
CEAI, Vol.13, No.3, pp. 41-50, 2011 Printed in Romania

Real-Time Scheduling in Cyber-Physical Systems

Yanwen Chen*. Yixiang Chen.**

*Software Engineering Institute of East China Normal University, ShangHai, China
 (Tel: 021-62235380; e-mail: ywchen@gmail.com).

** Software Engineering Institute of East China Normal University, ShangHai, China
 (e-mail: yxchen@sei.ecnu.edu.cn)

Abstract: Cyber-Physical System is a new frontier appearing with many challenges. Real-time issue is
an important one in those challenges. To address the problem, in this paper, real-time scheduling
algorithms tailored for CPSs are proposed. They are designed for the purpose of maximizing system
utilization, reducing scheduling overhead and decreasing context switch cost. Simulation results
demonstrate that the strategy of splitting task can improve the system utilization. However, after the
system utilization surpasses 75%, the success ratio will reduce because large numbers of splitting tasks
have an adverse impact on it.

Keywords: cyber physical system, distributed system, real-time scheduling.

1. INTRODUCTION

Cyber-Physical Systems (CPSs) are distributed and hybrid
real-time dynamic systems with complex communication,
providing real-time monitoring and actuation services
(Rajkumar, 2007). They are a paradigm of enabling
ubiquitous computing to everything including physical
processes and objects at large-scale (Sha et al., 2008). From
the view of Lee (2006), CPSs are a comprehensive concept
systems which consist of a great number of distributed
computing devices tightly coupled with their physical
environments. Sensing layer, transport layer and information
processing layer are three basic layers for CPSs. Physical
information are detected by sensors in sensing layer. Then,
the information is sent to processing layer through transport
layer. At last, processing layer processes the information and
then sends appropriate decisions to physical actuators. From
this perspective, many existing network such as satellite
network, mobile network, wireless sensor network,
embedded system, even the internet are all fall into the
concept of CPSs (Koubaa and Andersson, 2009). However,
CPSs are not a simple combination of these systems. New
technologies need to be devised to overcome challenges (Lee,
2008), such as real-time issue, data aggregation, robustness,
safety and security (Mueller, 2006).

One scenario of real-time issue is intelligent transportation
system (ITS) in which timely dissemination of traffic-related
information to drives is a key property. Car drivers often
experience getting stuck in a traffic jam on their way to work
even they have checked the traffic reports before leaving their
homes. These unanticipated events can have an adverse
impact. For example, business professionals may miss
important meetings or flights. Sometimes even worse,
doctors or fireman may be blocked when they are on the way
to save people’s life.

Supporting the application requires a wireless network
formed among the vehicles and an advanced information
processing platform used to process data from sensors
(Rajkumar et al., 2010). CPSs provide a natural framework to
address these challenges since they integrate the physical,
cyber and human factors in framework. In addition, massive
information from thousands of vehicles needs to be processed
in the processing platform. So it’s hard to imagine that
without scheduling analysis in the platform, the real-time
performance can be guaranteed.

So in the paper, scheduling algorithms, as one solution, are
proposed for the real-time issue. Real-time scheduling
problem in embedded system has been studied for more than
a decade, producing fruitful research results. Multiple-core
and real-time scheduling (Mollison et al., 2010) in embedded
system can be a good foundation for us to design a
scheduling algorithm for CPSs. However, CPSs go beyond
traditional embedded systems. Traditional embedded systems
are closed, not only in the sense of closed physical locations
or dedicated networks, but also closed with respect to their
computational boundaries, i.e., all the participation elements
in the systems are known initially (Talcott, 2008). By
comparison, CPSs are shifting towards openness and wide-
scale which lead to a novel scheduling analysis on real-time
issue. In the other hand, CPSs require distributed
architectures to support safety critical real-time control (Kang
and Son, 2008). Traditional distributed system emphasis on
the paralleling processing which can reduce the computing
time of tasks but can not guarantee a real-time response. So
novel scheduling algorithms which meet the requirement of
real-time and system environments of CPSs are explored in
the paper.

This paper makes the following contributions to CPS-based
solutions for real-time issue: First, a heuristic task assignment

mailto:ywchen@gmail.com)
mailto:yxchen@sei.ecnu.edu.cn)

42 CONTROL ENGINEERING AND APPLIED INFORMATICS

algorithm is explored to minimize the scheduling overload
when a coming task is assigned to a cluster. Not liking the
traditional assignment strategy which balances the numbers
of task, the new strategy balances the scheduling overload.
After assignment, in order to maximize the utilization of
processors, a task splitting algorithm is devised when a task
cannot be accommodated as a whole by any cluster. Not
liking distributed computing in which each split tasks are
executed parallel, in the paper, these split tasks which is split
from the same original task have to be executed serially even
they are assigned into different clusters. So the novel task
splitting algorithm tries to minimize the splitting granularity
when maximize the utilization of clusters. At last, a global
scheduling algorithm which follows the idea of BFair
algorithm proposed by Zhu (2003) is designed. But not liking
the BFair algorithm which focuses on the fairness of
scheduling, the new global scheduling algorithm pays more
attention to the real-time performance and system utilization.

The novel points of the paper are: first, distributed clusters
are used to process information, because the scalability of
distributed clusters have capability to process huge
information from sensing layer, which guarantee the real-
time performance for CPSs; second, the proposed scheduling
algorithms are tailored for CPSs environments since the
network delay between clusters are taken into account; third,
strategies of maximizing system utilization, reducing
scheduling overhead and context switch cost are considered.
All these points contribute to the real-time performance of
CPSs.

