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Abstract: An autonomous robot needs to be able to position itself in a given surrounding environment 
and to be able to accomplish a given navigational goal. This paper presents the integration of an Inertial 
Measurement Unit for the navigation and localization of an autonomous robot system. A generic control 
architecture is used for the CoRoBa architecture, using servant object component interfaces like Sensor, 
Processor, and Actuator, inherited from the Service interface abstraction based on the TAO 
implementation of the communication middleware CORBA. Different data integration modes were 
overviewed using several Kalman Filter implementations. The integration process for the Microstrain 
3DM-GX2 IMU and the robot localization were designed for the ROBUDEM robot platform, and 
implemented as CoRoBa sensor and processor modules. 
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1. INTRODUCTION 

Autonomous robots are mobile robots which can perform 
desired tasks in unstructured environments without 
continuous human guidance. Many kinds of robots have 
some degree of autonomy. Different robots can be 
autonomous in different ways. A high degree of autonomy is 
particularly desirable in fields such as space exploration, 
major incidents or natural cataclysm area exploration, where 
communication delays and interruptions are unavoidable or 
GPS outage appears. 

An autonomous robot needs to be able to position itself in the 
surrounding environment and accomplish the given 
navigational goal. 

It is very important for the autonomous robot navigation and 
positioning systems to be able to provide accurate continuous 
data, based on previous and actual information gathered from 
the surrounding environment. 

1.1 The necessity of different sensors on a mobile robot 
platform 

The mobile robot, as an autonomous robot, needs a lot of 
information about the surrounding environment. The 
surrounding environment can be “discovered” from a 
multiple point of view. Each point of view is gathered using a 
specific sensor, which only obtains a partial view of the real 
world, and reacts to a certain stimulus from it. 

Different sensors provide different kinds of information, 
which should be fused together in order to obtain a complete 
picture of the real world. More specifically, multi-sensor data 
fusion aims to overcome the limitations of individual sensors 

and produce accurate, robust and reliable estimate of the 
world state based on multi-sensory information. 

It has been a big challenging task for robotics researchers to 
develop different algorithms used to interpret these sensory 
data before they can be used in control and navigation tasks 
of mobile robots. To obtain a more accurate estimation of the 
surrounding environment, it is preferred to have a more 
complex set of sensorial data, with smaller observation noise. 

An autonomous robot needs to be able to position itself in the 
surrounding environment and accomplish the given 
navigational goal. Most of the robots positioning systems are 
based on the Global Positioning System (GPS), Inertial 
Measurement Units (IMU) and robot body odometry. 

Sensing the variation of the outside elements and data 
gathering using specialized sensors is essential for acquiring 
a good knowledge and “understanding” of the surrounding 
environment, and allowing an autonomous robot to position 
itself and proceed for a successful navigation. 

1.2 The sensing and the reasoning 

To reach a reasonable degree of autonomy, two basic 
requirements are needed: sensing and reasoning. Sensing is 
provided by an on board sensorial system, that gathers 
information about the robot itself, as an entity, about the 
subcomponents and the surrounding environment. 

The onboard sensorial system can be divided into several 
autonomous systems: IMU system, odometry system based 
on the wheels encoders, DGPS system, stereo vision camera 
framegrabber system and the sonar system. 
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Each autonomous robot system should be able to auto 
localize in the surrounding environment. The localization 
process assumes that the robot has access to a Global 
Interactive System (GIS) map or to a predefined set of maps 
for a specific area. By using the sensorial system, the robot 
should be able to rebuild a map of the environment and also 
localize himself, by constructing a minimalistic description of 
the environment. This process is known as Simultaneous 
Localization and Mapping (SLAM). According to the 
environment state and the provided goals, the reasoning 
system must allow the robot to localize itself in the 
environment and seek for free possible paths to fulfil the goal 
assignment. 

Both the sensing and the reasoning systems of the 
autonomous robot are adapted for the ROBUDEM robot and 
implemented as CoRoBa (COntrolling RObots with corBA) 
modules, in a distributed framework for integrating and 
controlling multi-sensor robotic systems. 

2. THE CONTROL ARCHITECTURE OF THE 
AUTONOMOUS ROBOT ROBUDEM 

The control architecture describes the strategy of combining 
the three main capabilities of an autonomous robot: the 
sensing, the reasoning and the actuation. These three 
capabilities have to be integrated in a coherent framework in 
order to accomplish certain tasks adequately. 

