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Abstract: This paper presents an online algorithm for support vector regression based on subgradient 
projection in reproducing kernel Hilbert spaces. Firstly, the paper choose the distance between f and the 
intersection of SK to characterize the empirical risk of support vector machine learning, and formulate a 
new expression of support vector regression sequentially. According to the optimization theory, the paper 
obtains the optimal solution of the new formulation of support vector regression by choosing the feasible 
clearance i.e. the difference between the primal objective function value and the dual objective function 
value to characterize the optimal solution of support vector machine. Secondly, the paper explains the 
selection of subgradient based on set theory and projection theory what is sensitive to the convergence of 
the algorithm. Finally, compared with projection adaptive natural gradient algorithm (PANG), the paper 
has verified that the accuracy of two algorithms are similar, however, the adaptive projected subgradient 
algorithm (APSA) trains much faster than the adaptive natural gradient algorithm by simulating the 
Mackey-Glass (MG) system and a class of nonlinear control system. 
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1. INTRODUCTION 

Support vector machine (SVM), based on the ideal of 
Structural Risk Minimization (SRM), is a powerful 
methodology in the field of machine learning (Vapnik 1995). 
It has shown good performance in pattern classification and 
regression fields, such as high generalization ability, global 
optimal solution and fast convergence speed. Online learning 
is an important learning scheme in which an unlimited stream 
of training data is arrived one example at a time, and can only 
be seen in a single pass. It is contrary to offline learning 
where you can get the whole training data at first. So it is 
essential to study the online algorithm for SVM as to 
applying SVM to the time-varying field which may has 
unlimited stream of training data, due to the unfitness of the 
offline algorithm in these fields. 

So far, it has yielded some results in the field of online 
algorithm for SVM. Cauwenberghs and Poggio proposed the 
IDSVM algorithm, which is one of the earliest online 
algorithms for SVM (Cauwenberghs and Poggio 2001). Ma 
et al. proposed an accurate on-line support vector regression 
(AOSVR) algorithm which is incremental algorithm 
essentially (Ma, Theiler, Perkins 2003). Wang et al. had 
improved the incremental algorithm training speed by 
introducing a kernel function matrix cache (Wang, Pi and 
Sun 2004). All these incremental algorithms have high 
computational complexity, because they are essentially 
solving a quadratic optimization problem. In the worst case, 

the computational complexity of the incremental algorithm is 
O (L3)*O (kernel), where L denotes the dimension of weight 
vector . Kuh.; Liu et al.; Lau et al. had realized the online 
least squares support vector machine learning algorithm by 
applying LS-SVM to the online algorithm respectively (Kuh 
2002; Liu et al. 2003; Lau and Wu 2003). However, they 
don’t have sparse solutions. The complexity of these 
algorithms is O (n3), where n denotes the number of training 
data. Sun et al. proposed the projection adaptive natural 
gradient (PANG) online algorithm for SVR by introducing 
the natural gradient to SVR (Sun Shi 2010). The complexity 
of PANG is O (L2+L), where L denotes the dimension of 
weight vector. It doesn’t have sparse solutions either. 

This paper has realized the adaptive projected subgradient 
algorithm (APSA) based on a new formulation of support 
vector regression what will be introduced later in this paper. 
Yamada and Ogura proposed the adaptive projected 
subgradient method (Yamada Ogura 2004), which is a natural 
extension of the Polyak’s subgradient algorithm (Gubin et al. 
1967). The convergence of APSA is sensitive to the selection 
of the subgradient. Compared to PANG, the algorithm 
realized in this paper has lower computational complexity 
however with the similar accuracy. 