The remainder of this paper is organized as follows. Section
2 describes some prior research works. Section 3 presents an
abstract system model and describes existing issues. Section
4 demonstrates three algorithms used to address these issues.
At last, section 5 shows the simulation results and section 6
gives some conclusions.

2. RELATED WORK

Prior research closely related to the real-time issue of CPS
can be classified along two dimensions:

(1) Those that designing a time-related models or
architectures for CPSs to meet its real-time requirements. Tan
et al. (2010) introduced a concept lattice-based event model
for CPSs. Under the model, a CPSs event is uniformly
represented by three components: event type, its internal
attributes and its external attributes. The event model
provides several advantages in terms of flexibility, time-
related QoS requirement and complexity. Benveniste (2010)
proposed a loosely Time-Triggered Architectures for CPSs,
in which computation and communication units are all
triggered by autonomous, non synchronized clocks. So
communication media act as shared memories between
writers and readers and communication is not blocking.
Zhang et al., (2009) introduced a dynamic battery model
which supports a co-design approach for CPSs. Their model
allows online prediction of battery life, which benefit for
optimal discharge profile. Sha and Meseguer (2008) proposed
a novel paradigm for CPS to embody design rules of

complexity-control nature in highly reusable, very robust and
formally verified architectural patterns.

 (2) Those that adding some mechanisms or middleware to
overcome the real-time challenge of CPSs. Zimmer et al.
(2010) presents three mechanisms for time-based intrusion
detection. The mechanism can detect the execution of
unauthorized instructions in real-time CPS environment.
Huang et al. (2010) presents a case study of several
fundamental interlocking challenges in developing CPS for
real-time hybrid structural testing. Tidwell et al. (2010)
designed an optimal utility accrual scheduling policy for CPS
with periodic, non-preemptable tasks. They devised the
policies by solving a Markov Decision Process formulation
of the scheduling problem. Zhang and Gill (2008) proposed
an effective configurable component middleware approach in
supporting different applications with aperiodic and periodic
events and providing a flexible software platform for
distributed cyber-physical systems. Gokhale and McDonale
(2010) proposed a combination solution of cyber (e.g.,
Behaviour of protocols such as TCP, IP and 802.11 MAC)
and physical (e.g., vehicular speed, radio range) for
Intelligent Transportation System. Zhang and Shi (2008)
study the task scheduling problem of CPS from the aspect of
its feedback control behaviors. They co-design the control
law and the task scheduling algorithm for predictable
performance and power consumption for both computing and
the physical system.

These prior efforts are important since they provide crucial
insights into the time-related model and communication
behaviours of CPSs, or contribute to mechanisms and
strategies that can tune real-time performance.

3. INFORMATION PROCESSING MODEL AND
PROBLEM DESCRIPTION

The paper focuses on scheduling problems in the information
processing layer of CPSs. The layer is abstracted with one
master node and several distributed clusters. The master node
takes charge of receiving and assigning tasks. Clusters are
responsible for executing tasks.

3.1 Information Processing Model

The information processing model consists of one master
node and m clusters Cl = {cl1, cl2,…,clm}. Clusters are
connected each other by internet. For simplification, it is
assumed that each cluster has k processors as Fig.1 shows.
The communication cost, task migration cost and context
switch cost in a cluster are ignored. But the communication
cost between clusters (assume it is a constant C0) is taken into
account. The utilization of task set is assumed to be U and the
formula U k m≤ ⋅ should be met. (Otherwise, task set is not
schedulable).

3.2 Task Model

For a task set T = {T1，T2, …,Tn}, assume that preemption is
allowed and there is no dependency between tasks. For

CONTROL ENGINEERING AND APPLIED INFORMATICS 43

simplification, just periodical tasks are discussed in the paper.
Each periodical task Ti= (ci, pi, ri, di) is defined with four
parameters, where ci is the task’s worst-case execution time,
pi is its period, ri is its release time and di is its deadline.
Assume that ci, pi, ri, and di are integers, denoting the number
of time quanta. Moreover, it is assumed that tasks are
synchronous. The utilization of task Ti is defined as ui=ci/pi
and the system utilization is defined as the summation of all
task’s utilization U=∑ui (1≤i≤n). Assume that the different
parts of a split task cannot be executed in parallel. For each
task there is ui≤1. If a task is not split, then ri=0 and pi=di,
otherwise the ri and pi will be reset (details will be discussed
in section 4.2).

Fig.1. Information processing model with k processors in
each cluster

3.3 Problem Description

In the intelligent transportation system (ITS), for example,
some car drivers want to know about the traffic information
along the path to their destination, some drivers need to know
if there is car coming from other side and how much speed
the car is, especially in the cross road. All these requirements
can be done by sending them to the information processing
layer of ITS. The system can use powerful clusters to process
massive requirement. At first, the master node receives these
requirements/tasks and then assigns them to clusters. How to
find an optimal cluster to minimize the scheduling overhead
is the first problem should be solved. When no more cluster
can be used to accommodate a task, the master node start to
split the task and assign each of these splitting parts to
clusters. How to split a task to minimize the splitting
granularity is the second problem that cannot be ignored. At
last each cluster start to execute these tasks assigned to them.
How to design an optimal real-time global scheduling
algorithm is the third problem need to be addressed. To solve
these problems, three algorithms have been proposed in the
paper.