2.1 The generic control architecture  

The generic control architecture of the autonomous robot is 
divided into software architecture and hardware architecture. 
The control architecture has to be translated into a software 
architecture which manages the building blocks on a software 
level. This software architecture has to provide the flexibility 
of modular design while retaining a thorough structure, 
enabling an easy design process. All the different processes 
(sensor measurements, measurement processing, sensor 
fusion, map building, path planning, and task execution) have 
to be coordinated and interrelated in an efficient manner in 
order to allow the accomplishment of a higher goal. 

The generic architecture has several key components such as 
sensors, processors and actuators: Sensors (IMU, DGPS, 
wheel encoders used for Odometry, Ultrasonic sensors), 
Position and Mapping Processors (Position Estimation, 
Visual Simultaneous Localization and Mapping, Global Path 
Planner), Behavioural Processors (Maximise Terrain 
Knowledge, Avoid Obstacles using SLAM, Stereo Vision 
and Sonar, Go To Goals). The generic control architecture is 
detailed in (Fig.1). 

The output generated by the sensors must be processed by a 
processor or by a set of processors. All the processed 
information from the sensors is fused into a Behaviour 
Processor (Fuse Behaviours), from which the fused 
information is filtered in order to steer the RobuDem robot 
using a steering actuator (Robot Steering). 

2.2 CoRoBa framework 

CoRoBa, the distributed framework used, is based on the 
TAO implementation of the communication middleware 

CORBA. The implementation of the framework is based on 
several design patterns that make the design flexible, elegant 
and ultimately reusable (Colon 2006). 

The elementary brick in CoRoBA is a component 
(Component-based Architecture Pattern) that exchanges data 
over a network, by invoking remote operations (Remote 
Method Call Pattern). Components are independent execution 
units and have separated interfaces for the configuration and 
the actual functionality they provide (Hierarchical Control 
Pattern). Components are loosely coupled, being connected 
only by the structure of the data they exchange (Data Bus 
Pattern), and can be discovered at run-time (Broker Pattern). 
According to the classical control theory, components are 
divided in three categories, Sensors, Processors and 
Actuators. They form a chain along which information is 
transferred via Notification Channels (Event Channels) and 
like in classic control schemes, the data flow is unidirectional 
(Channel Architecture Pattern)(Fig. 1). 

 
Fig. 1. Generic control architecture of the autonomous robot 
ROBUDEM 

2.3 Data exchange between the basic interfaces 

The base interface in CoRoBa code is organized in two 
parallel hierarchies: the IDL interfaces and the CoRoBa 
classes implementing these interfaces. The Service interface 
represents the base interface, all other interfaces being 
derived from it. The operations defined by the Service 
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interface are implemented by a class named RMA_Service_i, 
which is inherited by all the components. There are three 
basic interfaces: Sensor, Processor, and Actuator that inherit 
from the Service interface. The classes implementing these 
interfaces are considered as abstract and may not be 
instantiated. In CoRoBa all servant objects (sensors, 
processors and actuators) are derived classes of the class 
RMA_Service_i. For the handling of different management 
operations like: start(), pause(), wakeup(), stop(), and also for 
the interaction with the Service interface, a special 
component called Component Remote Control (CRC) was 
used. The Sensor and the Actuator components manage the 
link between the Processor components and the physical 
elements mounted on the hardware platform. The Sensors are 
connected to physical sensorial systems and retrieve 
information that is forwarded to the processing components. 

Inside the CoRoBa framework, three different running modes 
are possible for the transmission of events between Sensors, 
Processors, and Actuators: PERIODIC, SYNCHRO and 
TRIGGER. The specific running modes for each basic 
interface are detailed in Table 1. (Colon 2006). 