The rest of the paper is organized as follows. The preliminary 
of subgradient projection is present in section 2. Section 3 
introduced a new formulation of support vector regression 
based on a new selection of measurement of empirical risk. 

mailto:liuhua105@163.com)
mailto:sunzh@scut.edu.cn)


CONTROL ENGINEERING AND APPLIED INFORMATICS                            19 
 

  

 

Section 4 formulates the adaptive projected subgradient 
algorithm for the new formulation of support vector 
regression in section 3. Section 5 gives the realization of the 
adaptive projected subgradient algorithm. The numerical 
simulation of MG system and a class of nonlinear system lies 
in section 6. Finally, conclusions are made in section 7. In the 
rest of the paper, the bold denotes vectors or matrixes, and 
the normal font denotes scalar. 

2. SUBGRADIENT PROJECTION 

2.1  Projection onto A Closed Convex Set 

Let C be a nonempty closed convex set in H. For any f H∈ , 
define the distance of f from the set C as: 

( , ) infg Cd f C f g∈= − . For each point in H, there exists a 

unique point *f C∈ is called the projection of f onto convex 

set C, and it denotes as ( )* Cf P f= . Note that if f C∈ , then 

*f f= , i.e., the projection is the point itself. Fig. 1 illustrates 
the geometry of the projection. 

 

Fig. 1. The projection onto the closed convex set C 

2.2  Adaptive Projected Subgradient Method 

First, let us define the convex function. A 
function : NR RΦ →  is said to be convex if 

( (1 ) ) ( ) (1 ) ( )x y x yν ν ν νΦ + − ≤ Φ + − Φ , for all ( , ) N Nx y R R∈ × , for 
all (0,1)ν∈ . 

For a continuous convex function, the subgradient is a 
generalization of gradient (To be precise, subgradient is a 
generalization of Gâteaux differential.), and it always exists. 
In a differentiable case, the gradient ' ( )yΦ  at an arbitrary 
point Ny R∈  is characterized as the unique vector satisfies 

', ( ) ( ) ( )x y y y x< − Φ >+Φ ≤Φ , where •〉〈•，  denotes the inner 
product in NR , for all Nx R∈ . In a nondifferentiable case, 
however, such a vector is not unique in general, and the set of 
such vectors ( ) { , ( ) ( ), }N Ny a R x y a y x x R∂Φ = ∈ − +Φ ≤Φ ∀ ∈ ≠∅  is 

called subdifferential of Φ  at Ny R∈ . Elements of the 
subdifferential ( )y∂Φ  are called the subgradients of Φ  at y. 

Let : [0, )( )n H n NΩ → ∞ ∀ ∈  be a sequence of continuous 
convex functions and K H⊂  a nonempty closed convex set. 
For an arbitrarily given 0u K∈ , the sequence 

( )n n Nu K∈ ⊂ generated by the adaptive projected subgradient 
method: 
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Where ' ( ) ( )n n n nu u∈ ∂ΩΩ  and 0 2nλ≤ ≤ . More details can 
be seen in the reference Yamada and Ogura, 2004. 

3. SUPPORT VECTOR MACHINE 

Suppose given the training data set { } 1,
N

k k kT x y == , 

where N
kx R∈ , ky R∈ , N is the size of the training data. For 

any integer 1 k N≤ ≤ , the functional relation between kx and 

ky by the following regression model: 

 ( ) ( ) , 1, 2 ,T
k k ky f x x b k Nω ϕ= = + = L  (2) 

 
Where NRω ∈  denotes the weight vector, b R∈  denotes the 
offset. 

 

Fig. 2. Sk i.e. the set of all points that satisfy the bound 
ε between yk and f (xk) 

In order to minimize the empirical risk, our goal becomes to 
find the function )f( • in (2), so that yk is as close as possible 
to f (xk). Introducing the tolerance ε , for every sample point, 
the function f (xk) satisfies 

{ } { }( ) , 1, ,k k kS f H y f x k Nε= ∈ − ≤ ∀ ∈ L as depicted 

in figure 2. In other words, for each sample point f (xk) lies 
inside the hyperslab Sk. For all the sample points, our goal is 
to find a f H∈  lies in the intersection of all Sk, i.e. 

