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Abstract: To enable efficiently use of the distributed resources, Networked Cyber Physical System 
(NCPS) needs to allow the composition of state messages generated by different nodes. Consider the 
nodes’ limited energy and the limited lifetime of these messages, how to transmit them to other 
designated nodes fast with constraint is very important in NCPS. Because the expenditure of energy in 
data dissemination is originated from transmission process mostly, this paper adopts probability Two-hop 
routing method and the objective is to select proper probability to maximize the number of satisfied 
destinations. This paper uses the Edge-markovian graph to model NCPS and use discrete time Markov 
process to study the evolving rule of Two-hop routing method, and then studied mainly the static, 
stochastic and threshold control policies, theoretical and numerical results show that the optimal policy is 
the threshold form. 
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1. INTRODUCTION 

Traditional embedded and control systems typically close 
loops around important physical phenomena. The key goal of 
Cyber Physical System (CPS) (E. A. Lee, 2008) is to 
understand how to couple the cyber and physical realms 
effectively. So there exists interaction between the cyber and 
physical fields and the decision of the physical realm needs 
the messages from cyber realm. For the large-scale 
application of CPS, Networked CPS (NCPS) is needed 
(Minyoung Kim, 2010). An NCPS can provide complex, 
situation-ware, and often critical services in applications such 
as distributed surveillance and control, crisis response, or 
networked space/satellite missions, and so on. Because NCPS 
is a distributed system, the state of one node may have an 
effect on another node’s physical field, that is, to enable 
efficient use of the distributed resources, NCPS needs to 
allow the composition of state messages generated by 
different nodes. Obviously, the dissemination of nodes’ state 
is very important in NCPS. Also, the methods from cyber 
fields such as our data diffusion method must consider the 
actual situation of the physical field. Many peers of NCPS 
are working in the harsh, wireless and dynamic environment, 
so their energy is limited and the data dissemination methods 
must consider its impact. On the other hand, the maximal 
lifetime of the message is also limited and the messages out 
of date may cause worse effect than the case that didn’t get 
message at all (etc., in war field). So the data dissemination 
methods should finished with limited energy before the 
deadline of the messages. Further, because the energy is 
limited and the destination nodes may be very large, not all of 

the destinations can be satisfied. In this situation, what can be 
done is to maximize the satisfied destinations with limited 
energy before the deadline of the message. 

In order to diffuse message effectively, first, it should 
understand the system’s topology structure. NCPS often 
working in harsh environment, the system should be able to 
take advantage of opportunities for communication and must 
be robust against delays and disruptions due to, e.g., mobility 
failures. Information diffusion and optimization in NCPS 
should take place locally at any node, though a certain degree 
of global awareness may be needed. Because of those 
problems, traditional connected graph is hard to model NCPS, 
and a loosely application framework based on Delay Tolerant 
Networks (DTN) (Fall K, 2003) is proposed in paper 
(Minyoung Kim, 2010). In this paper, the data dissemination 
method is also oriented to the loosely coupled system. 
Routing (by abuse of language, routing and data 
dissemination indicate the same thing in this paper) in 
traditional networks work on the assumption that there exists 
at least one path between endpoints, so these routing methods 
can not be used in DTN directly. 

In order to overcome the network partitions, nodes of the 
DTN communicate through a “store-carry-forward” mode. 
Due to node mobility, different links come up and down. If 
the sequence of connectivity graphs over a time interval is 
overlapped, then an end-to-end path might exist, so the 
message should be forwarded over the existing link, stored 
and carried at the next hop until the next link comes up, and 
so on and so forth, until it reaches the destination. The basic 
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routing method in DTN is epidemic routing (ER) (A. Vahdat, 
2000) in which each node receiving the message carries it as 
it moves, and then forwarding it to all new nodes it 
encounters which does not have the message yet. Obviously, 
this would consume large energy, in order to use resource 
efficiently some economic methods such as Two-hop (M. 
Grossglauser, 2002) is proposed. In Two-hop method, the 
source node forwards message to every new encountered 
node and it also waste energy, so to use it more efficiently is 
necessary. Authors in paper (E. Altman, 2009a) study the 
optimal control problem of two-hop in DTN and (E. Altman, 
2009b) study the problem with heterogeneous nodes, a more 
recent paper (Yong Li, 2010) consider the impact of node’s 
selfish on ER method. But all of them are based on the 
exponentially model which failed to capture the strong 
dependence between the existence (and the absence) of a link. 
On the other hand, all of them consider only one destination 
and their object is to maximize the delivery ratio. For multi-
destinations, due to limited energy, the delivery ratio may be 
0 all the time, so this objective function is not proper for 
multi-destinations situation. To denote the dependence in link, 
Edge-markovian graph (C. Avin, 2008) is proposed to model 
the fast changing world. But the works in Edge-markovian 
graph are oriented to analysis of the performance with some 
basic methods, to our best knowledge, none of the works 
considered how to control these methods to get much better 
performance. The main contributions of this paper can be 
summarized as follows:  