4. ALGORITHMS

In the paper, scheduling points are defined as period
boundaries between 0 and Lcm(T), in which Lcm(T) means
the least common multiple of a set of periods ({ p1, p2,…pn })
of the task set T. For example, if a task set includes 3 tasks

(T= {T1，T2, T3}) with period p1=5, p2=6, and p3=15. So its
least common multiple number Lcm(T) is 30 and the
scheduling points are 5, 6, 10, 12, 15, 18, 20, 24, 25, and 30.

4.1 Task Assignment

The objective of the task assignment algorithm is to assign n
tasks to m clusters such that the total scheduling points are
minimal. This is a NP-hard problem since it can be described
as a bin-packing problem as below:

Problem Statement: Given m nodes with k processors for
each. For n period tasks {T1，T2, …,Tn} with utility ui≤1
(1≤i≤n), find if there is an integer B (B≤m) and B-partition
S1∪S2…∪SB of{1,…,n} such that minimize ∑spj (spj means
the number of scheduling point at node j, j∈[1,B]), in the
constraint of ∑ui≤k (i∈Sw) for all w=1,…,B.

For this NP-hard problem, one approximate solution is
greedy algorithm. In the paper, “contribute factor” is
designed to evaluate the increase of scheduling points after
adding a new task. So the “contributed factor” needs to be
calculated once the new task is assigned into a cluster. The
cluster which has the smallest contribute factor will be
chosen to accept the new task. The “contribute factor” can be
calculated using inclusion-exclusion principle. Suppose the
period of a new task is A. For the mth cluster clm which
includes a task set T = {T1，T2, …,Tn}, before adding a new
task, the number of scheduling points is

() ()[(1/) (1/ (,))
1 0

SP cl l cl p l p pm m i i ji n i j n
∑ ∑= −

< ≤ < < ≤
 (1)

(1/ (, ,)) ... (1) (1/ (, ,...))]
1 20

nl p p p l p p p
i j k ni j k n

∑+ − + −
< < < ≤

After adding a new task with period A, the number of
scheduling points is

(,) (,)[(1/) 1/ (,)
1 1 0 1

SP cl A l cl A p l p pm m i i ji n i j n
∑ ∑= −

< ≤ + < < ≤ +
 (2)

11/ (, ,) ... (1) (1/ (, ,... ,))]
1 20 1

nl p p p l p p p A
i j k ni j k n

+∑+ − + −
< < < ≤ +

The explanations of notations are as below:

l SP(clm) means the number of scheduling points of the mth
cluster.

l SP(clm, A) means the number of scheduling points of the
mth cluster after accepting the new task which period is
A.

l l(pi,pj) means the least common multiple of number pi and
pj.

l l(clm) means the least common multiple of the period value
of task set in cluster m.

l g(l(clm),A) is the great common divisor of l(clm) and A.
l cop(clm, A)= g(l(clm),A)/A, which demonstrates the

coupling of the number A with the period value of task
set in the cluster clm.

processor

processor

processor

processor

processor

processor

processor

cluster m

...cluster 2

...
processor

k

2

1processor

...

cluster 1

master node{T1, T2, ..., Tn}

44 CONTROL ENGINEERING AND APPLIED INFORMATICS

Since the formula (,) () / ((),)l cl A l cl A g l cl Am m m= ⋅ is true, so the
“contribute factor” (the increase of the number of scheduling
points) ΔSP is

(,) ()SP SP cl A SP clm m∆ = − (3)
()[() / (,) (,) / (,) ()]l cl a cl cop cl A b cl A cop cl A a clm m m m m m= + +

in which

() (1/) (1/ (,))
1 0

n
a cl p l p pm i i ji i j n

∑ ∑= −
= < < ≤

 (4)

(1/ (, ,)) ... (1) (1/ (, ,...))1 20
nl p p p l p p pi j k ni j k n

∑+ − + −
< < < ≤

(,) 1 / (1/ (,))
0

b cl A A l p Am ii n
∑= −

< ≤
 (5)

1+ (1/ (, ,)) ... (1) (1/ (, ,... ,))1 20
nl p p A l p p p Ai j ni j n

+∑ − + −
< < ≤

The SP∆ demonstrates that the more coupling between A and
period values of task set, the fewer increasing of the
scheduling points the cluster has. So a heuristic algorithm is
proposed as shown in algorithm 1. The objective of this
algorithm is to choose an appropriate cluster for a new
arriving task such that the total increase of schedule points is
minimal. Obviously it’s not the optimal algorithm, because
the SP∆ is also related to the original task set assigned to the
cluster. But it does decrease the time complex:

Algorithm 1.

Assumptions:
1. There are m clusters with k processors in each.
2. Task set T = {T1，T2, …,Tn} has been assigned into a

cluster cli and it has been sorted by its
period(p1<p2<…<pn).

