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Abstract: Cyber-Physical System is a new frontier appearing with many challenges. Real-time issue is 
an important one in those challenges. To address the problem, in this paper, real-time scheduling 
algorithms tailored for CPSs are proposed. They are designed for the purpose of maximizing system 
utilization, reducing scheduling overhead and decreasing context switch cost.  Simulation results 
demonstrate that the strategy of splitting task can improve the system utilization. However, after the 
system utilization surpasses 75%, the success ratio will reduce because large numbers of splitting tasks 
have an adverse impact on it. 
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1. INTRODUCTION 

Cyber-Physical Systems (CPSs) are distributed and hybrid 
real-time dynamic systems with complex communication, 
providing real-time monitoring and actuation services 
(Rajkumar, 2007). They are a paradigm of enabling 
ubiquitous computing to everything including physical 
processes and objects at large-scale (Sha et al., 2008). From 
the view of Lee (2006), CPSs are a comprehensive concept 
systems which consist of a great number of distributed 
computing devices tightly coupled with their physical 
environments. Sensing layer, transport layer and information 
processing layer are three basic layers for CPSs. Physical 
information are detected by sensors in sensing layer. Then, 
the information is sent to processing layer through transport 
layer. At last, processing layer processes the information and 
then sends appropriate decisions to physical actuators. From 
this perspective, many existing network such as satellite 
network, mobile network, wireless sensor network, 
embedded system, even the internet are all fall into the 
concept of CPSs (Koubaa and Andersson, 2009). However, 
CPSs are not a simple combination of these systems. New 
technologies need to be devised to overcome challenges (Lee, 
2008), such as real-time issue, data aggregation, robustness, 
safety and security (Mueller, 2006).  

One scenario of real-time issue is intelligent transportation 
system (ITS) in which timely dissemination of traffic-related 
information to drives is a key property. Car drivers often 
experience getting stuck in a traffic jam on their way to work 
even they have checked the traffic reports before leaving their 
homes. These unanticipated events can have an adverse 
impact. For example, business professionals may miss 
important meetings or flights. Sometimes even worse, 
doctors or fireman may be blocked when they are on the way 
to save people’s life.  

Supporting the application requires a wireless network 
formed among the vehicles and an advanced information 
processing platform used to process data from sensors 
(Rajkumar et al., 2010). CPSs provide a natural framework to 
address these challenges since they integrate the physical, 
cyber and human factors in framework. In addition, massive 
information from thousands of vehicles needs to be processed 
in the processing platform. So it’s hard to imagine that 
without scheduling analysis in the platform, the real-time 
performance can be guaranteed.  

So in the paper, scheduling algorithms, as one solution, are 
proposed for the real-time issue. Real-time scheduling 
problem in embedded system has been studied for more than 
a decade, producing fruitful research results. Multiple-core 
and real-time scheduling (Mollison et al., 2010) in embedded 
system can be a good foundation for us to design a 
scheduling algorithm for CPSs. However, CPSs go beyond 
traditional embedded systems. Traditional embedded systems 
are closed, not only in the sense of closed physical locations 
or dedicated networks, but also closed with respect to their 
computational boundaries, i.e., all the participation elements 
in the systems are known initially (Talcott, 2008). By 
comparison, CPSs are shifting towards openness and wide-
scale which lead to a novel scheduling analysis on real-time 
issue. In the other hand, CPSs require distributed 
architectures to support safety critical real-time control (Kang 
and Son, 2008). Traditional distributed system emphasis on 
the paralleling processing which can reduce the computing 
time of tasks but can not guarantee a real-time response. So 
novel scheduling algorithms which meet the requirement of 
real-time and system environments of CPSs are explored in 
the paper.  

This paper makes the following contributions to CPS-based 
solutions for real-time issue: First, a heuristic task assignment  
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algorithm is explored to minimize the scheduling overload 
when a coming task is assigned to a cluster. Not liking the 
traditional assignment strategy which balances the numbers 
of task, the new strategy balances the scheduling overload. 
After assignment, in order to maximize the utilization of 
processors, a task splitting algorithm is devised when a task 
cannot be accommodated as a whole by any cluster. Not 
liking distributed computing in which each split tasks are 
executed parallel, in the paper, these split tasks which is split 
from the same original task have to be executed serially even 
they are assigned into different clusters. So the novel task 
splitting algorithm tries to minimize the splitting granularity 
when maximize the utilization of clusters. At last, a global 
scheduling algorithm which follows the idea of BFair 
algorithm proposed by Zhu (2003) is designed. But not liking 
the BFair algorithm which focuses on the fairness of 
scheduling, the new global scheduling algorithm pays more 
attention to the real-time performance and system utilization.  