d (f, C) f 

PC(f) 

f*=PC(f*) 

C 

H 

*( , )i iλ λ  

H 

*( , )i iλ λ  

ks  
{ }( )k kf H f x y ε∈ − =  

{ }( )f H y f xk k ε∈ − =  
* *(( , ), )k kd Si iλ λ  

*(( , ), )k kd Si iλ λ  
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Define the distances between f and hyperslab SK as: 

*

( , ) max(( ) 0)

( , ) max(( ) 0)

/ ,
/ ,
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k k k

d f S b y

d f S y b

ε

ε

=
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 + − −
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T
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φ(x ) φ(x )
ω φ(x ) φ(x )

Tω
 (4) 

 
Where kφ(x ) denotes the norm of kφ x( ) in Hilbert space 
H. The geometric meaning was illustrated in fig. 2. 

So, the distance between f  and 
1

N

k
k

S
=
∩  can be expressed 

as *
1 ( )( ( , ) ( , ))k N k k k kk d f S d f Sθ= +∑ L , 

where
*

*
1

( , ) ( , )
( )

( ( , ) ( , ))
k k k k

k N k k k k

d f S d f S
k

d f S d f S
θ

=

+
=

+∑ L
, which 

characterize the empirical risk of the learning. In the support 
vector machine learning, minimize the following function L, 
based on the ideal of Structural Risk Minimization (SRM). 

*
1

1
min ( )( ( ) ( ))

2
, ,k N k k k kL C k d f S d f Sθ== + +∑Tω ω L (5) 
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The constant C>0 determines the trade-off between the 
flatness of y and the amount up to which deviations larger 
than ε are tolerated. The function L in (5) was called the 
primal objective function. 

By introducing a dual set of variables, it can construct a 
Lagrange function from the primal objective function and the 
corresponding constraints. It has the dual objective function 
as follows: 

1

1
*

1
* *

1

*( )( ( , ) ( , ))

( , )

( , )

1max
2
( )

( )

( ( , ) ( , ))

k N

k k k k
k N

k k k k
k N

k k k k k k
k N

k d f S d f Sk k k k

f S

f S

C

b d

b d

L

y

y

d f S d f S

θ

ε

ε

λ

λ

α α

=

=

=

=

∑ +

+ +

+

= +

− − −

− + − +

− +

∑

∑

∑

T

T
kk

kk

( )

( )

( )ω

ω ω

φ x φ x

φ x φ x

L

L

L

L

Tω ( )
 (7) 

 
Setting the partial derivatives of L with respect to the primal 
variablesω , b, *( , ), ( , )k k k kd f S d f S  to zeros, it obtains: 
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Where, * *,, ,k k k kα λ α λ  denote Lagrangian multipliers. 
Substitute (8) into (7), the dual formulation of the primal 
problem (5), (6) can be expressed as: 
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Where r denotes the column vector of 1 of N dimension, 

*, ,λ λ y are column vectors construct by *, ,k k kyλ λ  

respectively. ( , ) ( ) ( )T
k kx x= ϕ ϕK x x denotes kernel matrix 

which meets the Mercer’s condition. Then, substituting (8) 
into (2), the output of SVM is: 

 *( ) ( ) ( , )T
k kf x x b= − +λ λ K x  (11) 

 
4. SUPPORT VECTOR REGRESSION BASED ON 

SUBGRADIENT PROJECTION 

From the last section, it shows that solving a support vector 
regression problem equals to solving a convex quadratic 
optimization problem (9) under the constrain (10). According 
to the optimization theory, the difference between the primal 
objective function value and the dual objective function value 
comes to zero when it reaches to optimum (Cristianini and 
Shawe-Taylor 2005). (5) subtract (7), it obtains the difference 
what called feasible clearance Θ : 

1
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Observing (11), it is obviously that f is the function of *λ, λ . 
So the corresponding Hilbert spaces H is constructed of 

*λ, λ , and kφ(x )  becomes to 2 ( , )kx xK . Considering 
(10), substituting (8) into (12), it establishes a new 
formulation of support vector regression: 

* *
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So, the convex quadratic optimization problem is equivalent 
to find some λ and *λ satisfy the convex constrain (14) and 
make (13) comes to zero asymptotically. 