3. A new coming task Tnew (cnew, pnew, rnew, dnew). So the utility
of the new task is unew=cnew/(dnew-rnew)

__
1. l(cli)=0 , u(cli)=0 (i=1,2…m)
2. For each cli do
3. If (u(cli) +unew ≤k) then
4. copi = g(l(cli), pnew)/ pnew ;
5. else

6. copi = -∞;
7. End For
8. copmax = max(cop1, cop2,…, copm) ;
9. set S= Ø;

10. put Ti into set S when copi=copmax;
11. find the cluster clj such that the l(clj) is minimal (clj∈S);
12. cli = cli∪Tnew ;
13. l(clj) =l(l(clj), pnew);
14. u(cli) += unew;

Some notations in the algorithm are explained as below:

l cli: the ith cluster.

l l(cli): the least common multiple of period value of task
set in cli.

l u(cli): the utility of cli.

The algorithm firstly checks if the cluster can accommodate
the new task. If yes, it calculates the coupling value between
the new task and the tasks already in the cluster (line4). Then
set S collects the tasks which have the largest cop value
(line10). And then find the cluster which has the smallest
value l(clj) with the task choosing from set S and put the task
into the cluster (line12). At last, update the utility and the
least common multiple number of the cluster (line13, 14).

The complex of the algorithm is O(m), in which m is the
number of clusters. Although it is not an optimal algorithm,
the time complex can be reduced to polynomial complex.

4.2 Task Splitting

After assigning some tasks, if there is no one cluster can
afford enough capacity for a new coming task, the strategy of
task splitting is considered in order to increase the utilization
of clusters. The strategy is taken only if the condition of
ci/pi≤ ∑Urj (1≤i≤n; 1≤j≤m) and (qc0+ci)≤pi is met. Urj is the
rest utilization of cluster j; q is the number of clusters chosen
for loading the task and c0 is the communication cost between
nodes. The communication time of context switch and task
migration in a cluster is ignored. But the communication cost
between clusters cannot be ignored. Note in order to decrease
the communication overhead between clusters, after a task is
assigned into a cluster, it does not be migrated to other
clusters.

The aim of this part is try to execute more tasks by making
full use of processors of clusters. But in this way, the
scheduling points will be increased and inevitably the
communication cost between clusters is raised. So a task do
not be split if there still at least one cluster can accommodate
it. Besides, in order to reduce the granularity of splitting,
clusters are sorted by Ur with decreasing order. The cluster
with largest Ur will be the highest priority to be chosen for
allocating split tasks. By this way, the granularity of splitting
can be as less as possible. Algorithm 2 shows the splitting
algorithm in which the release time and deadline of each part
of split task are set.

Some notations in the algorithm are explained as below:

l Su: the sum of utilities which have been assigned to the
new task Tnew。

l timeCost: the total time taken for the new task,
including computation time and context switch time
between cluster.

l Uri: the rest utility of the ith cluster.
l ci : the new task’s computation time in the ith cluster.
l ct: the total computation time of the new task in all

clusters.
l Unew: the utility of the new task.
l deadlinej: the deadline of the partial task which has been

assigned to the jth cluster.

CONTROL ENGINEERING AND APPLIED INFORMATICS 45

l releaseTimej: the release time of the partial task which
has been assigned to the jth cluster.

Algorithm 2.

Assumptions:
1. A new coming task Tnew (cnew, pnew, rnew, dnew). So the

utility of the new task is Unew=cnew/(dnew-rnew)
2. m clusters is sorted by its rest utility(Ur1>Ur2>…>Urm)
3. The communication cost between clusters is c0.
__
1. Su =0; i=0; j=0;

relaseTime = 0; deadline=0, timeCost = 0, ct =0;
2. While(Su < Unew && timeCost< pnew && i<m) do
3. Su += Uri;
4. timeCost += U ri 0P Cn e w ⋅ +  ;

5. ci = Uri* pnew ;
6. ct +=ci;
7. i++;
8. End While
9. If (Su = Unew) then
10. While(j<i) do
11. deadlinej = releaseTimej + cj*pnew/ct –c0/2;
12. releaseTimej+1 = deadlinei + c0;
13. j++;
14. End While
15. End If

In the first while loop, if a task still need more capacities, and
at the same time, there exists a cluster which can provide
capacity for it (line2), the cluster is chosen to allocate the rest
of the task(line3, 4, 5, 6). In the second while loop the
available time (deadline minus releaseTime) is reset for the
split task according to the proportion of the computation time
(ci) taken from the total execution time (ct) (line11, 12).

The complex of the algorithm is O(m), in which m is the
number of clusters.

4.3 Global Scheduling

The algorithm proposed in this part follows the idea of BFair
global scheduling algorithm proposed by Zhu et al. (2003).
The main difference between them is that the modified
algorithm has capability of handling task set which includes
split tasks while BFair focuses on the fairness of scheduling.
For simplification, the situation with just one split task in a
cluster is considered.

Before presenting the algorithm, some definitions are given.
When the section [bk, bk+1] is allocated, the mandatory unit is
defined as 1 max{0, () }1

k km RW b b wi i k k i
+  = + −+  

, in which kRWi is

allocation error. The allocation error for task Ti at boundary
time bk is defined as the difference between b wk i⋅ and the

time units allocated to Ti before bk. The 1kmi
+ is the integer part

of the summation of the remaining work in the interval of
[bk-1, bk] and the work to be done during [bk, bk+1]. The
pending work is defined as

1 1()1
k k kP W R W b b w mi i k k i i

+ += + − −+ which is the
corresponding decimal part. If Ti gets one optional unit when
allocating [bk, bk+1], then 1 1ko i

+ = , otherwise 1 0koi
+ = . After

allocating resources in the interval of [bk, bk+1], the
equation 1 1 1k k kRW PW oi i i

+ + += − can be gotten. At boundary time

bk+1, the task Ti is ahead if kRWi <0, punctual if kRWi =0 and

behind if kRWi >0.

