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Abstract: This paper presents a heterogeneous agent network model as a simple representation to 
simultaneously characterize the time-invariant and time-varying topologies of various networked systems 
in communication and social networks, where two types of nodes: mobile agents, abstracted as random 
walkers in plane, and fixed agents interact with each other according to the neighborhood rule. The 
analytical results show that the mobile agent density determines synchronization of the considered 
heterogeneous network under the fast-switching constraint. In particular, a global synchronization 
behavior appears by introducing a proper mobile agent density. Numerical experiments verify the 
theoretical results above acquired. 
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1. INTRODUCTION 

Time synchronization is one of the fundamental problems in 
pervasive computing, since synchronized physical time are 
required in a lot of situations, such as sensor data fusion for 
detecting the same event by different sensors. Most existing 
literatures (Mills (1991), Sundararaman et al.(2005)) consider 
time synchronization by exchanging time information in 
wireless sensor networks (WSNs). Such networks are usually 
featured as static topology, i.e. all nodes are deployed in 
fixed locations. However, the methods of time 
synchronization might not be the optimal choice for a cyber 
physical system (CPS). CPS can be simply considered as a 
combination of WSNs and mobile nodes. Different from 
WSNs, the network topology changes in a CPS network as 
mobile nodes move. Therefore, it will be interesting to 
explore that how mobility of nodes can positively affect the 
methodologies for time synchronization.  

Agent network model seems to be a good solution to 
investigate time synchronization in such communication 
systems. Generally speaking, each agent in the agent network 
is equipped with an identical oscillator, and switching 
topology is constructed via the change of neighbouring 
interactions. The mobile agent network, indeed, can be used 
to explore many problems such as clock synchronization in 
mobile robots (Chen et al. (2006)), swarming animals or the 
appearance of synchronized bulk oscillations (Danø et al. 
(2006)), consensus problem in multi-agent systems (Peng et 
al. (2009)) and so on, partially because of a good choice to 
capture jumps or switches of coupling evolutions. Frasca et al 
(2008) investigated fast-switching synchronization of such a 
moving agent network and pointed out that the density of 
mobile agents determines network synchronization. Shi et al  
(2010) developed the mobile agent network model by 
assigning different emission powers to each agent, which 

further provides an insight into the collective behaviours of 
coupled agent systems (Wang et al.(2010a,b)). 

Actually, there are two types of nodes according to the role of 
individuals in clock synchronization of the considered 
communication systems: fixed nodes (nodes in physical 
networks), mobile nodes (mobile sensors in wireless 
network). Apparently, the fixed nodes and the mobile nodes 
can not be equally treated in modeling and analyzing the 
system. Also notice that the networked systems can be simply 
decomposed into a (relative) static sub-network and a 
switching sub-network due to the heterogeneity of nodes. 
Such a heterogeneous property can be also found in many 
other systems, e.g., in social networks, lobby groups go about 
inducing voters whose attitudes are already interacted by a 
fixed relationship to elect a candidate or to give up an initial 
view, where the lobbies can be depicted by mobile agents, 
and static topology seems to be more suitable to characterize 
interactions between voters (Amblard and Deffuant (2004)); 
and in volleyball, the libero as a mobile agent influences the 
whole team cohesion, while other players share relatively 
fixed connections. Then there appears a question: Is 
synchronization of the heterogeneous network easier to 
achieve or not under the existence of mobile agents. There is 
no doubt, lobbies in social networks, mobile wireless sensors, 
or volleyball libero player, seem to work as the role of pinned 
nodes－guiding their neighbour nodes towards the desired 
objective－ in synchronizing a complex network of coupled 
systems through pinning (Grigoriev et al. (1997), Li et al. 
(2004), Wang et al. (2009)). Furthermore, synchronization in 
these heterogeneous agent networks seems to be realized 
more easily compared with static networks. This paper is an 
attempt to explore synchronized behaviour based on a 
heterogeneous agent network. In this paper, a heterogeneous 
agent network model is presented to characterize a mixture 
feature of real-world network, where some agents with time-
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invariant interactions are assigned to fixed positions in planar 
space, while others are considered as random walkers in the 
plane whose connections are dynamically established by the 
change of neighbouring agents. With fast-switching 
constraints, the synchronization problem of the agent network 
is then investigated. Particularly, the effect of mobile agents 
to synchronization of the heterogeneous network is discussed, 
which provides an insight into regulatory mechanisms and 
design of complex systems. 

The rest of this paper is organized as follows: A 
heterogeneous agent network model is presented in Section 2. 
In Section 3, synchronization of the heterogeneous agent 
network is investigated under fast-switching constraints. 
Further discussions and illustrative examples for validation 
are given in Section 4. Conclusions are finally drawn in 
Section 5. 