Introducing the adaptive projected subgradient method in (1), 
it obtains *

1 1i i+ +λ λ, in i-th iteration are: 
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Where *( , )i i iΘ λ λ denotes the value of function (13) in i-th 

iteration, *( ),
i i i iΘλ λ λ∂ , *

*( ),
i i i iΘ

λ
λ λ∂  denote the subgradient 

of *( , )i i iΘ λ λ . *, [0, 2]iiµ µ ∈ , K denotes the constrain (14). 

By examining (15) and (16), it shows that the selection of 
subgradient will directly affect the convergence speed of the 
optimization process. So there is a critical issue: how to 
choose the subgradient? 

Considering * *( , ) * ( , ) 0, 0T
k k k k i id f S d f S = =λ λ , the partial 

derivatives of iΘ with respect to *,i iλ λ are: 
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Where *
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Considering the definition of *( , ) and ( , )k k k kd f S d f S  in (4) 

and the projection theory, select *
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Substituting (19) and (20) into (17) and (18), it has: 
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Considering the constrain *( ) ( )T T=λ λr r , it obtains, 
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Simplifying (23), 
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Substituting (21), (22) and (24) into (15) and (16) 
respectively, it obtains the complete iterative formula. The 
convergence of the algorithm has no difference from (1), and 
it was proofed in the reference of Yamada and Ogura 2004. 

5. THE REALIZATION OF ADAPTIVE PROJECTED 
SUBGRADIENT ALGORITHM 

The dimension of kernel matrix K increases with the 
increasing of sample points. When it reaches to a certain 
amount, the kernel matrix K will be not calculated, the online 
learning algorithm will not be realized. So, choose an integer 
l, assuming that l-dimensional K matrix can represent all the 
information of the solving problem. Assuming  denotes the 
index set. The steps of the algorithm implementation are 
given as follows. 

Algorithm: 

l Starting time index i=1, select ε , C, integer l and 
kernel function K; initialize *, 0k k id d k= ∈ Γ , select 

initial feasible solutions *
1 1,λ λ ; 

l Repeat over the time index i as follows 

u If i l≤ , set the index set {1, 2, , }i iΓ = L ; 
calculate K by sample data {(x1, y1), (x2, 
y2) (xi, yi)}, calculate * ' *, , , , ,k k i i i id d µ µΘ Θ ; 

calculate *
1 1,i i+ +λ λ via (4), (13), (15), (16), (21), 

(22) and (24); 

u Else, set the index set { 1, , }i i l iΓ = − + L ;   

calculate K by sample data {(xi-l+1, yi-l+1)  (xi, 
yi)}, calculate * ' *, , , , ,k k i i i id d µ µΘ Θ ; calculate 

*
1 1,i i+ +λ λ  via (4), (13), (15), (16), (21), (22) and 

(24). 

6. NUMERICAL SIMULATION 

In this section, we give two simple examples to illustrate the 
effectiveness of the proposed online algorithm. One is 
Mackey-Glass (MG) system, the other is a simple class of 
nonlinear system. Compared with the projection adaptive 
natural gradient algorithm, it is easy to find that the proposed 
algorithm has better performance. 

6.1  Simulation of Mackey-Glass System 

The MG system is a blood cell regulation model established 
in 1977 by Mackey and Glass. It is a chaos system described 
as: 

 10

( ) ( )
1 ( )

dx ax t bx t
dt x t

τ
τ

−
= −

+ −
 

 
The embedded dimensions are ( )x t  and ( )x t τ− . In the 
simulation set a=0.2, b=0.1, 17τ = , 0.1t∆ = , (0, 200]t ∈ . 
Select a Gaussian function with kernel parameter 

0.065σ = as the kernel function. Compared with the 
projection adaptive NG algorithm, the mean square errors 
(MSE) of the last 200 sample points and the mean learning 
time per iteration were calculated in the simulation. All the 
results are shown in table 1. 