Table 1.  Actions performed by each interface on the 
specific running modes 

Running mode Sensor Processor Actuator 

SYNCHRO 

Push an event 
each time new 

hardware sensor 
values are 
available 

Processes the 
data and pushes 
events each time 
a new event is 

received 

Sends data to 
an external 
system each 
time a new 

event is 
received 

PERIODIC 

Reads the sensor 
values and 

pushes events at 
given periodic 

intervals 

Processes the 
data and pushes 

events at 
periodic 
intervals 

Sends data 
periodically to 

an external 
system 

TRIGGER 

Reads hw. 
Sensor values 

and pushes 
events  each time 

it is externally 
triggered 

Processes the 
data and pushes 
external events 

when it is 
externally 
triggered 

Sends data to 
an external 
system only 
when it is 
externally 
triggered 

 
3. INERTIAL SYSTEMS INTEGRATION FOR THE 

NAVIGATION AND LOCALIZATION OF 
AUTONOMOUS ROBOT SYSTEMS 

3.1 Localization and posing 

The localization of an autonomous robot system refers 
mainly to the precise determination of the coordinates where 
the system is present at a certain moment of time. The 
localization problem for autonomous robot systems can be 
divided into two sub-tasks: global and local localization. In 
many applications, the orientation and an initial estimation of 
the robot position are known, being supplied directly or 
indirectly by the user or the supervisor. During the execution 
of the tasks, the robot must update this estimation using 
measurements from its sensors. This is known as local 
localization (Jensfelt P. (2001)). 

Using only sensors that measure relative movements, the 
error in the pose estimation increases over time as errors are 

accumulated. Therefore external sensors are needed to 
provide information about the absolute pose of the robot. 
This is achieved by matching the sensors measurements with 
a model of the environment. 

On the other hand, global pose estimation (Se et al, 2002), is 
the ability to determine the robot’s pose in an a priori or 
previously learned map, given no other information than that 
the robot is somewhere on  the map. Global localization is 
considerably more difficult than pose tracking because of the 
data association problems.  

3.2 Classification of the inertial systems 

Inertial systems can be classified into three different types. 
This classification could cause certain confusion. The less 
complex system type, providing raw data like acceleration 
and angular velocity from the inertial sensors, is the Inertial 
Sensor Assembly (ISA). Generally, ISA consists of 
Accelerometers and Gyroscopes that output uncompensated 
information. Usually the ISA might contain an temperature 
sensor, used at a higher level by the IMU for the error 
compensation. The Inertial Measurement Unit (IMU), 
receives the raw data from the ISA and manages the post 
processing of the data for error compensations like bias scale 
factors. To be able to determine position, velocity and 
attitude, the compensated acceleration and angular rotation 
are processed using different navigation algorithms. The 
entire process is called Inertial Navigation Systems (INS). 
The interdependence between INS, IMU and ISA can be 
observed in the schematic presented below (Fig. 2). 

        

Fig. 2. Differences between ISA, IMU and INS 

Inertial Navigation System (INS) 

Inertial Sensor Assembly (ISA) 

Acceleration [m/s2] 
(uncompensated) 

Angular rotation [deg] 
(uncompensated) 

Acceleration [m/s2] 
(compensated for bias and 

scale factor) 

Angular rotation [deg] 
(compensated for bias and 

scale factor) 

Navigation algoritm 

Position [m] Velocity [m/s] Attitude [deg] 

Inertial Measurement Unit (IMU) 

Accelerometers Gyroscopes 
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3.3 Data integration for robot localization 

In order to increase the accuracy of the robot positioning, a 
Kalman Filter is used to integrate the data received from the 
DGPS system with the data from the Inertial Navigation 
System (INS) and from the robot encoders. This integration 
will allow also maintaining the robot positioning even if no 
satellites are visible or the data received from the satellites is 
corrupted. 

The Kalman Filter is an extremely effective and versatile 
procedure for combining noisy sensor outputs, and to 
estimate the state of a system with uncertain dynamics. In the 
case of GPS, INS, and wheel Encoders integration, the output 
given by the noisy sensors includes the GPS receivers, INS 
and Wheel Encoder components. 

The system state includes the position, velocity, acceleration, 
attitude, and attitude rate of a vehicle. Uncertain dynamics 
include different unpredictable disturbances generated either 
by the host autonomous robot, or by the unpredictable 
changes that may appear internally, in the sensor parameters 
or structure (eg. the sensors temperature dependence). The 
position, velocity, and attitude errors, as well as errors in the 
inertial and GPS measurements are optimally estimated by 
the Kalman filters. 

The data output given by the GPS receivers (usually at 1 Hz) 
is relatively low and might not fulfil the accuracy 
requirements necessary for autonomous robots positioning, 
where in some cases the accuracy of less than 5 centimetres is 
requested. The problem is more serious and different other 
options should be taken into account in situations like: a 
potential temporary loss of GPS signal, slips occurrence due 
to uncertain terrain, or controlled electromagnetic jamming 
that might affect the functionality of the robot internal 
sensors. 