2. A HETEROGENEOUS AGENT NETWORK MODEL  

Generally, a complex network consisting of l linearly and 
diffusively coupled nodes is described by 

1
( )

l
s

i i ij j
j

x f x G Hxσ
=

= − ∑& , 1, ,i l= L                                  (1) 

where xi=(xi1, xi2,…, xin) ∈Rn is the state vector of node i, f: 
Rn→Rn is a nonlinear smooth vector-valued function, 
governing the dynamics of each isolated node, σ is the 
overall coupling strength, H∈Rn×n is the inner linking matrix, 
and coupling matrix Gs=(Gij

s) ∈ Rl×l is a zero-row sum 
constant matrix, describing the network topology. If network 
(1) is connected in the sense of having no isolated clusters 
and edges signify the bidirectional ability, then Gs is 
symmetric and all its eigenvalues can be ranked as 0= μ1< 
μ2≤…≤ μl, where the eigenratio Rs= μl/μ2 is used to measure 
network synchronizability.    

To obtain a heterogeneous agent network, one first assigns all 
the l nodes in network (1) to be fixed agents. For simplicity, 
we denote by Nl the set of fixed agents (circles in Fig.1), and 
all agents in Nl are uniformly distributed in a two-
dimensional space of size L× L with periodic boundary 
conditions. Moreover, m mobile agents are introduced to the 
plane (squares in Fig.1), each of which is considered as a 
random walker whose position and orientation are updated 
according to  

( ) ( ) ( )
( ) ( )
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where Nm is the set of mobile agents, yi and θi are the position 
and orientation angle of agent i at time t, respectively, ηi , 
1≤i≤m, are independent random variables chosen at each time 
unit with uniform probability from the interval [-π, π], vi is 
the velocity of agent i, and Δt is the time unit. In the 
following, assume that each agent in the heterogeneous 
network is associated with a chaotic oscillator whose state  

 

variable is characterized by xi ∈ Rn. Then agent i evolves 
according to ( )i ix f x=& . Moreover, consider the case of 
Rössler oscillators, where the state dynamics of each agent is 
given by  
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with xi=(xi1, xi2, xi3)T, and  a=b=0.2, c=7. It is obvious that, 
the topology of the heterogeneous agent network can be 
conveniently described by graph φ={N, E}, where N= 

l mN N∪  is the node set (including l fixed agents and m 
mobile agents) and E=N×N is the edge set of the graph, 
which is defined as follow: each mobile agent interacts at a 
given time with only those agents located within a 
neighbourhood of an interaction radius according to the rule 
of moving neighbourhood network. In detail, agents i and j 
are said to be adjacent if and only if 

| ( ) ( ) | , ,i j my t y t r i N j N− < ∀ ∈ ∈                                       (4) 

at time t, where r is a parameter that defines the size of a 
neighbourhood, |.| refers to an induced norm. And for any 
two fixed agents, i, j∈Nl, the connection between them is a 
constant, i.e., s

ij ijG G= . In other words, the constant matrix Gs 
describes the static topology of the heterogeneous network. 
Hence, a heterogeneous agent network is constructed by 
combining fixed and mobile agents, chaotic oscillators and 
their dynamical laws, where the heterogeneous couplings 
include the time-invariant connections between fixed agents 
and the switching connections due to the moving of agents. 
Based on above assumptions, the heterogeneous network can 
be mathematically formulated as: 

1
( ) ( )

N
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j

x f x G t Hxσ
=

= − ∑&  i N∈ ,                                    (5) 

where the coupling matrix G(t)=(Gij) ∈ RN×N is defined as 
follows: for non-diagonal entries, G(t)= Gs  if , li j N∈ , and   
Gij(t)=Gij(t)=-1 if i∈ Nm or j∈ Nm are adjacent at time t, 
otherwise Gij(t)=Gij(t)=0; and the diagonal entries satisfy 

1,
( ) ( )

N

ii ij
j j i

G t G t
= ≠

= − ∑ .                                                         (6)                                      

Thus there exists a completely synchronized state in agent 
network (5), i.e., x1(t)=x2(t)=…= xN(t)=s(t). Fig.1 shows an 
illustration of the heterogeneous agent network (5). From the 
perspective of network structure, the heterogeneous network 
(5) can be simply regarded as a mixture of a static sub-
network and a switching sub-network, where the static sub-
network is constructed by fixed agents in Nl with time-
invariant topology Gs, and the switching sub-network is 
generated by the time-varying switching of mobile agents. 
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Fig. 1. A schematic illustration of the heterogeneous agent 
network 

3. SYNCHRONIZATION ANALYSIS OF THE 
HETEREOGENTOUS MODEL 

This section investigates the synchronized behaviour of the 
heterogeneous network under the constraint of fast-switching.  