The algorithm is presented in Algorithm 3, where EX is the
extra task units which cannot be assigned to resource. It used
to determine how many mandatory units should be removed.
RU is the remaining units after allocating tasks’ mandatory
units. It used to determine how many optional units need to
be allocated. Initially, 0RWi =0 (i = 1, 2,…).

Algorithm 3.

Assumptions:
1. Task set T = {T1，T2,…,Tn}in a cluster.

1. For (T1，T2,…,Tn) do

2. 1 max{0, () }1
k km RW b b wk k ii i

+  = + −+  
;

3. End For

4. If (1 ()1
km b b mk ki

+∑ > −+) then

5. 1 ()1
kEX m b b mi k k

+∑= − −+ ;

6.
SelectedTaskSet=PickLowestPriorityTask(EX, 1k

mi
+ =1,Ti≠Ts)

7. For (Ti∈SelectedTaskSet) do

8. 1kmi
+ −− ;

9. End For

10. else

11. 1()1
kRU m b b mk k i

+= − −∑+ ;

12. SelectedTaskSet = PickHighest PriorityTask(RU)

13. For (Ti∈SelectedTaskSet) do

14. 1
1

k
oi

+
= ;

15. End For

16. End If

17. For(T1，T2,…,Tn) do

18. 1 1()1
k k kPW RW b b w mk k ii i i

+ += + − −+

19. 1 1 1k k kRW PW oi i i
+ + += −

20. End For

46 CONTROL ENGINEERING AND APPLIED INFORMATICS

21. GenerateSchedule(bk, bk+1);

In the first “For” loop, the algorithm allocates mandatory
units for each task Ti according their weights (line 2). If the
section [bk, bk+1] has no enough resource to allocate these
mandatory unit (EX>0), then the function of
“PickLowestPriorityTask” will return the EX lowest priority
tasks (line6) and each of them will reduce mandatory unit by
1 (line8). If there are time units left (RU>0), the function of
“PickHighestPriorityTask” will return the RU highest priority
task (line12) and each of them will get one optional unit
(line14). After allocating all time units, the algorithm will
calculate PW and RW for each task (line 18, 19). At last, the
schedule for section [bk, bk+1] is generated by function
GenerateSchedule(), which sequentially packs tasks to
resources (line21).

Since a split task Ts (cs, ps, rs, ds) is a part of task Ti (ci, pi, ri,
di), the formula ps= pi , cs < ci , ds - rs ⊆ di- ri should be met.
For a normal task, its weight is defined as Wi= ci/pi. For a
split task Ts the weight is defined as

/() [,] (,), 0,1,...1
0

c d r b b np r np d ns s s k k s s s sWs others

− ∈ + + = +=


 (6)

The task’s priority is sorted according to a characteristic
string which follows the idea of Sanjoy et al. (1996).
Define () [()]1 1T sign b w b w b bk i k i k i k kα  = ⋅ − ⋅ − −− −  , which presents
whether the task Ti can get enough resource or not in the
section [bk, bk+1]. If yes (() 0Tk iα <), the task will be ahead at
boundary bk+1. If () 0Tk iα = , the task will be punctual at that
boundary, otherwise, the task will be late. The urgent factor
is defined as (1 ())/kUF b w b w wi k i k i i = − ⋅ − ⋅  , which is the minimal
time needed for a task to collect enough work demand to
receive one unit allocation and become punctual after bk.
After using the compare (Ti, Tj) algorithm proposed by Zhu et
al. (2003), we can get the task set sorted by its priority. Then
the function “PickLowestPriorityTask” is used to pick EX
lowest priority tasks which mandatory unit is more than 1,
excluding the split task. The “PickHighestPriorityTask” is
used to choose RU tasks with highest priority from the sorted
task set.

Theoretically, without any cost consuming, the algorithm can
guarantee that each task can meet its deadline. This can be
gotten by method of reduction to absurdity. If the algorithm
cannot guarantee the real-time property, it means that there is
at least one task which fails to meet its deadline. But from the
algorithm we can see that once there is an optional unit, one
task must be assigned unless there are no more tasks to be
executed. In another word, processors are always busy to
execute tasks. So if there is one task fails to meet it deadline,
then, for the cluster which includes k processors, the total
utilization of the task set assigned to the cluster must greater
than k, which is contradict with the condition u(cli)≤ k. But
practically, some tasks maybe miss their deadline because of
the preemption cost, context switch cost, communication cost
and so on.

4.4 Sample execution of the algorithm 3

In order to demonstrate the difference between algorithm 3
and BFair algorithm, the task set is chosen as below:
T1=(2,5,0,5),T2=(3,15,0,15),T3=(3,15,0,5),T4=(2,6,0,6),T5=(20
,30,0,30),T6=(6,30,0,30). Here T3 is a split task, which means
that the task T3 can only be executed in [z﹒p3+0, z﹒p3+5] (z
is an integer). Assume these tasks will be executed in a
cluster which includes two processors. The execution of
Algorithm 3 is illustrated in the Table 1 of Appendix A.