The novel points of  the paper are: first, distributed clusters 
are used to process information, because the scalability of 
distributed clusters have capability to process huge 
information from sensing layer, which guarantee the real-
time performance for CPSs; second, the proposed scheduling 
algorithms are tailored for CPSs environments since the 
network delay between clusters are taken into account; third, 
strategies of maximizing system utilization, reducing 
scheduling overhead and context switch cost are considered. 
All these points contribute to the real-time performance of 
CPSs.    

The remainder of this paper is organized as follows. Section 
2 describes some prior research works. Section 3 presents an 
abstract system model and describes existing issues. Section 
4 demonstrates three algorithms used to address these issues. 
At last, section 5 shows the simulation results and section 6 
gives some conclusions.  

2. RELATED WORK 

Prior research closely related to the real-time issue of CPS 
can be classified along two dimensions:  

(1) Those that designing a time-related models or 
architectures for CPSs to meet its real-time requirements. Tan 
et al. (2010) introduced a concept lattice-based event model 
for CPSs. Under the model, a CPSs event is uniformly 
represented by three components: event type, its internal 
attributes and its external attributes. The event model 
provides several advantages in terms of flexibility, time-
related QoS requirement and complexity. Benveniste (2010) 
proposed a loosely Time-Triggered Architectures for CPSs, 
in which computation and communication units are all 
triggered by autonomous, non synchronized clocks. So 
communication media act as shared memories between 
writers and readers and communication is not blocking. 
Zhang et al., (2009) introduced a dynamic battery model 
which supports a co-design approach for CPSs. Their model 
allows online prediction of battery life, which benefit for 
optimal discharge profile. Sha and Meseguer (2008) proposed 
a novel paradigm for CPS to embody design rules of 

complexity-control nature in highly reusable, very robust and 
formally verified architectural patterns.   

 (2) Those that adding some mechanisms or middleware to 
overcome the real-time challenge of CPSs. Zimmer et al. 
(2010) presents three mechanisms for time-based intrusion 
detection. The mechanism can detect the execution of 
unauthorized instructions in real-time CPS environment. 
Huang et al. (2010) presents a case study of several 
fundamental interlocking challenges in developing CPS for 
real-time hybrid structural testing. Tidwell et al. (2010) 
designed an optimal utility accrual scheduling policy for CPS 
with periodic, non-preemptable tasks. They devised the 
policies by solving a Markov Decision Process formulation 
of the scheduling problem. Zhang and Gill (2008) proposed 
an effective configurable component middleware approach in 
supporting different applications with aperiodic and periodic 
events and providing a flexible software platform for 
distributed cyber-physical systems. Gokhale and McDonale 
(2010) proposed a combination solution of cyber (e.g., 
Behaviour of protocols such as TCP, IP and 802.11 MAC) 
and physical (e.g., vehicular speed, radio range) for 
Intelligent Transportation System. Zhang and Shi (2008) 
study the task scheduling problem of CPS from the aspect of 
its feedback control behaviors. They co-design the control 
law and the task scheduling algorithm for predictable 
performance and power consumption for both computing and 
the physical system.  

These prior efforts are important since they provide crucial 
insights into the time-related model and communication 
behaviours of CPSs, or contribute to mechanisms and 
strategies that can tune real-time performance.  

3. INFORMATION PROCESSING MODEL AND 
PROBLEM DESCRIPTION 

The paper focuses on scheduling problems in the information 
processing layer of CPSs. The layer is abstracted with one 
master node and several distributed clusters. The master node 
takes charge of receiving and assigning tasks. Clusters are 
responsible for executing tasks. 

3.1 Information Processing Model 

The information processing model consists of one master 
node and m clusters Cl = {cl1, cl2,…,clm}. Clusters are 
connected each other by internet. For simplification, it is 
assumed that each cluster has k processors as Fig.1 shows. 
The communication cost, task migration cost and context 
switch cost in a cluster are ignored. But the communication 
cost between clusters (assume it is a constant C0) is taken into 
account. The utilization of task set is assumed to be U and the 
formula U k m≤ ⋅  should be met. (Otherwise, task set is not 
schedulable). 