a. It uses discrete time Markov process to model 
the probability Two-hop routing process with 
multi-destinations under Edge-markovian 
graph;  

b. It studies three control policies based above 
analysis, and proves that the optimal policy is 
the threshold form, that is, an policy which is 
not threshold form can not be optimal; 

c. It gives the numerical results and shows that 
the optimal threshold policy is better. 

The rest of the paper is organized as follows: in section 2, 
some related works are introduced, and then in section3 it 
studies the Two-hop method using discrete time Markov 
process, and explores some control policies based on it. The 
numerical results are given in section 4, at last, it summaries 
the main work. 

2. RELATED WORK 

For NCPS, paper (A. Benveniste, 2010) proposed a loosely 
time-triggered architectures, and then paper (Minyoung Kim, 
2010) proposed a loosely application framework based on 
DTN. These papers show that the topology of NCPS is 
loosely coupled. So traditional connected graph is not proper 
to model NCPS, and it poses some challenges to guarantee 
the quality of service (Qos) (F. Xia, 2008) in the system. For 
those challenges, first and foremost is how to guarantee the 
quality of communication. Because communication depends 
on the topology of the system, how to model the topology of 
NCPS should be studied first. At present, DTN is often used 
to describe the intermittently-connected networks and paper 
(Minyoung Kim, 2010) has proposed the architecture based 

on it. DTN was first proposed in paper (Fall K, 2003). 
Because the phenomenon described in DTN emerged in 
many situations, examples include interplanetary Internet 
(IPN) (Burleigh S, 2003), military networks (Krishnan R, 
2007), wildlife tracking and habitat monitoring sensor 
networks (Juang P, 2002) etc, it is a very hot topic in recent 
years. Most of the search lies in the routing field with 
different application environment, such as (Wei Gao, 2011), 
(Mohammad Arif, 2011) and (E. Bulut, 2010). But most of 
these methods need some prior knowledge of the network, so 
it is hard to use in many situations and ER is often used in the 
zero-knowledge environment. Further, because ER would 
consume large energy, Two-hop is used more often. Another 
research direction of DTN is in theoretical field, Zhang 
studied the performance of ER in paper (X. Zhang, 2007), 
and then many other papers (R.Bakhshi, 2010) and (Klein D. 
J, 2010) are proposed using different methods. But all of 
them are only explored the performance of ER, and they 
failed to study how to control the algorithm for more 
efficiently use. Authors in paper (E. Altman, 2009a) study the 
optimal control problem of two-hop in DTN and (E. Altman, 
2009b) study the problem with heterogeneous nodes, a more 
recent paper (Yong Li, 2010) consider the impact of node’s 
selfish on two-hop routing and paper (M. Khouzani, 2011) 
studied the optimal control problem of ER in more common 
case. But all of them are based on the exponentially model 
which failed to capture the strong dependence between the 
existence (and the absence) of a link. To overcome this 
problem, a more advantaged model called Edge-markovian 
model is proposed in paper (C. Avin, 2008), but the fruits 
based on the model are rare. Authors in paper (A. E. Clementi, 
2008) studied finished time of ER in the model and only 
given some approximate results. Paper (John Whitbeck, 2011) 
studied ER under different message size, but it still only got 
the approximate results. To our best knowledge, none of the 
works considered the optimal control problem in Edge-
Markovian Dynamic Graphs. So our work is different from 
existing works. 