Firstly, consider the average of G(t) for network (5). For an 
infinite sequence of contiguous time intervals [tk,tk+1), 
k=0,1,……with t0=0 and tk+1- tk=Δt, where Δt is  sufficiently 
small such that G(t) is a constant matrix for any t∈ [tk,tk+1). 
Let Gk be the constant coupling matrix at k-th interval. Then 
G(t) can be expressed by 

[ , )1 ( )( ) t tk ki t

i

G t G χ
+= ∑ ,                                                            (7) 

where t=tp+1, and χ[tk,tk+1)(t) is the indicator function with 
support [tk,tk+1). From (7), the average of coupling matrix G(t) 
satisfying 

1

o
i

i
i

G p G
=

= ∑ ,                                                                       (8) 

where pi is the probability that topological configuration i 
occurs, o is the number of possible configurations. Obviously, 
o is a finite number for a given heterogeneous network of 
finite order. 

Recalling the evolution of network (5), the connections 
between any fixed agents are time-invariant, i.e., s

ij ijG G= , ∀ i, 

j∈Nl; and other cases, 
1 ij

o k
ij kk

G p G
=

= ∑ , if i∈Nm; or j∈Nm. 
Without loss of generality, let node i be a mobile agent. Then 
no matter agent j is a fixed or a mobile one, the probability 
that agent j is within the interaction radius r of agent i is 
equal to 2 2/p r Lπ= . Therefore, the non-diagonal entries of   
for network (5) satisfy 

,s
ij l
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and G  is of the following form 
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where p is the probability that two agents are neighbours,  Il 
is an l×l  identity matrix, (1,1, ,1)T lRθ = ∈L . By elementary 
transformation, the eigenvalues of the average Laplacian G  
are calculated as:    

{0, , , , | 2, . }i j

m

mp pN pN j lλ µ= + =L L14243 .                       (11) 

It has been shown by Stilwell et al. (2006) that, if the time 
average of coupling matrix G(t), defined as G , admits a 
stable synchronization manifold and if the switching among 
all the possible network configurations is fast enough, then 
the time-varying network (5) will synchronize, where T is a 
positive constant. Following this result, synchronization of 
switching network (5) can be investigated by the network 
reading 

1
( ) ( )

N
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j

x f x G t Hxσ
=

= − ∑&  .                                         (12) 

Let ei be the variation of the i-th node and 1 2( , , , )T T T T
Ne e e e= L  

be the collection of variations. Then linearizing network (12) 
at  ix s=  yields 

[ ( ) ]N fe I J s G H eσ= ⊗ − ⊗& ,                                       (13) 

where Jf is the Jacobian of the function f evaluated at s(t) and   
⊗ stands for the Kronecker product. Furthermore, the linear 
stability of the synchronized state s(t) for network (12) can be 
studied by diagonalizing the variational equations of network 
(13) into N blocks of the form 

( )i f i iJ Hξ σλ ξ= −&  ,                                                    (14) 

where ( ) n
i n iU I e Rξ = ⊗ ∈ , and N NU R ×∈ is a unitary matrix 

such that 

1( , , )T
NU GU diag λ λ= L .                                           (15) 

Apparently, the synchronized state s(t) is stable if the largest 
Lyapunov exponent of system (15) is negative. According to 
the master stability function approach (Pecora and Carroll 
(1998)), the stability of the synchronized state s(t) depends on 
the choice of the dynamical function f, the inter-coupling 
matrix H and the average coupling matrix G . For the 
coupled Rössler oscillator with H=diag(1,0,0), there is a 
single interval (γ1, γ2), in which the largest Lyapunov 
exponent is negative, where γ1 and γ2 are constants. Therefore, 
synchronization of network (5) can be guaranteed by 

1 2
2 N

γ γ
λ λ

σ σ
< < < ,                                                         (16) 
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where λ2 and λN are the second smallest and largest 
eigenvalues of matrix G , respectively. Based on (11) and 
(16), the synchronization condition for the heterogeneous 
network is thus derived. For a special case (this case can be 
realized by choosing H=In or H=diag(0,0,1)), synchronization 
of network (5), no matter what the coupling matrix Gs is, can 
be ensured by introducing a certain number of mobile agents. 
If define ρl=l/L2 as fixed agent density and ρm=m/L2 as the 
mobile agent density, then there exists a critical density of 
mobile agents 

2 2min{ , }
m

c
l

γ µ
ρ ρ

κσ κ
= −                                                   (17) 

for network synchronization: synchronous motion appears if 
and only if  

m

c
mρ ρ>  with κ=πr2. In this situation, it helps to 

enhance synchronizability by introducing mobile agents to 
the static network (1). 