3.2 Task Model 

For a task set T = {T1，T2, …,Tn}, assume that preemption is 
allowed and there is no dependency between tasks. For 
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simplification, just periodical tasks are discussed in the paper. 
Each periodical task Ti= (ci, pi, ri, di) is defined with four 
parameters, where ci is the task’s worst-case execution time, 
pi is its period, ri is its release time and di is its deadline. 
Assume that ci, pi, ri, and di are integers, denoting the number 
of time quanta. Moreover, it is assumed that tasks are 
synchronous. The utilization of task Ti is defined as ui=ci/pi 
and the system utilization is defined as the summation of all 
task’s utilization U=∑ui (1≤i≤n). Assume that the different 
parts of a split task cannot be executed in parallel. For each 
task there is ui≤1. If a task is not split, then ri=0 and pi=di, 
otherwise the ri and pi will be reset (details will be discussed 
in section 4.2). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.1. Information processing model with k processors in 
each cluster 

3.3 Problem Description 

In the intelligent transportation system (ITS), for example, 
some car drivers want to know about the traffic information 
along the path to their destination, some drivers need to know 
if there is car coming from other side and how much speed 
the car is, especially in the cross road. All these requirements 
can be done by sending them to the information processing 
layer of ITS. The system can use powerful clusters to process 
massive requirement. At first, the master node receives these 
requirements/tasks and then assigns them to clusters. How to 
find an optimal cluster to minimize the scheduling overhead 
is the first problem should be solved. When no more cluster 
can be used to accommodate a task, the master node start to 
split the task and assign each of these splitting parts to 
clusters. How to split a task to minimize the splitting 
granularity is the second problem that cannot be ignored. At 
last each cluster start to execute these tasks assigned to them. 
How to design an optimal real-time global scheduling 
algorithm is the third problem need to be addressed. To solve 
these problems, three algorithms have been proposed in the 
paper.  

4. ALGORITHMS 

In the paper, scheduling points are defined as period 
boundaries between 0 and Lcm(T), in which Lcm(T) means 
the least common multiple of a set of periods ({ p1, p2,…pn }) 
of the task set T. For example, if a task set includes 3 tasks 

(T= {T1，T2, T3}) with period p1=5, p2=6, and p3=15. So its 
least common multiple number Lcm(T) is 30 and the 
scheduling points are 5, 6, 10, 12, 15, 18, 20, 24, 25, and 30. 

4.1 Task Assignment 

The objective of the task assignment algorithm is to assign n 
tasks to m clusters such that the total scheduling points are 
minimal. This is a NP-hard problem since it can be described 
as a bin-packing problem as below: 

Problem Statement: Given m nodes with k processors for 
each. For n period tasks {T1，T2, …,Tn} with utility ui≤1 
(1≤i≤n), find if there is an integer B (B≤m) and B-partition 
S1∪S2…∪SB of{1,…,n} such that minimize ∑spj (spj  means 
the number of scheduling point at node j, j∈[1,B]), in the 
constraint of ∑ui≤k (i∈Sw) for all w=1,…,B.  

For this NP-hard problem, one approximate solution is 
greedy algorithm. In the paper, “contribute factor” is 
designed to evaluate the increase of scheduling points after 
adding a new task. So the “contributed factor” needs to be 
calculated once the new task is assigned into a cluster. The 
cluster which has the smallest contribute factor will be 
chosen to accept the new task. The “contribute factor” can be 
calculated using inclusion-exclusion principle. Suppose the 
period of a new task is A. For the mth cluster clm which 
includes a task set T = {T1，T2, …,Tn}, before adding a new 
task, the number of scheduling points is 
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After adding a new task with period A, the number of 
scheduling points is 

( , ) ( , )[ (1/ ) 1/ ( , )
1 1 0 1

SP cl A l cl A p l p pm m i i ji n i j n
∑ ∑= −

< ≤ + < < ≤ +
           (2) 

11/ ( , , ) ... ( 1) (1/ ( , ,... , ))]
1 20 1

nl p p p l p p p A
i j k ni j k n

+∑+ − + −
< < < ≤ +

 

The explanations of notations are as below:   

l SP(clm) means the number of scheduling points of the mth 
cluster.  

l SP(clm, A) means the number of scheduling points of the 
mth cluster after accepting the new task which period is 
A. 

l l(pi,pj) means the least common multiple of number pi and 
pj.  

l l(clm) means the least common multiple of the period value 
of task set  in cluster m.  

l g(l(clm),A) is the great common divisor of l(clm) and A.  
l cop(clm, A)= g(l(clm),A)/A, which demonstrates the 

coupling of the number A with the period value of task 
set in the cluster clm.  
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Since the formula ( , ) ( ) / ( ( ), )l cl A l cl A g l cl Am m m= ⋅ is true, so the 
“contribute factor” (the increase of the number of scheduling 
points) ΔSP is  

( , ) ( )SP SP cl A SP clm m∆ = −                                         (3) 
( )[ ( ) / ( , ) ( , ) / ( , ) ( )]l cl a cl cop cl A b cl A cop cl A a clm m m m m m= + +   

in which  

( ) (1/ ) (1/ ( , ))
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n
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The SP∆  demonstrates that the more coupling between A and 
period values of task set, the fewer increasing of the 
scheduling points the cluster has. So a heuristic algorithm is 
proposed as shown in algorithm 1. The objective of this 
algorithm is to choose an appropriate cluster for a new 
arriving task such that the total increase of schedule points is 
minimal. Obviously it’s not the optimal algorithm, because 
the SP∆ is also related to the original task set assigned to the 
cluster. But it does decrease the time complex: 

Algorithm 1. 