Table 1.  The result of simulation of MG system 

            Algorithm 
result PANG APSA 

MSE 2.8101e-05 8.5686e-06 
Mean learning time(s) 0.03200 0.00636 

Parameters: 0.001, C 0.4, 0.065ε σ= = =  

 

In table 1, it shows that the MES of APSA is less than that of 
PANG. The mean learning time of APSA is much less than 
that of PANG either. The regression errors are shown in fig. 
3. It can be seen that the errors of adaptive projected 
subgradient algorithm are less than that of projection adaptive 
NG algorithm. 

6.2  Simulation of A Simple Class of Nonlinear System 

As to comparing with APSA, the same example as in the 
reference of Sun et al. 2011 was used in this paper. Given the 
following single-input single-output nonlinear system: 
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1 2
2 3 2

2 1 2

1

0.15 0.1(1 ) sin(0.1 )
x x

x x u x u u
y x

=
 = + + + +
 =

&
&  

 
The purpose is to make y track the object trajectory 

sin cos(0.5 )y t td = + . Give the initial state of the 

system (0) [0.2, 0.2]Tx = . 

In the simulation, select a Gaussian function with kernel 
parameter 2σ = as the kernel function, 
select 1 212, 7p p= = . Select initial solution 1 [0.15, 0]T=λ , 

*
1 [0, 0.15]T=λ . The tracking errors whose time index is 

from 1000 to 4000 are shown in fig. 4. It shows that the 
tracking error of adaptive projected subgradient algorithm is 
a little less than that of projection adaptive NG algorithm. 
The mean square errors (MSE) of the last 1000 sample points 
and the mean learning time per iteration were calculated in 
the simulation. The results are shown in table 2. 

Table 2.  The results of simulation of nonlinear system 

            Algorithm 
result PANG APSA 

MSE 7.2934e-06 4.7731e-06 
Mean learning time(s) 0.00931 0.00148 

Parameters: 0.006, C 0.25, 2ε σ= = =  

 

From table 2, it’s easy to see that the MSE of adaptive 
projected subgradient algorithm is less than that of projection 
adaptive NG algorithm. The mean learning time of adaptive 
projected subgradient algorithm is much less than that of the 
projection adaptive NG algorithm either. It can be seen that 
the computation complexity of the adaptive projected 
subgradient algorithm is dominated by (15) and (16), and the 
complexity of the two equations is O (L2). Compared with the 
results in the reference of Sun and Shi 2010, it is easy to 
explain the result of mean learning time in table 1 and table 
2. 

7. CONCLUSIONS 

This paper has realized the adaptive projected subgradient 
algorithm for a new formulation of support vector regression. 
Firstly the article formulates a new expression of support 
vector regression by choosing the distance between f and the 
intersection of SK to characterize the empirical risk of 
support vector machine learning. Then, it obtains the optimal 
solution of SVR by minimizing the feasible clearance. 
Secondly, it explained the selection of subgradient, and 
obtained the realization of APSA for the new formulation of 
support vector regression. Finally, the adaptive projected 
subgradient algorithm is applied to the MG system and a 
class of nonlinear system in simulation. Compared with  

projection adaptive natural gradient algorithm, the accuracy 
of two algorithms are similar, however, the adaptive 
projected subgradient algorithm is training much faster than 
the projection adaptive natural gradient algorithm. Further, 
improving the accuracy of the algorithm by introducing some 
more effective adaptive learning strategies is considerable. 
Moreover the robustness of the algorithm should be well 
studied. 
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Fig. 3. Learning errors of APSA and PANG 
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Fig. 4. Tacking errors of PANG and APSA, the time index is 
from 1000 to 4000. 
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