-calibration, which uses images obtained from different 
positions in order to determine the camera model and to 
allow the object reconstruction (see Florczyk). Of these, 
especially the latter has attracted the interest (see Vincent, 
Horaud, Ji, Kolesnik, Ma, Mirzaei). Many of these deal also 
with full determination and correction of image distortion 
(see Vincent).  

However, when dealing with robot navigation, very often the 
problem can be solved with less information on the image 
and less accurate measurements. For instance, the focus is not 
on computing the object size and position, but rather on 
determining the distances between two obstacles, and 
possibly the length of alternative path segments, in order to 
choose the optimal path. In both cases we argue that a very 
precise determination of these distances is not the primary 
goal, while making a good decision on the path in the early 
movement stages is. This decision will be based first of all on 

determining the available trajectory options among the 
obstacles (by eliminating the corridors that are too narrow for 
the robot) and then by selecting the one that is most suitable. 
Since in many cases the robot camera is not able to see the 
entire movement area, up to the target, this decision will be 
made on incomplete information. 

In this paper we present a practical approach for extracting 
from the camera image the essential information that is 
needed for making good decisions during the navigation. In 
order to simplify the algorithm, there is no self-calibration 
during the robot navigation. For best results, the camera has 
to be pre-calibrated, using a test image.  The path decisions 
and planning will then be done in the image 2D plane, 
without any transformation to the 3D real space.  

2. OBJECT ORIENTATION IDENTIFICATION 

It is often the case that the objects orientation in the (x,y) 
coordinate plane is needed in order to build a more accurate 
environment representation. In order to extract this feature 
from a 2D image we developed an algorithm based on Canny 
edge detection and K-Means Clustering, formulated in terms 
of Expectation Maximization algorithm. The main idea of 
algorithm is to adequately represent the lines formed by 
objects edge pixels in the Hough space. In this space a 
straight line is represented by the pair (r,θ), where r is the 
distance between the line and the origin and θ is the angle of 
the vector to the origin for the closest point as depicted in 
Fig. 1. 

In the first step of our algorithm we apply the Canny edge 
detector on the image obtained from the camera and extract 
the individual lines. Because edge lines are formed by 
individual pixels, in the first step of our algorithm we 
compute the (r,θ) coordinates between each individual pixel 
and all other pixels, using the equations below. 
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Fig. 1. The (r,θ) coordinates line parameterization used for 
object edge representation. 

In these equations d represents the Euclidian distance 
between two points on a line and the pairs  1 1,x y and 

 2 2,x y  represent their polar coordinates. All distances are 

represented in pixels. 
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The results obtained from this computation are two matrices, 
R and Θ, containing all the vector angles and lengths between 
each pair of individual pixels. 

In the second step we first use a modified version of K-
Means clustering algorithm that we developed to group 
angles that have a deviation smaller than 3 degrees. Then we 
select the clusters that have a number of elements bigger than 
a specified threshold. This is done because real angles of the 
edge pixel lines that are prominent yield bigger clusters in 
terms of number of elements.  

In the third step, for each previously selected cluster we again 
apply K-Means in respect to the distances matrix R. Thus, 
each angle cluster is “divided” into several clusters based on 
distance from the origin. For each angle cluster we select 
only the distance clusters that are bigger than a specified 
threshold. These resulting clusters represent the object edge 
lines for which we determined the angles. In the final we 
determine the object relative orientation to the robot by 
examining the edge lines for each detected object. An object 
orientation is expressed by the angle of a primary edge line 
and its perpendicular. Because some of the object edge lines 

are partially detected or are not detected at all, in order to 
determine an object relative position to the robot, we analyze 
the actual object edges in three cases: 
 Case 1, if an edge line is present between two edge lines 

at 90 degree, then that line is selected as the primary line 
in the 2D image plane. 

 Case 2, if no two 90 degree edge lines are found, then the 
edge object lines are analyzed and the primary line is the 
one with the smallest r distance in the 2D image plane (r 
is the perpendicular line from the image origin to the 
line.) 

 Case 3, if the primary edge line is not found as in case 1 
or 2, then the principal line is selected to be a horizontal 
line (at 0 degree angle) that connects the x right and x left 
extreme coordinates of the object in the 2D image plane. 