Assumptions:  
1. There are m clusters with k processors in each. 
2. Task set T = {T1，T2, …,Tn} has been assigned into a 

cluster cli and it has been sorted by its 
period(p1<p2<…<pn).  

3. A new coming task Tnew (cnew, pnew, rnew, dnew). So the utility 
of the new task is unew=cnew/(dnew-rnew) 

________________________________________ 
1. l(cli)=0 , u(cli)=0   (i=1,2…m)  
2. For each cli do 
3.    If (u(cli) +unew ≤k) then 
4.      copi = g(l(cli), pnew)/ pnew ; 
5.    else 

6.      copi = -∞; 
7. End For 
8. copmax = max(cop1, cop2,…, copm) ; 
9. set S= Ø; 

10. put Ti into set S when copi=copmax; 
11. find the cluster clj such that the l(clj) is minimal ( clj∈S); 
12. cli = cli∪Tnew ; 
13. l(clj) =l(l(clj), pnew); 
14. u(cli) += unew; 

Some notations in the algorithm are explained as below: 

l cli: the ith cluster. 

l l(cli): the least common multiple of period value of task 
set in cli. 

l u(cli): the utility of cli. 

The algorithm firstly checks if the cluster can accommodate 
the new task. If yes, it calculates the coupling value between 
the new task and the tasks already in the cluster (line4). Then 
set S collects the tasks which have the largest cop value 
(line10). And then find the cluster which has the smallest 
value l(clj) with the task choosing from set S and put the task 
into the cluster (line12). At last, update the utility and the 
least common multiple number of the cluster (line13, 14).  

The complex of the algorithm is O(m), in which m is the 
number of clusters. Although it is not an optimal algorithm, 
the time complex can be reduced to polynomial complex.  

4.2 Task Splitting 

After assigning some tasks, if there is no one cluster can 
afford enough capacity for a new coming task, the strategy of 
task splitting is considered in order to increase the utilization 
of clusters.  The strategy is taken only if the condition of 
ci/pi≤ ∑Urj (1≤i≤n; 1≤j≤m) and (qc0+ci)≤pi is met. Urj is the 
rest utilization of cluster j; q is the number of clusters chosen 
for loading the task and c0 is the communication cost between 
nodes. The communication time of context switch and task 
migration in a cluster is ignored. But the communication cost 
between clusters cannot be ignored. Note in order to decrease 
the communication overhead between clusters, after a task is 
assigned into a cluster, it does not be migrated to other 
clusters.  

The aim of this part is try to execute more tasks by making 
full use of processors of clusters. But in this way, the 
scheduling points will be increased and inevitably the 
communication cost between clusters is raised. So a task do 
not be split if there still at least one cluster can accommodate 
it. Besides, in order to reduce the granularity of splitting, 
clusters are sorted by Ur with decreasing order. The cluster 
with largest Ur will be the highest priority to be chosen for 
allocating split tasks. By this way, the granularity of splitting 
can be as less as possible. Algorithm 2 shows the splitting 
algorithm in which the release time and deadline of each part 
of split task are set.  

Some notations in the algorithm are explained as below: 

l Su: the sum of utilities which have been assigned to the 
new task Tnew。 

l timeCost: the total time taken for the new task, 
including computation time and context switch time 
between cluster.  

l Uri: the rest utility of the ith cluster. 
l ci : the new task’s computation time in the ith cluster. 
l ct: the total computation time of the new task in all 

clusters. 
l Unew: the utility of the new task. 
l deadlinej: the deadline of the partial task which has been 

assigned to the jth cluster. 
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l releaseTimej: the release time of the partial task which 
has been assigned to the jth cluster. 

 

Algorithm 2. 