3. EVOLVING PROCESS OF TWO-HOP METHOD 

3.1   Network Model 

Suppose there are N+L nodes in the NCPS. The last L nodes 
are called the destinations, which only receive message 
without forwarding, and one of the first N nodes is called the 
source node indicated as S, the other N-1 nodes are called 
relay nodes. This paper adopts a discrete time model, 
considering time slot duration Δ>0. The t-th slot corresponds 
to interval [tΔ, (t+1)Δ]. The source S created message m at 
time 0 with the maximal lifetime TΔ, so the maximal number 
of slots is equal to T>0. For abuse of language, this paper will 
use T to indicate the maximal lifetime of m. Further the paper 
assumes that a node that receives a copy during a time slot 
can forward it starting from the following time slot. If a node 
received m, it can be seen as infected. Given any two nodes i 
and j, the symbol eij(t) indicates state of the link (or called 
edge) between them at t-th slot. If eij(t) =1, it can be seen that 
i and j encountered with each other at t-th slot, and eij(t) =0 
indicates the link is absent. Every link changes its state at the 
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beginning of a slot according to a two-state Markov process 
and keep invariance in the same slot, that is, if eij(t) =0, 
eij(t+1) =1 with probability 0≤α≤1 and keep invariance with 
probability 1-α, similarly, if eij(t) =1, eij(t+1) =0 with 
probability 0≤β≤1 and keep invariance with probability 1-β. 
Suppose that α+β<1 and the transitive process is shown in 
Fig.1 as follows, 

 

Fig. 1. State transition diagram of the link 

This is a Bernoulli process and there exists the stationary 
distribution. Let π0 and π1 indicate the probability a link is in 
state 0 and 1 when the system went into stationary state, 
separately, they are shown as follows 

0

1

/ ( )
/ ( )

π β α β
π α α β

= +
 = +

                                                           (1) 

This paper uses the probabilistic Two-hop method, that is, if S 
meets another relay node without message m at t-th slot, S 
forwards m to this relay node with probability p(t). The 
problem is that how to control the probability to maximize 
the infected destinations under limited energy, and this paper 
proposed three probabilities (also called policies), that is, 
static policy, threshold policy and stochastic policy. 

In the system, there will be many different messages. 
However, this paper only considers one message for certain 
duration in this paper, and the results can be extended to 
multi-messages easily. 

3.2   Evolving Process 

Because it has assumed that a node that receives a copy 
during a time slot can forward it only from the next slot, the 
forwarding process is started at the beginning of a slot, and 
the receiving process is appeared when the slot is finished. So 
the number of infected nodes keeps invariance during one 
slot. Let X(t) indicates the number of infected relay nodes at 
the starting of the t-th slot, also Y(t) indicates the number of 
infected destination nodes at the starting of the t-th slot. Now 
the objective is to solve the optimization problem as follows, 

 
  ( ( ))

   ( ( )) ( ( ))
Maximize E Y T
Subject to E X T E Y T σ


 + ≤

                     (2) 

E(X(T)) and E(Y(T)) indicate the expectation of X(t) and Y(t) 
at the starting of the T-th slot, separately. Symbol σ>0 is 
called the maximal energy of the system. Obviously, the 
objective is to maximize the expectation of the number of the 
satisfied destinations. E(X(T)) + E(Y(T)) indicates the 
expectation of transmission times of the message. This paper 
only consider the energy consumption used for data 
dissemination, because the expenditure of energy in this 
process is due to transmission mostly, it can be seen that the 
total energy consumption is proportional to the total 

transmission times during the message’s lifetime. The energy 
consumption of one time transmission includes both the 
reception energy at the receiving node and the sending energy 
at the transmitting node. Therefore, the expectation of total 
energy consumption can be expressed as follows, 

( ( ( )) ( ( ))), 0E X T E Y Tε ε+ >                                      (3) 

For simplicity, let ε=1 and get the formula (2). 