Initially 0RWi =0 (i=1…6). For the first section [b0, b1],
()Tk iα and kU Fi are calculated firstly for each task and then

their results are put into the column b1. For example,
() [()] [5 2 / 5 0 2/5 (5 0)] ' '1 1 1 1 1 00 1T sign b w b w b b signα    = ⋅ − − − = ⋅ − ⋅ − − = −   
1

(1 ()) / (1 (5 2 / 5 5 2/5)) / (2 / 5) 5 / 21 1 1 11 1UF b w b w w   = − ⋅ − ⋅ = − ⋅ − ⋅ =    .
Then using the formula 1 max{0, () }1

k km RW b b wi i k k i
+  = + −+  

to calculate

the mandatory units for each task, for example, T1’s
mandatory unit is 1 max{0, 0 (5 0) 2/5 } 21m = + − ⋅ =   . The mandatory units
for other tasks can also be calculated and the results are

1 1 1 1 11; 3; 1; 3; 12 3 4 5 6m m m m m= = = = = separately. Since 1m i∑ =11 (1≤i≤6)
and the total available time units are () ()5 0 2 101 0b b m− ⋅ = − ⋅ = . There
is one extra unit (EX=1) need to be removed. Notices that T5
has the lowest priority with 1 55UF = , so one mandatory unit is
removed from it. At this moment the allocation for the
section [0, 5) is complete and then their corresponding PW
and RW is calculated. All the values calculated above are
filled into the column of b1. The same procedure is repeated
when calculating other sections.

For section [5, 6), the split task T3 cannot get any resource
since the section exceeds its deadline. So in this section, just
tasks T1, T2, T4, T5, and T6 calculate their mandatory unit. As
a result, T4 and T5 get one unit separately. And then each task
except the split task T3 calculates their PW and RW. These
steps are repeated. In section [10, 12), T4 get one mandatory
and T5 get two. There still is one optional unit to be allocated.
Since T1 has the highest priority, it will be allocated in this
section. Repeat till the last section. Finally, schedulable
allocation is gotten as shown in Fig.2.

Fig.2. an allocation example of global scheduling algorithm

5. SIMULATION

In the simulations, task sets are generated automatically
according to some initial parameters: the number of tasks, the
minimum task period pmin and the maximum task period pmax.

CONTROL ENGINEERING AND APPLIED INFORMATICS 47

Since the task set should meet the requirement ∑ui≤U (U is
the system utilization; ui is the utilization of the ith task in the
set), so the more tasks a set includes, the less utilization each
task can get. For each task, its ci, pi, ri and di are generated
randomly only if it meets the constrains below:

l pmin ≤pi ≤pmax.
l ci≤di-ri
l ui≤1

The pmin and pmax is set because the relation of scheduling
overhead and △p (= pmax - pmin)will be investigated in
experiments.

The simulation is executed using 4 clusters each equipped
with 2 processors. The objective of experiments includes:

l Evaluating the scheduling overhead varying with the
number of tasks.

l Evaluating the system utilization varying with the number
of split tasks

l Evaluating the success ratio varying with the system
utilization

5.1 Scheduling Overhead

This experiment investigates the relation between the
numbers of scheduling points with the numbers of tasks.
Three task sets are generated with the following setting:

l pmin =10, pmax =100, so △p=90.
l pmin =50, pmax =100, so △p=50.
l pmin =80, pmax =100, so △p=20.

For each task set, number of tasks is added from 10 to 55.

Fig.3. demonstrates scheduling overhead varying with the
increasing number of tasks. The x-axis records the number of
tasks assigned to the cluster. The y-axis demonstrates the
number of scheduling points. The result shows that the
scheduling overhead goes up with an increasing rate. This is
because the number of split tasks increases when cluster is
almost full. And split tasks contribute to the increasing of
Lcm (T) which will greatly impact the number of scheduling
points.

scheduling overhead

0

50

100

150

200

250

300

10 15 20 25 30 35 40 45 50 55

number of tasks

n
um

be
r
 o

f
sc

h
ed

ul
i
ng

p
oi

nt
s

△p =90 △p =50 △p =20

Fig.3. scheduling overhead varying with number of tasks

Furthermore, The figure shows that the number of scheduling
points decreases with the dropping of △p. This is because
that more tasks are likely to have the same period when the
△ p decreasing, which makes the number of scheduling
points less. Therefore, the case with △p=20 has a lower
scheduling overhead than that with △p=90.

5.2 System Utilization

One of objectives of the paper is to make full use of system
utilization. So this experiment is to investigate how much
system utilization can be gotten by keeping adding tasks.
Here, the three test sets that are the same as the experiment
above are generated.

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

10 15 20 25 30 35 40 45 50 55

number of tasks

no
rm

al
iz

ed

sy

st
em

ut
il

iz
at

io
n

△p =90 △p =50 △p =20

Fig.4. system utilization varying with number of tasks

Fig.4 demonstrates the result. The x-axis denotes the number
of tasks assigned to the cluster. The y-axis records the normal
system utilization. The normal system utilization is defined
as / ()U m k⋅ , in which U means the system utilization and
m k⋅ is the number of processors.

The figure shows that the normal system utilization goes up
and can be achieved more than 80% in the case of △p = 90.
And better result can be achieved if △p =20. This is because
the decreasing of △p results to the reducing of scheduling
point, which contributes to the decreasing of context switch.
This makes the system utilization is improved.