Using the INS output information, the autonomous robot can 
calculate the dynamics of motion between different GPS 
epochs, at a high temporal resolution and also complements 
the discrete nature of GPS and wheel encoders when a cycle 
slips or signal loss occurs. Additionally, the positioning with 
INS requires the integration with respect to time of the 
accelerations and the angular rates, the measurement noise 
accumulates and resulting in long wavelength errors. 
Opposite to INS, the GPS errors do not accumulate, but they 
get relatively larger in short term and the recorded 
measurements are characterised by a poorer resolution. 

3.4 Data integration modes overview 

The types of integration can be categorized by the extent to 
which data from each component aid the other’s function. 
First one is the coupling of the systems and depends on the 
architecture of the system. The second one refers to the 
category of parameters used by the method of combining or 
fusing the data to obtain position coordinates. 

The system architecture is generally understood in two ways, 
tight coupling and loosely coupling; where no coupling 
implies no data feedback from either instruments to the other, 
for the purpose of improving its performance. 

Tightly coupled sensors are treated as belonging to a single 
system producing complementary types of data.  The 
obtained data are produced simultaneously and optimally, 
and used to enhance the function of individual sensor 
components where possible. In a loosely coupled system, 
processed data from one instrument are fed back in an aiding 
capacity to improve the utility of the other’s performance, but 
each instrument still has its own individual data processing 
algorithm (Kocaman 2003). 

Inertial navigation improves if the GPS solution functions as 
an update in a Kalman filter estimation of the systematic 
errors in the inertial sensors. Similarly, GPS positions and 
velocities may be used to aid the INS solution in a high-
dynamic situation by providing a better reference for 
propagating error states based on the linear approximation 
(Jekeli, 2000).  

There are two basic categories of processing algorithms that 
are centralized and de-centralized. In centralized processing, 
the raw sensor data are combined optimally using one central 
processor to obtain a position solution. 

This kind of processing is usually associated with tight 
system integration. Decentralized processing is a sequential 
approach to processing, where processors of individual 
systems provide solutions that subsequently are combined 
with various degrees of optimality by a master processor. In 
principle, if the statistics of the errors are correctly 
propagated, the optimal decentralized and centralized 
methods should yield identical solutions (Jekeli, 2000). 

The centralized approach provides the best performance for 
the navigation solutions than a single robust Kalman filter 
model. Different forms of integration are evaluated in Table 
2. 

Table 2.  Different forms of the Kalman Filter (KF) 
implementation 

Implementation Advantages Disadvantages 

Open loop 
KF may be run externally, 

suitable for navigation 
based on INS 

Non-linear error model 
due to large second-

order effect, needs an 
EKF 

Closed loop 

For the INS, the linear 
model is sufficient. 

Suitable for software 
integration 

Requires more complex 
processing. GPS errors 

may affect INS 
performance 

Loosely-coupled 
(cascade, 

decentralised) 

Flexible and modular 
combination, small KF 
with faster processing, 
for parallel processing 

Sub-optimal 
performance, unrealistic 
covariance, minimum 

four satellites needed for 
a stable solution. INS 

data is not used for 
ambiguity estimation 

Tightly-coupled 
(centralised) 

Optimal solution with 
one error state model, 

GPS measurements can 
be used with less than 4 

satellites, direct INS 
aiding throughout GPS 

outages, faster ambiguity 
estimation 

Large size of the eror state 
model, with more complex 

processing requested 

 



42                                                                                                                   CONTROL ENGINEERING AND APPLIED INFORMATICS 
 
 
Integrated systems can provide a more complex system, with 
superior performances in comparison with either an DGPS, 
an INS or an Odometry system. A comparison regarding the 
main strengths and weakness of INS and DGPS systems 
versus an integrated INS and DGPS system is summarized in 
Table 3. (Skaloud 1999 and Kocaman 2003). 

Table 3.  Summarised comparison between INS, DGPS 
and integrated INS and DGPS systems 

INS DGPS INS and DGPS 
high position and 
velocity accuracy 

over  the short term 

high position and 
velocity accuracy over  

the long term 

high position and 
velocity accuracy 

accurate attitude 
information 

noisy attitude 
information (due to 
multiple  antenna 

arrays) 

precise attitude 
determination 

accuracy decreasing 
with time 

uniform accuracy, 
independent of time 

accuracy decreasing 
with time during 
long GPS signal 

outages 
high measurement 

output rate 
low measurement 

output rate high data output rate 

autonomous non-autonomous 
navigational output 
during GPS signal 

outages 

no signal outages cycle slip and loss of 
lock 

cycle slip detection 
and correction 

affected by gravity not sensitive to gravity gravity vector 
determination 

 
In the situations when a long temporary loss of the GPS 
signal appears, the localization update, and also the 
positioning and the navigation based only on the INS system 
can lead to a inaccurate solution. Therefore, an additional 
correction of the localization data is recommended, using the 
wheel encoders data output, combined with a frequent bias 
recalculation based on the temperature fluctuations recorded 
by the onboard temperature sensor of the ISA. For this 
recalculation of the bias, the temperature dependencies given 
by the manufacturer could be used. 