The relay nodes receive message only from the source node, 
and the process is independent, so the evolving rule of X(t) is, 

( )
11

( 1) ( ) ( )N X t
tj

X t X t jδ
−

+=
+ = + ∑                                (4)  

Above formula means that the number of infected relay nodes 
at the beginning of the (t+1)-slot equals to the number of 
infected relay nodes at the beginning of the t-slot added by 
the number of infected relay nodes during time interval [tΔ, 
(t+1)Δ]. δt+1(j)=1 indicates the event that node j without 
message before receives m during  [tΔ, (t+1)Δ], and it 
satisfies,   

1( ( ) 1) ( ( ) 1) ( )t Sjp j p e t p tδ + = = =                                 (5)  

Symbol p(δt+1(j) =1) means the probability of node j is 
infected at the t-th slot, and the symbol p(eSj(t)=1) indicates 
the probability of the link between node j and S is in state 1 at 
the t-th slot. Now the problem is how to get the probability 
p(eSj(t)=1). In fact, from the event that δt+1(j) =1, it can easily 
know that node j is not infected before time tΔ. So at the 
current time,  
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According to the Bayesian formula, the next formula is right, 
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Combined with (6) and (7) the evolving process of p(eSj(t)=1) 
can be got with different time t. Now, further combined with 
(4) and (5), the expectation of X(t) is, 

1

0
( ( )) ( 1) (1 ( ( ) 1) ( ))t

Sji
E X t N N p e i p i−

=
= − − − =∏ (8) 

The initial status does not have any impact on the analysis 
process, so this paper simply supposes that the system started 
from the stationary state, that is, at the 0-th slot, any two 
nodes connected with probability π1.  

For Y(t), it has similar formula as X(t), that is, 
( )

11
( 1) ( ) ( )L Y t

tj
Y t Y t jϕ

−
+=

+ = + ∑                                  (9) 
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Symbol φt+1(j)=1 represents the event that destination j 
received message in the time interval [tΔ, (t+1)Δ]. 

Because only one message can be transferred in a slot, at the 
t-th slot, destinations can be satisfied only by nodes that got 
m before t-slot, that is nodes in X(t). Specially, at (t-1)-slot, 
destinations (not infected at current time) must disconnect 
with any relay node already infected, or they would be 
infected, so at the t-th slot, if the destination is still not 
infected, the state of its link with nodes in X(t-1) is from 0 to 
0, but the link between the destinations and any node infected 
at the (t-1)-th slot (nodes in X(t)- X(t-1)) may be in any state 
during time [(t-1)Δ, tΔ], so the state of these links is 0 with 
probability π0. According to above analysis, if node j is not 
satisfied at t-th slot, formula (10) can be got (by abuse of 
language, X(t) indicates the set of infected relay nodes at t-
slot, not only indicates its number), 

( 1) 0 , ( 1)

( 1) 0 1, ( ) ( 1)
ij

ij

e t i X t
e t or i X t X t

− = ∈ −
 − = ∈ − −

                        (10) 

So the probability of the event that node j is not satisfied at t-
th slot is, 

( 1) ( ) ( 1)
1 0( ( ) 1) 1 (1 )X t X t X t

tp jϕ α π− − −
+ = = − −             (11)    

According to (9) and (11), the expectation of Y(T) is shown as 
follows,   

1

0
( ( )) ( ( ))

0( ( 1)) (1 )
t

i
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−
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From formulas above, the optimization problem in formula (2) 
can be solved.  

3.3   Optimal Control 

This section will explore the optimal control problem with 
three special forwarding polices, that is, static, threshold and 
stochastic policy defined as follows, 

Definition 1: The forwarding policy is called static if the 
relay nodes infected with the same probability p (0≤p ≤1 is a 
constant) at every slot, that is p(δk(j) =1)=p, for every relay 
node j and 0≤k ≤T. Policy is called threshold if there exists a 
constant 0≤h ≤T, and the forwarding probability p(t) satisfies, 
t≤h, p(t)=1, t>h, p(t)=0. If p(t) is selected randomly from [0, 1] 
at t-th slot,  the policy can be called stochastic policy. 

Next this paper will prove that the front two polices have the 
optimal value of p and h, separately, and the stochastic policy 
is only used to compare with the other policies and this 
comparison can show that without some control, the 
performance of the two-hop method is poor in the energy 
limited environment. First, lemma 1 is given as follows, 

Lemma 1: E(Y(T)) is increasing with E(X(t)), 0≤t <T. 