However, after that, for each case, the utilization is decreased
slowly. This is because when the system is almost full, task
has to be split if it still wants to be added into system. But the
more split tasks the system has, the more contexts switch and
task migration happens, which finally reduces the system
utilization more or less. Therefore, the system cannot be fully
used to executing tasks.

5.3 Success Ratio

Besides system utilization, the number of tasks can be
successful scheduling is another point to be evaluated. The
success ratio is defined as below:

Success Ratio = number of successful tasks / total number of
tasks

48 CONTROL ENGINEERING AND APPLIED INFORMATICS

The successful task means the task does not miss its deadline.
So if the success ratio equals 1, we know that there are no
tasks missing their deadline once they are successfully
assigned to system.

The object of the experiment is to investigate how much the
success ratio can be gotten if the system utilization are kept
increasing.

Fig.5 demonstrates the result. The x-axis denotes the
normalized system utilization. The y-axis records the success
ratio. The result shows that the success ratio almost equals to
1 before the normalized system utilization goes to 75%.
Then it goes down quickly with the increasing of system
utilization. This is because the split tasks are increased
greatly when the utilization surpasses 75%.

Furthermore, the less the △p is, the more smooth the success
ratio drops after threshold. This is because the number of
scheduling points of △p =20 is less than that of △p = 90,
which counteracts part of negative effects brought by split
tasks.

As a result, although the strategy of task splitting can
increase the system utilization, it has an adverse impact on
the success ratio. As a conclusion, if the system utilization
over 75%, chasing for system utilization by splitting task is
not a best choose. Besides, experiments shows that the small
value of △p has a positive effects on the system utilization
and success ratio.

0

0.2

0.4

0.6

0.8

1

1.2

0.2 0.3 0.4 0.66 0.78 0.85 0.9

normalized system utilization

s
uc

c
es

s
ra

ti
o

△p =90 △p =50 △p =20

Fig.5. success ratio varying with system utilization

6. CONCLUSIONS

In this paper, real-time scheduling algorithms which tailor for
Cyber-Physical Systems are proposed. The algorithms take
real-time issue as well as system utilization, scheduling
overhead and success ratio into account. Although the task
assignment algorithm is not optimal, the time complex can be
decreased to polynomial. Besides our task splitting algorithm
takes the communication cost between clusters into account,
which is never considered in prior works. At last, the global
scheduling algorithm fits for the situation when splitting tasks
exist in a task set.

The simulation results demonstrate that with the increasing
number of tasks, the scheduling overhead is risen. Besides,
the system utilization can be improved if we use the task
splitting strategy. However, the success ratio decreases
greatly when the system utilization is more than 75%.

As a conclusion, task splitting is a good way to improve the
system utilization, but when the system utilization is more
than 75%, the success ratio decreases sharply because too
much split tasks are generated. So if the system utilization
surpasses 75%, this solution of splitting task is a not good
choice.

ACKNOWLEDGEMENTS

The work is supported by the 973 project (NO.
2011CB302802) and the Natural Science Foundation of
China (NO. 61021004).

REFERENCES

Baruash, S.K., Cohen, N.K., Plaxton, C. G., Varvel, D.A.
(1996). Proportionate progress: A notion of fairness in
resource allocation. Algorithmica. Volumn(15), pp. 600-
625.

Benveniste, A. (2010). Loosely Time-Triggered
Architectures for Cyber-Physical Systems. EDDA 2010.
Campus de Beaulieu, 35042 Rennes cedex, France. 978-
3-9810801-6-2/DATE10.

Gokhale, A., McDonale, M., Drager, S., and Mckeever, W.
(2010). A Cyber Physical Systems Perspective on the
Real-time and Reliable Dissemination of Information in
Intelligent Transportation Systems. Network Protocols
and Algorithms, Volume(2), ISSN 1943-3581.

Huang, H.M., Tidwell, T., Gill, C., and Lu, C. (2010). Cyber-
Physical Systems for Real-Time Hybrid Structural
Testing: A Case Study. Washington University, USA.
ICCPS’10, April 13-15, 2010, Stockholm, Sweden.

Kang, K.D. and Son, S.H. Real-Time Data services for Cyber
Physical Systems. ICDCS Workshops, pp.483-488.
Department of Computer Science, State Univeristy of
New York at Binghamton.

Koubaa, A. and Andersson, B. (2009). A vision of Cyber-
Physical Internet. CISTER Research Unit, Polytechnic
Institute of Porto (ISEP/IPP).

Lee, E.A. (2006). Cyber-Physical Systems-Are computing
Foundations Adequate?. In Proc. of NSF Workshop on
Cyber-Physical System.

Lee, E.A. (2008). Cyber Physical Systems: Design
Challenges. Center for Hybrid and Embedded Software
Systems, EECS. University of California, Berkeley. In
Proc. of ISORC, May 2008. pp. 363-369.

Mollison, M.S., Erickson, J.P., Anderson, J.H., Baruah, S.K.,
and Scoredos, J.A. (2010). Mixed-Criticalit Real-Time
Scheduling for Multicore Systems. ICESS 2010.

Mueller, F. (2006). Challenge for Cyber-Physical Systems:
Security, Timing Analysis and Soft Error Protection.
HCSP-CPS, Nov 2006. Department of Computer
Science, North Carolina State University, Raleigh, NC.

Rajkumar, R. (2007). CPS briefing. NSF, May 10, 2007.
Carnegie Mellon University.