4. KALMAN FILTER MODELLING AND IMU 
INTEGRATION IN THE CoRoBa FRAMEWORK 

The IMU integration for the navigation and the positioning of 
an autonomous robot system is applied to a mobile car-like 
robot named "ROBUDEM", robot that travels through the 
environment using its sensors for self localization. The IMU 
is accessible to the CoRoBa framework via a basic interface 
named Sensor. 

A sensor interface named “RMA_Sensor_GX2_i” was 
developed to allow the data aquisition from the externally 
connected Microstrain 3DM-GX2 IMU sensor. All the three 
running modes are available for this sensor, and furthermore, 
due to the internal microprocessor of the 3DM-GX2, complex 
data acquisition can reach up to 110 groups of samples per 
second. The hardware sensor values are read by the CoRoBa 
Sensor and released in the Event Channel as pushed events. A 
processor interface named “Position Estimation” should 
receive the event and process the information. In parallel, the 
processor listens for other events generated by the DGPS 
sensor or the Odometry sensor. According to the information 
received at a specific moment of time, the processor launches 

into the event channel specific information necessary to the 
actuators to accomplish their purpose.  

For the navigation and the localization of the ROBUDEM 
autonomous robot, two coordinate frames can be assumed: a 
world coordinate frame W and a robot coordinate frame R. 
The W coordinate frame is defined such that the X and Z 
axes are on the ground plane, and the Y axis points vertically 
upwards. The ROBUDEM robot system state vector yR is 
defined in this case as (1), with the 3D position vector r = 
(yZ,yX,yY) in the gravity centre of the robot (supposed in the 
middle of the axis between the rear wheels), in the world 
frame coordinates W. The roll, pitch and yaw robot 
orientations correspond to the rotations around the Z, X, and 
Y axes, respectively (γ,θ,φ). 
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The motion model is obtained from the relationship between 
the past state of the robot, noted 1−t

Ry , and the current state of 

the robot, t
Ry , being given a control input tu  and tv,  as a 

random vector describing unmodelled aspects of the robot 
(eg. Process noise such as wheel sleep or odometry errors): 
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where f is a function representing the mobility, kinematics 
and dynamics of the robot ( transition function ). Considering 
the control u as identity, the dynamic system model, in our 
case, is given by (3): 
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where v and ω are the linear and the angular velocities 
respectively, and V and Ω represent the Gaussian distributed 
perturbations to the linear and angular velocity of the robot. 

The Kalman Filter maintains the state vector yR based on 
sensors measurements, and the covariance matrix P, which 
includes the uncertainties from the various states as well as 
correlations between the states. For each time stamp of the 
filter, we obtain the predicted state yR and the covariance P 
using the state transition function (4) 
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represents the Jacobian of f with respect to the state vector 

Ry and Q is the process noise covariance. Considering a 
constant velocity model for a smooth robot motion, F 
becomes (6): 
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The measurement model is needed for the Kalman Filter in 
order to relate the observation to unknown parameters. 

5. CONCLUSIONS 

In this paper, an Inertial Measurement Unit integration 
method for the navigation and the localization of an 
autonomous robot system is presented. The developed 
CoRoBa interfaces and the presented methods show that for a 
more accurate navigation and localization of the robot, 
supplementary information are necessary, for example wheel 
encoders and sonar data, as well as access to a set of GIS 
maps of an given environment. As all of the experiments 
were done indoor and partially on a simulated environment, 
future work aims for the usage of the robot with the CoRoBa 
framework in outdoor different real-time situations, such that 
the robot could gather environmental information and also 
react in real-time to the dynamic changes of the environment. 
Future research will enable and allow the robot to navigate 
autonomously and perform self reasoning on a 3D model of 
the environment, by the integration of map-building, map-
updating and path-planning techniques. 
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