 
The algorithm for obstacle orientation identification is 
presented below: 
 
Object Orientation Identification Algorithm 
 
1. Detect objects edges 

2. Localize objects in the 2D image plane 

3. Compute distance (R) and angle (Θ) matrices  

4. Compute true angles of object edge lines  

5. Compute distances in respect to true edge lines 

6. Compute relative object orientation to the robot from the 

edge lines angles and vector distances 

Since in the standard version of the K-Means clustering 
algorithm one needs to specify the number k of clusters prior 
to the clustering process, we developed an enhanced version 
to automatically select k. In our modified version, the number 
k of clusters increases based on the magnitude of the 
deviation. Thus, if the deviation of a cluster has larger 
magnitude than a specified threshold, the cluster is divided 
and the k number of total clusters is increases. In the division 
process the centroids of the new clusters are chosen to be the 
old cluster centroid and the value of an element for which the 
deviation is maximum. The algorithm is presented below. 

The Modified K-Means Algorithm 
 
1. Start with one cluster ( k = 1 ) 

2. noPointsMove = false 

3. Assign each point to the cluster 

4. While (! noPointsMove ) 

a. If(  ! k = 1 ) 

i. Assign each point to closest cluster 

b. For each cluster  

i. Compute new centroid  

ii. Compute the new deviation 
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iii. If(noPointsMove  && deviation  >  threshold) 

1. noPointsMove = false; 

2. Divide cluster 

5. Remove small clusters 

In Fig. 2 and Fig. 3 we present the processed image, as 
resulted after applying the object orientation identification 
algorithm, in two distinct situations. 
In the first situation (Fig. 2), the algorithm identified a line 
connecting two other lines, with which it creates a 90o angle, 
thus it was selected as the primary line, based on which the 
object orientation is computed. In the figure, this is the line 
that is closest to the horizontal. In the second case (Fig. 3), 
the algorithm did not identified one of the rectangular edges 
in either two objects, so the primary line is selected to be the 
one with the smallest distance r from the image origin (the 
bottom right corner) to the line (i.e. the extension of the 
segment edges).  
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Fig. 2. Processed Images (principal line selected as the one 
between lines at 90 degrees): A – Real Image, B – Edge Line 
Image, C – First Object (at 21 degrees orientation), D – 
Second Object (at 6 degrees orientation) 
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Fig. 3. Processed Images (two connected lines with smallest r 
distance): A – Real Image, B – Edge Line Image, C – First 
Object (at 39 degrees orientation), D – Second Object (at 46 
degrees orientation) 
 
One of the algorithm limitations is the way it interprets 
objects that have a circular (curve) shape, or a cylindrical 
shape. For instance, in the later case, the line connecting the 

two edges at 90o is a curve. In this case the algorithm 
considers the primary line as the horizontal that connects the 
two vertical edges.  

3. COLISION FREE PATHS IDENTIFICATION 

A collision free path is a path which the robot could follow in 
order to reach its final goal. For determining the available 
collision free paths we analyze the obstacles location and 
their orientation. In each case we associate with each 
collision free trajectory a distance and weight value that 
depends on the accuracy with which objects are detected.  

In the first case the detected objects are perpendicular to the 
robot trajectory and parallel to each other. This situation is 
presented in Fig. 4 and Fig. 5. The distance between the 
objects and between each object and possible walls is 
compared to the robot width. In Fig. 4 and Fig. 5, there are no 
lateral walls and the distance between the two objects that are 
closer is larger than the robot width, so the robot could pass 
through. Thus, the possible collision free paths that are 
determined in this situation are either on the left side of the 
first object, the right side of the second or between the two 
objects. For each trajectory marked as free from collisions we 
may compute the distance that the robot has to travel and 
assign a weight value of 50%. If the final goal is straight 
ahead, the smallest travel distance corresponds to the path 
which is closest to this straight line. The weight of 50% 
means that there is a 50% probability that this path would be 
blocked further on, by an object that is undetected yet (e.g. is 
hidden by the front ones). If there is a more distant object on 
the path that is detected (as O3 in Fig. 4), there are two 
situations.  

 

Fig 4. Case 1 – Detected objects are parallel to each other and 
perpendicular to the robot trajectory. The distance O1-O2 is 
computed and found larger than robot width, but distances 
O3-O1 and O3-O2 are assumed that cannot be computed. 

In the first, the distances between that object and its 
neighbours (such as O3-O1 and O3-O2 in Fig. 4) can be 
determined (details on how to compute it will be shown 
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below) and hence the collision free paths around that obstacle 
are found. They would have a 50% weight, for the reasons 
explained above. In the second situation, the distances cannot 
be determined. Consequently, the collision free path that 
contains this next obstacle is assigned a 25% weight. This 
situation is shown in Fig. 4.  