Rajkumar, R., Lee, I., Sha, L., and Stankovic, J. (2010).
Cyber-physical Systems- The next computing revolution.
In Proc. of Design Automation Conference, 2010,
Anaheim, California, USA.

Sha, L., Gopalakrishnan, S., Liu, X., Wang, Q. (2008).
Cyber-physical systems: a new frontier. IEEE

CONTROL ENGINEERING AND APPLIED INFORMATICS 49

International Conference on Sensor Networks,
Ubiquitous, and Trustworthy Computing. DOI
10.1109/SUTC.2008.85.

Sha, L. and Meseguer, J. (2008). Design of Complex Cyber
Physical System with Formalized Architectural Patterns.
Software-Intensive Systems and new computing
Paradigms. Springer, Nov, 2008. pp. 92-100. DOI:
10.1007/978-3-540-89437-7_5.

Talcott, C. (2008). Cyber-Physical Systems and Events.
Software-Intensive Systems, LNCS 5380. SRI
International, Menlo Park, CA 94025-3493, USA.

Tan, Y., Vuran, M.C., Goddard, S., Yu, Y., Song, M., and
Ren, S. (2010). A concept Lattice-based Event Model for
Cyber-Physical Systems. ICCPS’10, Stockholm,
Sweden.

Tidwell, T., Glaubius, R., Gill, C.D., and Smart, W.D.
(2010). Optimal Time Utility Based Scheduling Policy
Design for Cyber-Physical Systems. Washington
University in St. Louis.

Zhang, F., Shi, Z., and Wolf, W. (2009). A Dynamic Battery
Model for Co-Design in Cyber-Physical Systems. 29th
IEEE International Conference on Distributed

Computing Systems Workshops. ISBN: 978-0-7695-
3660-6.

Zhang, F., Szwaykowska, K., Wolf, W., and Mooney V.J.
(2008). Task Scheduling for Control Oriented
Requirements for Cyber-Physical Systems. RTSS, Real-
Time Systems Symposium.

Zhang, Y., Gill, C., and Lu, C. (2008). Reconfigurable Real-
Time Middleware for Distributed Cyber-Physical
Systems with Aperiodic Events. ICDCS, 2008.
Dpeartment of Computer Science and Engineering,
Washington University, St. Louis, MO, USA.

Zhu, D.K., Mosse, M., and Melhem, R. (2003). Multiple-
Resource Periodc Scheuling Problem: how muchfairness
is necessary? In Proc. Of the 24th IEEE Real-Time
System Symposium.

Zimmer, C., Bhat, B., Mueller, F., and Mohan, S. (2010).
Time-Based Intrusion Detection in Cyber-Physical
Systems. ICCPS’10, Stockholm, Sweden.

Appendix A. EXAMPLE OF ALGORITHM 3

Table 1. The execution example of algorithm 3

time 0 5 6 10 12 15 18 20 24 25 30
bk b0 b1 b2 b3 b4 b5 b6 b7 b8 b9 b10

1
kRW * 0 2/5 0 -1/5 0 1/5 0 -2/5 0 0

2
kRW * 1 6/5 0 2/5 0 3/5 1 4/5 0 0

3
kRW * 0 * * * * -1/5 0 * * 0

4
kRW * 2/3 0 1/3 0 0 0 2/3 0 1/3 0

5
kRW * 1/3 0 2/3 0 0 0 1/3 0 2/3 0

6
kRW * 0 1/5 0 2/5 0 3/5 0 4/5 0 0

1
km * 2 0 2 0 1 1 1 1 0 2

2
km * 0 0 2 0 1 0 0 1 1 1

3
km * 3 * * * * 1 1 * * *

4
km * 1 1 1 1 1 1 0 2 0 2

5
km * 3 1 2 2 2 2 1 3 0 4

6
km * 1 0 1 0 1 0 1 0 1 1

1
kPW * 0 2/5 0 4/5 0 1/5 0 3/5 0 0

2
kPW * 1 6/5 4/5 2/5 0 3/5 1 4/5 0 0

3
kPW * 0 * * * * 4/5 0 * * 0

4
kPW * 2/3 0 1/3 0 0 0 2/3 0 1/3 0

5
kPW * 1/3 0 2/3 0 0 0 1/3 0 2/3 0

6
kPW * 0 1/5 0 2/5 0 3/5 0 4/5 0 0

αk(T1) * - - - - - - - 0 * *
αk(T2) * - - - - - - - 0 * *
αk(T3) * - * * * * 0 - * * *
αk(T4) * 0 - - - - - - - * *

50 CONTROL ENGINEERING AND APPLIED INFORMATICS

αk(T5) * 0 - 0 - - - - - * *
αk(T6) * - - - - - - - 0 * *

1
kUF * 5/2 3/2 * 1/2 5/2 * 5/2 * * *

2
kUF * 5 4 * 3 5 * 5 * * *

3
kUF * 5/3 * * * * * * * * *

4
kUF * 0 3 * * 3 * 3 * * *

5
kUF * 0 3/2 * * 3/2 * 3/2 * * *

6
kUF * 5 4 * 3 5 * 5 * * *

1
ko * * * 0 1 * 0 * * * *

2
ko * * * 0 0 * 0 * * * *

3
ko * * * 0 0 * 1 * * * *

4
ko * * * 0 0 * 0 * * * *

5
ko * * * 0 0 * 0 * * * *

6
ko * * * 0 0 * 0 * * * *