Assumptions:   
1. A new coming task Tnew (cnew, pnew, rnew, dnew). So the 

utility of the new task is Unew=cnew/(dnew-rnew) 
2. m clusters is sorted by its rest utility(Ur1>Ur2>…>Urm) 
3. The communication cost between clusters is c0. 
________________________________________ 
1. Su =0; i=0; j=0;  

relaseTime = 0; deadline=0, timeCost = 0, ct =0; 
2. While(Su < Unew && timeCost< pnew && i<m) do 
3.    Su += Uri; 
4.    timeCost += U ri 0P Cn e w ⋅ +  ; 

5.    ci = Uri* pnew ; 
6.    ct +=ci; 
7.    i++; 
8. End While 
9. If (Su = Unew ) then 
10.     While(j<i) do 
11.        deadlinej = releaseTimej + cj*pnew/ct –c0/2; 
12.        releaseTimej+1 = deadlinei + c0; 
13.        j++; 
14.     End While 
15. End If 

In the first while loop, if a task still need more capacities, and 
at the same time, there exists a cluster which can provide 
capacity for it (line2), the cluster is chosen to allocate the rest 
of the task(line3, 4, 5, 6). In the second while loop the 
available time (deadline minus releaseTime) is reset for the 
split task according to the proportion of the computation time 
(ci) taken from the total execution time (ct) (line11, 12). 

The complex of the algorithm is O(m), in which m is the 
number of clusters. 

4.3 Global Scheduling 

The algorithm proposed in this part follows the idea of BFair 
global scheduling algorithm proposed by Zhu et al. (2003). 
The main difference between them is that the modified 
algorithm has capability of handling task set which includes 
split tasks while BFair focuses on the fairness of scheduling. 
For simplification, the situation with just one split task in a 
cluster is considered.   

Before presenting the algorithm, some definitions are given. 
When the section [bk, bk+1] is allocated, the mandatory unit is 
defined as 1 max{0, ( ) }1

k km RW b b wi i k k i
+  = + −+  

, in which kRWi is 

allocation error. The allocation error for task Ti at boundary 
time bk is defined as the difference between b wk i⋅  and the 

time units allocated to Ti before bk. The 1kmi
+ is the integer part 

of the summation of the remaining work in the interval of  
[bk-1, bk] and the work to be done during [bk, bk+1]. The 
pending work is defined as 

1 1( )1
k k kP W R W b b w mi i k k i i

+ += + − −+ which is the 
corresponding decimal part. If Ti gets one optional unit when 
allocating [bk, bk+1], then 1 1ko i

+ = , otherwise 1 0koi
+ = . After 

allocating resources in the interval of [bk, bk+1], the 
equation 1 1 1k k kRW PW oi i i

+ + += −  can be gotten. At boundary time 

bk+1, the task Ti is ahead if kRWi <0, punctual if kRWi =0 and 

behind if kRWi >0.  

The algorithm is presented in Algorithm 3, where EX is the 
extra task units which cannot be assigned to resource. It used 
to determine how many mandatory units should be removed. 
RU is the remaining units after allocating tasks’ mandatory 
units.  It used to determine how many optional units need to 
be allocated. Initially, 0RWi =0 (i = 1, 2,…). 

Algorithm 3. 

Assumptions:  
1. Task set T = {T1，T2,…,Tn}in a cluster.  
_________________________________________  
1. For (T1，T2,…,Tn) do 

2.   1 max{0, ( ) }1
k km RW b b wk k ii i

+  = + −+  
; 

3. End For 

4. If ( 1 ( )1
km b b mk ki

+∑ > −+ ) then 

5.   1 ( )1
kEX m b b mi k k

+∑= − −+ ; 

6.    
SelectedTaskSet=PickLowestPriorityTask(EX, 1k

mi
+ =1,Ti≠Ts) 

7.    For (Ti∈SelectedTaskSet) do 

8.       1kmi
+ −− ; 

9.    End For 

10. else  

11.   1( )1
kRU m b b mk k i

+= − −∑+ ; 

12.    SelectedTaskSet = PickHighest PriorityTask(RU) 

13.    For (Ti∈SelectedTaskSet) do 

14.        1
1

k
oi

+
= ; 

15.     End For 

16. End If 

17. For(T1，T2,…,Tn) do 

18.   1 1( )1
k k kPW RW b b w mk k ii i i

+ += + − −+  

19.   1 1 1k k kRW PW oi i i
+ + += −  

20. End For 
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21. GenerateSchedule(bk, bk+1); 

In the first “For” loop, the algorithm allocates mandatory 
units for each task Ti according their weights (line 2). If the 
section [bk, bk+1] has no enough resource to allocate these 
mandatory unit (EX>0), then the function of 
“PickLowestPriorityTask” will return the EX lowest priority 
tasks (line6) and each of them will reduce mandatory unit by 
1 (line8). If there are time units left (RU>0), the function of 
“PickHighestPriorityTask” will return the RU highest priority 
task (line12) and each of them will get one optional unit 
(line14).  After allocating all time units, the algorithm will 
calculate PW and RW for each task (line 18, 19). At last, the 
schedule for section [bk, bk+1] is generated by function 
GenerateSchedule(), which sequentially packs tasks to 
resources (line21).  