4. DISCUSSIONS AND NUMERICAL SIMULATIONS 

The existence of mobile agents affects the eigenvalues of G , 
which further plays an important role in synchronizing 
heterogeneous network (5). This section discusses this issue 
from the subsequent two aspects. 

4.1  From the Perspective of Synchronizability 

It is noted that (16) is fulfilled for some values of σ   when 
the eigenratio R satisfies the following inequality:  

2

2 1

NR
λ γ
λ γ

= < .                                                                    (18) 

It is obvious that the eigenratio R depends on the average 
matrixG . For a smaller R, the condition in (18) is easier to 
satisfy and synchronization is easier to achieve. Then, 
similarly to the definition in static network, one can 
characterize the synchronizability of network (5) with R. 
Meanwhile, a comparison of synchronizability between the 
heterogeneous network (5) and its static sub-network (1) can 
be made according to their corresponding eigenratios. Table 1 
shows three cases of ρl for a given static sub-network, where 
ρ= ρl + ρm is the density of the whole network. From the table, 
the eigenratio R, no matter what values of ρl, exhibits a 
monotonic decreasing tendency with respect to ρm. That is to 
say, synchronizability of heterogeneous network (5) increases 
as the mobile agent density. Compared with the static 
network (1), the heterogeneous network (5) shows a better 
synchronizability if R<Rs. By solving this inequality, one 
obtains

m

c
mρ ρ> , where 

m

cρ is a critical value of ρm satisfying 

2 21max{0, 1, }
1m

s
c

s s
l l

R
R R

µ µ
ρ

κρ κρ
= − −

−
                            (19) 

Namely, a smaller probably means network (5) is harder to 
achieve synchronization from the point of view of the 
interval width in (16), while synchronization is probably 
easier to realize by assigning a larger mobile agent density. 

Table 1. Three cases of ρl 

Cases λ2 λN R 
2lκρ µ<  κρ ρl+κρm ( ) / ( )l mµ κρ κρ+  

2 l lµ κρ µ≤ ≤  2 mµ κρ+  l mµ κρ+  2( ) / ( )l m mµ κρ µ κρ+ +  

l lκρ µ>  2 mµ κρ+  κρ 2/ ( )mκρ µ κρ+  

 
To validate the theoretical findings, consider the static 
network Gs to be the case of a Barabási-Albert (BA) network 
(Barabási, and Albert (1999)), where the degree distribution 
follows a power law. Numerical simulations of two cases (a) 
κρl <μ2; (b) μ2<κρl <μl are reported in Fig.2, where time unit 
Δt=10-3, velocity v=103,  μ2=1.366 , μl=31.21, ρl=0.3 for case 
a and ρl=2.0 for case b. It is worth noting that, the average 
matrix G  in simulations is approximated by  

0
( ) /

t
G G tdτ τ≈ ∫ , 

where t is selected to be 103s in simulations. As illustrated in 
Fig.2, R monotonically decreases as ρm. Besides, R>Rs holds 
for any density of mobile agents in case a, and there indeed 
exists a critical density of ρm such that R>Rs in case b. All 
these agree quite well with the theoretical results. 

 

Fig. 2.  Eigenratio R vs. mobile agent density ρm.. 

4.2  From the Perspective of Synchronization Realization 

Though a larger mobile agent density ρm means a better 
synchronizability of network (5), it is likely to lead to the 
largest eigenvalue of G  over the upper bound in (16). And 
synchronization is lost with a large mobile agent density for a 
particular heterogeneous network. According to (16) and 
Table.1, an upper bound of ρm is given by 

2 max{ , }
m

u l
m l

µγ
ρ ρ ρ

σκ κ
< = −  .                                          (20) 
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An obvious result is that, no matter what value of ρm is, the 
heterogeneous network (5) is not synchronizable about 
synchronized state in the condition of μl>γ2/σ, where the  
condition implies a non-synchronized motion of static 
network (1). It is not difficult to see the existence of mobile 
agents fails to synchronize the considered heterogeneous 
network. As a result, we favour the introduction of mobile 
agents for those static networks (1) whose eigencoupling   is 
located in the negative region of the master stability function. 
In the following, assume that  σμl<γ2 holds. 