The way that the obstacles are detected by the robot can be 
seen in Fig. 5. 
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Fig. 5. Processed Images: A – Real Image, B – Edge Line 
Image, C – Left Object, D – Right Object, E – Centre Object 
 

In the second case obstacles are parallel to each other, but not 
perpendicular to the robot current orientation. This situation 
is shown in Fig. 6. The possible collision free trajectories are 
the same as in the first case. In order to mark the trajectory 
passing between two objects as a collision free trajectory, we 
compute the minimum passing distance. This minimum 
passing distance in this case represents the perpendicular on 
each object sides. Because we represent each object 
orientation through the primary line and because we know the 
edges that are perpendicular, the computation of the 
minimum distance becomes trivial. The assignment of the 
weight values for each collision free trajectory follow the 
same logic as in the first case. 

The way that the obstacles are detected by the robot can be 
seen in Fig. 7. 

In the third case the detected objects form an angle to each 
other and also to the robot current trajectory. This situation is 
depicted in Fig. 8 – Fig. 11. The possible collision free paths 
are identical to the previous cases. The minimum distance 
between the two objects is computed by determining the (x, 
y) coordinates in the 2D image plane of the point where the 
primary lines of the objects intersect each other. If the y 
coordinate of this point is larger than the maximum y 
coordinate of the two primary lines, then the minimum 
distance is computed as the horizontal distance between the 
objects, in the corner with the lower y.  

 

 

Fig 6. Case 2 – Detected objects are parallel to each other and 
form an angle with robot current orientation. The objects are 
O1 and O2. 
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Fig. 7. Processed Images: A – Real Image, B – Edge Line 
Image, C – Left Object, D – Right Object, E – Centre Object 

  

Fig. 8. Case 3A - Detected objects (O1, O2) form an angle 
with robot orientation and to each other and the intersection 
point is located above the maximum y coordinate of the 
primary lines. 
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This situation is called 3A and can be seen in Fig. 8 and in 
Fig. 9. In this situation the weight that we assign to this 
trajectory is 25% because the distance between the two 
objects could narrow further. 

If the y coordinate of the intersection point is smaller than the 
minimum y coordinate of the primary lines, the minimum 
distance is the horizontal distance between the closest points 
of the object in the y direction. This is referred to as case 3B 
and can be seen in Fig. 10 and Fig. 11. In this situation the 
weight value that we assign to this trajectory is 50%. 
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Fig. 9 Processed Images: A – Real Image, B – Edge Line 
Image, C – Left Object, D – Right Object 

 

Fig. 10. Case 3B - Detected objects (O1, O2) form an angle 
with robot orientation and to each other. The intersection 
point is below the minimum y coordinate of the primary 
lines. 

The algorithm for computing the collision free trajectories is 
presented below: 

Collision Free Trajectories Algorithm 

For (each pair of obstacles) 

If (objects orientation = 90o) 

Compute horizontal distance between objects 

Compute collision free trajectories 

Assign weights 

Else If (object 1 orientation = object 2 orientation) 

Compute angle of the object interior sides  

Compute the length of the perpendicular to each 
interior side  

Compute collision free trajectories 

Assign weights 

Else 

Compute y coordinate of the primary lines 
intersection point 

If(y intersection point > max(y primary lines)) 

Compute the horizontal distance between y 
maximum coordinates of the primary lines 

Else 

Compute the horizontal distance between minimum 
y coordinates of the primary lines 

Compute collision free trajectories 

Assign weights 
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Fig. 11. Processed Images: A – Real Image, B – Edge Line 
Image, C – Left Object, D – Right Object 
 

CONCLUSIONS 

In this paper we presented and analysed an algorithm for 
identifying the object orientation and an algorithm for 
determining the collision free paths. 

The first algorithm is a K-Means algorithm, with the ability 
of automatically setting the number of clusters. 

The outputs of this algorithm are used by a second one, in 
order to compare the distances between obstacles and thus to 
determine the possible paths (collision-free paths). There are 
3 possible cases for two obstacles positions and we discussed 
each of them and the way in which the minimum distance is 
computed. If the robot final goal cannot be seen, the path is 
determined based on the available information. Thus, each 
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collision-free path is given a weight, which depends on the 
probability of being a collision-free path up to the final goal. 
In the situation in which we cannot determine the minimum 
distances accurately, the weight assigned reflects this. 

Both algorithms are relatively simple and accurate and can 
work successfully even on robots with medium 
computational resources. 

These algorithms have been implemented and tested using a 
Blackfin SRV-1 robot. 
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