Since a split task Ts (cs, ps, rs, ds) is a part of task Ti (ci, pi, ri, 
di), the formula ps= pi , cs < ci , ds - rs ⊆  di- ri should be met. 
For a normal task, its weight is defined as Wi= ci/pi. For a 
split task Ts the weight is defined as   

/( ) [ , ] ( , ), 0,1,...1
0

c d r b b np r np d ns s s k k s s s sWs others

− ∈ + + = +=


        (6)   

The task’s priority is sorted according to a characteristic 
string which follows the idea of Sanjoy et al. (1996). 
Define ( ) [ ( )]1 1T sign b w b w b bk i k i k i k kα  = ⋅ − ⋅ − −− −  , which presents 
whether the task Ti can get enough resource or not in the 
section [bk, bk+1]. If yes ( ( ) 0Tk iα < ), the task will be ahead at 
boundary bk+1. If ( ) 0Tk iα = , the task will be punctual at that 
boundary, otherwise, the task will be late. The urgent factor 
is defined as (1 ( ))/kUF b w b w wi k i k i i = − ⋅ − ⋅  , which is the minimal 
time needed for a task to collect enough work demand to 
receive one unit allocation and become punctual after bk. 
After using the compare (Ti, Tj) algorithm proposed by Zhu et 
al. (2003), we can get the task set sorted by its priority. Then 
the function “PickLowestPriorityTask” is used to pick EX 
lowest priority tasks which mandatory unit is more than 1, 
excluding the split task. The “PickHighestPriorityTask” is 
used to choose RU tasks with highest priority from the sorted 
task set.  

Theoretically, without any cost consuming, the algorithm can 
guarantee that each task can meet its deadline. This can be 
gotten by method of reduction to absurdity. If the algorithm 
cannot guarantee the real-time property, it means that there is 
at least one task which fails to meet its deadline. But from the 
algorithm we can see that once there is an optional unit, one 
task must be assigned unless there are no more tasks to be 
executed. In another word, processors are always busy to 
execute tasks. So if there is one task fails to meet it deadline, 
then, for the cluster which includes k processors, the total 
utilization of the task set assigned to the cluster must greater 
than k, which is contradict with the condition u(cli)≤ k. But 
practically, some tasks maybe miss their deadline because of 
the preemption cost, context switch cost, communication cost 
and so on.  
 

4.4 Sample execution of the algorithm 3 

In order to demonstrate the difference between algorithm 3 
and BFair algorithm, the task set is chosen as below: 
T1=(2,5,0,5),T2=(3,15,0,15),T3=(3,15,0,5),T4=(2,6,0,6),T5=(20
,30,0,30),T6=(6,30,0,30). Here T3 is a split task, which means 
that the task T3 can only be executed in [z﹒p3+0, z﹒p3+5] (z 
is an integer). Assume these tasks will be executed in a 
cluster which includes two processors. The execution of 
Algorithm 3 is illustrated in the Table 1 of Appendix A. 

Initially 0RWi =0 (i=1…6). For the first section [b0, b1], 
( )Tk iα and kU Fi are calculated firstly for each task and then 

their results are put into the column b1. For example, 
( ) [ ( )] [5 2 / 5 0 2/5 (5 0)] ' '1 1 1 1 1 00 1T sign b w b w b b signα    = ⋅ − − − = ⋅ − ⋅ − − = −   
1

(1 ( )) / (1 (5 2 / 5 5 2/5 )) / (2 / 5) 5 / 21 1 1 11 1UF b w b w w   = − ⋅ − ⋅ = − ⋅ − ⋅ =    . 
Then using the formula 1 max{0, ( ) }1

k km RW b b wi i k k i
+  = + −+  

to calculate 

the mandatory units for each task, for example, T1’s 
mandatory unit is 1 max{0, 0 (5 0) 2/5 } 21m = + − ⋅ =   . The mandatory units 
for other tasks can also be calculated and the results are 

1 1 1 1 11; 3; 1; 3; 12 3 4 5 6m m m m m= = = = = separately. Since 1m i∑ =11 (1≤i≤6) 
and the total available time units are ( ) ( )5 0 2 101 0b b m− ⋅ = − ⋅ = . There 
is one extra unit (EX=1) need to be removed. Notices that T5 
has the lowest priority with 1 55UF = , so one mandatory unit is 
removed from it. At this moment the allocation for the 
section [0, 5) is complete and then their corresponding PW 
and RW is calculated.  All the values calculated above are 
filled into the column of b1. The same procedure is repeated 
when calculating other sections.  