Proof: In fact, E(X(t)) can be seen as a stochastic order (M. 
Shaked, 1994). Given two stochastic orders E1(X(t)) and 
E2(X(t)), if they satisfy, E1(X(t))≤E2(X(t)), for all t, 0≤t <T, 
and there exists at least one constant 0≤c≤T, and 

E1(X(c))<E2(X(c)), according to the definition of stochastic 
order in paper (M. Shaked, 1994), E1(X(t)) is smaller than 
E2(X(t)). Further, according to formula (11), under these 
stochastic orders, the inequality E1(Y(T))<E2(Y(T)) is right. 
So the lemma is proved.                                                         □              

Because at 0-th slot every link is in state 1 with probability π1, 
according to formula (7), p(eSj(t)=1)≤π1, for every 0≤t <T. 
Obviously p≤π1. 

 For the static policy, formula (8) can be converted to the 
following form. 

( ( )) ( 1)(1 )tE X t N N p= − − −                                     (13) 

So E(X(T)) is increasing with the parameter p, and the paper 
has lemma 2 as follows, 

Lemma 2: The optimal static policy p* satisfies, p*=π1 or p* 
saturates the constraint in (2). 

Proof: Because E(X(T)) is increasing with the parameter p, 
combined with Lemma 1,  it can be easily seen that E(Y(T)) is 
increasing with the parameter p. 

When N+L≤σ, p=1 is a feasible solution of the formula (2). 
From above analysis, p≤π1, so p*=π1 is the optimal policy.  

When N+L>σ, there exists a solution of p* to saturate the 
constraint in (2), obviously. It need to prove that p* is optimal. 
Given another constant p1, if p1< p*, let E(X(T))con denotes 
the value under condition con(in next part of the paper, all 
symbols related to E(X(T)) or E(Y(T)) have similar means), so 
E(X(T))p1 denotes the value under probability p1. It has 
shown that E(X(T))p1+ E(Y(T))p1<σ, and E(Y(T))p1< E(Y(T))p*, 
so people can increase E(Y(T))p1 through increasing the value 
of p1 until reaches to p*. If p1> p*, it has E(X(T))p1+ 
E(Y(T))p1>σ , so p1 is not a feasible solution and p* is the 
optimal solution.                                                                     □                                                                            

Remark: In fact, it can not keep p=π1 in every slot, for 
example, if at t-th slot p=π1, the forwarding probability p(t) is 
1, so if the message is failed to transmit, the link in this slot is 
in state 0 surely, and changed to 1 in the next slot with 
probability α. So the probability of the transmission finished 
successfully in the (t+1)-th slot is at most α<π1. In general 
way, if p is small, the policy is easily to realize, if p is bigger, 
the value of the objective function in (2) is bigger than the 
real value. Suppose two nodes i and j, if the value of p in the 
t-th slot is small, even if p(eij(t)=1) is small, it can make 
p(δt+1(j) =1) = p through increasing the value of p(t), but if p 
is bigger, for example p≥π1, even if p(t)=1, p(δt+1(j) =1) is 
still hard to reach p. On the other hand, if p(t) is increased in 
the t-slot, p(eij(t)=1) will become smaller in the next slot and 
p(δt+2(j) =1) is hard to reach p, further. So the optimal static 
policy is an upper bound of the realized static policy. In the 
next section, it will see through theoretical and numerical 
results that the optimal threshold policy is better than optimal 
static policy, even though it is an upper bound, there is no 
need to study the problem exactly.  

Now the paper starts to explore the optimal threshold policy, 
and according to its definition, the expectation of X(t) is 
shown as follows, 
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The optimal threshold policy has similar properties as the 
optimal static policy, that is, 

Lemma 3: The optimal threshold policy h* satisfies, h*=T or 
h*saturates the constraint in (2). 

Proof: The proof process is also like Lemma 2. First, this 
paper can get the result that E(X(T)) and E(Y(T)) are 
increasing with the parameter h. 