 

Fig. 3.  Evolution of synchronization error δx. 

Similarly, one can derive a lower bound of mobile agent 
density from (16), i.e., 

1 2min{ , }
m

l
m l

γ µ
ρ ρ ρ

σκ κ
> = −  .                                           (21) 

Now, some mobile agents are introduced to such a particular 
static network in the case of σμ2<γ1. It is obvious that 
synchronization of static network (1) can be ensured by  
σμ2<γ1 due to the bounded synchronization region. However, 
there is a transition from the synchronized behaviour to non-
synchronized behaviour when adding several even only one 
mobile agent. Fig.3 reports the corresponding numerical 
simulation, where five mobile agents are added to the static 
network at time t=103, the synchronization error is defined as 

12
( ) ( || ||) /N

ii
x t x x Nδ

=
= −∑ ,                                            (22) 

the static network Gs obeys the scale-free distribution of the 
BA model with l=80, μ2=1.45, μl=25.73, the fixed agent 
density is ρl=0.2, the overall coupling strength is σ=0.17, к=π. 
From the figure, δx=0 as m=0, which indicates the original 
static network (5) is synchronizable; while the mobile agents 
are introduced to network, synchronization is lost since the 
second smallest eigenvalue of G jumps from μ2 to a very 
small value кρ. It is shown from Fig.3 that adding mobile 
agents to network (5), sometimes, are against realization of 
synchronization. Of course, a proper density of mobile agent 
is prone to network synchronization. The main results are 
shown in Fig.4, where all parameters are the same as Fig.3, 
and synchronization index <δx>=< δx(t)> , which is averaged 
over 100 realizations during a long enough time in the steady 
state from T to T+ΔT. In simulations, let T=500 and ΔT=100. 

As explained in Fig.4, the considered network achieves 
synchronization again when ρm>0.2. Also notice that a 
synchronized motion disappears as ρm>0.5 due to the 
bounded synchronization region. 

 

Fig. 4.  Synchronization index <δx> vs. mobile agent density 
ρm. 

 

Fig. 5.  Evolution of synchronization error δx. 

Under the other case σμ2<γ1, it has been shown by master 
stability function approach that static network (1) cannot 
synchronize. However, synchronization can be easily realized 
by introducing some, even only one mobile agent to network 
(1) according to (21). A numerical example is given in Fig.5 
to validate the analytical result, where the static network Gs is 
unconnected graph with l=150, μ2 is assigned to be zero,  
μl=32.18, the fixed agent density is 3.0, the coupling strength 
is σ=0.12, κ=π. Since Gs is an unconnected graph, then a 
global synchronization of static network (1) cannot be 
accessed due to the isolated clusters in Gs. It is observed from 
Fig.5 that adding several mobile agents (in simulations, five 
mobile agents are introduced to network at t=400s) can 
guarantee network synchronization. The role of mobile 
agents works as a bridge which creates connections among 
different isolated clusters. For more mobile agents introduced 
to the considered static network, simulations are performed in 
Fig.6. From the figure, <δx> is very close to zero if ρm ∈  
[0.32,1.74], which is consistent with the interval [0.31,1.75] 
obtained by (19)-(20). In addition, the transition from a non-
synchronized behaviour to a synchronized behaviour is 
sharper than the transition from a synchronized behaviour to 
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a non-synchronized behaviour, which is quite different from 
the result of mobile agent networks. 

From above discussions, there does exist a bounded region of 
mobile agent density: synchronization of network (5) is 
ensured if and only if ( , )l u

m m mρ ρ ρ∈ . For a particular static 
network (1) with given Gs and ρm, a too large or a too small 
mobile agent density will prevent heterogeneous network (5) 
from achieving synchronization. 

 

Fig. 6.  Synchronization index <δx> vs. mobile agent density 
ρm. 

5. CONCLUSIONS 

In this paper, a heterogeneous agent network is proposed to 
capture a mixture feature of time-invariant and time-varying 
topologies existing in many real-world complex networks. 
Under the constraint of fast-switching, it has been 
theoretically and numerically shown that synchronization of 
the heterogeneous network depends on the mobile agent 
density, the fixed agent density and the spectrum of time-
invariant sub-network. For a given heterogeneous network, 
synchronization motion can be established if mobile agent 
density of the network lies in a bounded interval, in which its 
two end-points are determined by the fixed agent density and 
the static topology. It is worth noting that, compared with the 
static sub-network, synchronizability can be enhanced when a 
proper density of mobile agents is introduced to the 
heterogeneous network.  All these results may provide some 
insights for the future theoretical investigations and practical 
engineering designs.  
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