For section [5, 6), the split task T3 cannot get any resource 
since the section exceeds its deadline. So in this section, just 
tasks T1, T2, T4, T5, and T6 calculate their mandatory unit. As 
a result, T4 and T5 get one unit separately. And then each task 
except the split task T3 calculates their PW and RW. These 
steps are repeated. In section [10, 12), T4 get one mandatory 
and T5 get two. There still is one optional unit to be allocated. 
Since T1 has the highest priority, it will be allocated in this 
section. Repeat till the last section. Finally, schedulable 
allocation is gotten as shown in Fig.2.  

 
Fig.2. an allocation example of global scheduling algorithm 

5.  SIMULATION 

In the simulations, task sets are generated automatically 
according to some initial parameters: the number of tasks, the 
minimum task period pmin and the maximum task period pmax.  
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Since the task set should meet the requirement ∑ui≤U (U is 
the system utilization; ui is the utilization of the ith task in the 
set), so the more tasks a set includes, the less utilization each 
task can get. For each task, its ci, pi, ri and di are generated 
randomly only if it meets the constrains below: 

l pmin ≤pi ≤pmax.  
l ci≤di-ri 
l ui≤1 

The pmin and pmax is set because the relation of scheduling 
overhead and △p (= pmax - pmin )will be investigated in 
experiments. 

The simulation is executed using 4 clusters each equipped 
with 2 processors. The objective of experiments includes: 

l Evaluating the scheduling overhead varying with the 
number of tasks. 

l Evaluating the system utilization varying with the number 
of split tasks 

l Evaluating the success ratio varying with the system 
utilization 

5.1  Scheduling Overhead 

This experiment investigates the relation between the 
numbers of scheduling points with the numbers of tasks. 
Three task sets are generated with the following setting:  

l pmin =10, pmax =100, so △p=90. 
l pmin =50, pmax =100, so △p=50. 
l pmin =80, pmax =100, so △p=20. 

For each task set, number of tasks is added from 10 to 55.  

Fig.3. demonstrates scheduling overhead varying with the 
increasing number of tasks. The x-axis records the number of 
tasks assigned to the cluster. The y-axis demonstrates the 
number of scheduling points.  The result shows that the 
scheduling overhead goes up with an increasing rate. This is 
because the number of split tasks increases when cluster is 
almost full. And split tasks contribute to the increasing of 
Lcm (T) which will greatly impact the number of scheduling 
points.  
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Fig.3. scheduling overhead varying with number of tasks 

 

Furthermore, The figure shows that the number of scheduling 
points decreases with the dropping of △p. This is because 
that more tasks are likely to have the same period when the 
△ p decreasing, which makes the number of scheduling 
points less. Therefore, the case with △p=20 has a lower 
scheduling overhead than that with △p=90. 

5.2 System Utilization 

One of objectives of the paper is to make full use of system 
utilization. So this experiment is to investigate how much 
system utilization can be gotten by keeping adding tasks. 
Here, the three test sets that are the same as the experiment 
above are generated. 
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Fig.4. system utilization varying with number of tasks 

Fig.4 demonstrates the result. The x-axis denotes the number 
of tasks assigned to the cluster. The y-axis records the normal 
system utilization. The normal system utilization is defined 
as / ( )U m k⋅ , in which U means the system utilization and 
m k⋅  is the number of processors.  

The figure shows that the normal system utilization  goes up 
and can be achieved more than 80% in the case of △p = 90. 
And better result can be achieved if △p =20.  This is because 
the decreasing of △p results to the reducing of scheduling 
point, which contributes to the decreasing of context switch. 
This makes the system utilization is improved.  

However, after that, for each case, the utilization is decreased 
slowly. This is because when the system is almost full, task 
has to be split if it still wants to be added into system. But the 
more split tasks the system has, the more contexts switch and 
task migration happens, which finally reduces the system 
utilization more or less. Therefore, the system cannot be fully 
used to executing tasks.  

5.3 Success Ratio 

Besides system utilization, the number of tasks can be 
successful scheduling is another point to be evaluated. The 
success ratio is defined as below: 

Success Ratio = number of successful tasks / total number of 
tasks 
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The successful task means the task does not miss its deadline. 
So if the success ratio equals 1, we know that there are no 
tasks missing their deadline once they are successfully 
assigned to system.  

The object of the experiment is to investigate how much the 
success ratio can be gotten if the system utilization are kept 
increasing. 

Fig.5 demonstrates the result. The x-axis denotes the 
normalized system utilization. The y-axis records the success 
ratio.  The result shows that the success ratio almost equals to 
1 before the normalized system utilization goes to 75%.  
Then it goes down quickly with the increasing of system 
utilization. This is because the split tasks are increased 
greatly when the utilization surpasses 75%.  

Furthermore, the less the △p is, the more smooth the success 
ratio drops after threshold. This is because the number of 
scheduling points of  △p =20 is less than that of △p = 90, 
which counteracts part of negative effects brought by split 
tasks.  

As a result, although the strategy of task splitting can 
increase the system utilization, it has an adverse impact on 
the success ratio. As a conclusion, if the system utilization 
over 75%, chasing for system utilization by splitting task is 
not a best choose. Besides, experiments shows that the small 
value of △p has a positive effects  on the system utilization 
and success ratio. 
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Fig.5. success ratio varying with system utilization 

6. CONCLUSIONS 

In this paper, real-time scheduling algorithms which tailor for 
Cyber-Physical Systems are proposed. The algorithms take 
real-time issue as well as system utilization, scheduling 
overhead and success ratio into account. Although the task 
assignment algorithm is not optimal, the time complex can be 
decreased to polynomial. Besides our task splitting algorithm 
takes the communication cost between clusters into account, 
which is never considered in prior works. At last, the global 
scheduling algorithm fits for the situation when splitting tasks 
exist in a task set.  

The simulation results demonstrate that with the increasing 
number of tasks, the scheduling overhead is risen. Besides, 
the system utilization can be improved if we use the task 
splitting strategy. However, the success ratio decreases 
greatly when the system utilization is more than 75%.  

As a conclusion, task splitting is a good way to improve the 
system utilization, but when the system utilization is more 
than 75%, the success ratio decreases sharply because too 
much split tasks are generated. So if the system utilization 
surpasses 75%, this solution of splitting task is a not good 
choice. 
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Appendix A. EXAMPLE OF ALGORITHM 3 

 

Table 1. The execution example of algorithm 3  

time 0 5 6 10 12 15 18 20 24 25 30 
bk b0 b1 b2 b3 b4 b5 b6 b7 b8 b9 b10 

1
kRW  * 0 2/5 0 -1/5 0 1/5 0 -2/5 0 0 

2
kRW  * 1 6/5 0 2/5 0 3/5 1 4/5 0 0 

3
kRW  * 0 * * * * -1/5 0 * * 0 

4
kRW  * 2/3 0 1/3 0 0 0 2/3 0 1/3 0 

5
kRW  * 1/3 0 2/3 0 0 0 1/3 0 2/3 0 

6
kRW  * 0 1/5 0 2/5 0 3/5 0 4/5 0 0 

1
km  * 2 0 2 0 1 1 1 1 0 2 

2
km  * 0 0 2 0 1 0 0 1 1 1 

3
km  * 3 * * * * 1 1 * * * 

4
km  * 1 1 1 1 1 1 0 2 0 2 

5
km  * 3 1 2 2 2 2 1 3 0 4 

6
km  * 1 0 1 0 1 0 1 0 1 1 

1
kPW  * 0 2/5 0 4/5 0 1/5 0 3/5 0 0 

2
kPW  * 1 6/5 4/5 2/5 0 3/5 1 4/5 0 0 

3
kPW  * 0 * * * * 4/5 0 * * 0 

4
kPW  * 2/3 0 1/3 0 0 0 2/3 0 1/3 0 

5
kPW  * 1/3 0 2/3 0 0 0 1/3 0 2/3 0 

6
kPW  * 0 1/5 0 2/5 0 3/5 0 4/5 0 0 

αk(T1) * - - - - - - - 0 * * 
αk(T2) * - - - - - - - 0 * * 
αk(T3) * - * * * * 0 - * * * 
αk(T4) * 0 - - - - - - - * * 
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αk(T5) * 0 - 0 - - - - - * * 
αk(T6) * - - - - - - - 0 * * 

1
kUF  * 5/2 3/2 * 1/2 5/2 * 5/2 * * * 

2
kUF  * 5 4 * 3 5 * 5 * * * 

3
kUF  * 5/3 * * * * * * * * * 

4
kUF  * 0 3 * * 3 * 3 * * * 

5
kUF  * 0 3/2 * * 3/2 * 3/2 * * * 

6
kUF  * 5 4 * 3 5 * 5 * * * 

1
ko  * * * 0 1 * 0 * * * * 

2
ko  * * * 0 0 * 0 * * * * 

3
ko  * * * 0 0 * 1 * * * * 

4
ko  * * * 0 0 * 0 * * * * 

5
ko  * * * 0 0 * 0 * * * * 

6
ko  * * * 0 0 * 0 * * * * 

 