When N+L≤σ, h*=T is a feasible solution of the formula (2). 
For any value h1< h*, it has E(Y(T) h1< E(Y(T))h*. So h*=T is 
the optimal value. 

When N+L>σ, and h* saturates the constraint in (2). Given 
another constant h1, if h1< p*, it can get E(X(T))h1+ 
E(Y(T))h1<σ, and E(Y(T))h1< E(Y(T))h*. if h1> h*, it has 
E(X(T))h1+ E(Y(T))h1>σ, and h1 is not a feasible solution, so 
h* is optimal.                                                                         □ 

In fact, as long as E(X(T)) is increasing with the ordinary 
forwarding probability p(t) (also stochastic order), the 
optimal threshold policy is the optimal policy. The lemma is 
described as follows, 

Lemma 4: Suppose E(X(T)) is increasing with stochastic 
order p(t), optimal threshold policy is the optimal policy. 

Proof: Suppose that the optimal threshold policy u1 with 
forwarding probability p(t) and optimal value h*, that is, 
when t≤h*, p(t)=1, h*<t≤T, p(t)=0. When h*=T, p(t)=1 in all 
the time duration, obviously, this is the optimal policy. Now, 
only consider the case h*<T, according to Lemma 3, h* 
saturates the constraint in (2). Given another policy u2 
different from u1, suppose the forwarding probability of u2 at 
t-th slot is p2(t), there exists a constant 0<c< h*, and p2(t) 
satisfies, p2(t) ≤p(t), t≤h*, p2(c) ≤p(c), if the constant c does 
not exist, p2(t) = p(t), t≤h*. Because u2 is different from u1, 
there exists another constant h*<s<T and p2 (s) >0 = p(s), so 
the stochastic p(t) is smaller than p2 (t). According to the 
hypothesis and Lemma 1, E(X(T))u2+ E(Y(T))u2> E(X(T))u1+ 
E(Y(T))u1=σ, so u2 is not a feasible solution. Now it can be 
seen that the constant c exists, so E(Y(t))u2≤ E(X(t))u1, t≤c, 
E(Y(c)))u2< E(X(c))u1, E(Y(t)) u2≤ E(X(t))u1, c<t≤h*. When t > 
h*, E(X(t))u1 has reached to the maximal value, so E(Y(t))u2≤ 
E(X(t))u1 is still right. That is, the stochastic E(X(t))u2 is 
smaller than E(X(t))u1, further according to Lemma 1, u1 is 
the optimal policy.                                                                  □ 

In fact, E(X(T)) is really increasing with p(t) which is shown 
in Lemma 5 as follows: 

Lemma 5: E(X(T)) is increasing with stochastic order p(t).    

Proof: Suppose the forwarding probability of policy u1 in t-
th slot is p1(t). Given another policy u2, and its forwarding 
probability p2(t) satisfies: t≠h, p1(t)= p2(t), t=h, p1(t)> p2(t), 
0<h≤T is a constant. According to the definition of the 
stochastic order, the forwarding probability of u1 is bigger.  

In fact, the mobility rule of nodes in the network is not 
related to the forwarding policy, so in every slot, for example, 
in t-th slot, the topologies in different policies are the same. 
Let ζi(t), 0<t≤T denotes the probability of node i received a 
copy in t-th slot, and it is not related to whether node i has 
received message before, so it is not the real probability. 
Whether node i meets S in every slot is uncertain in our 
model, which means that the probability piS(t) that they meet 
with each other is smaller than 1. So ζi(t)= piS(t)p(t) (p(t) is 
the forwarding probability in t-th slot), and it is easily to have, 
0≤ζi(t)<1.Let Pi(t) denotes the real probability of node i 
received message till t-th slot, it satisfies, 

( ) ( 1) (1 ( 1)) ( )
( 1)(1 ( )) ( )

i i i i

i i i

P t P t P t t
P t t t

ζ
ζ ζ

= − + − −

= − − +
                         (15) 

For node i, under policy u1, suppose that the probability ζi(t) 
is η1(t), similarly, under policy u2, the probability is η2(t). 
The real probability under policy u1 is ρ1(t) and under policy 
u1 is ρ2(t).  So they satisfy: t≠h, η1(t)= η2(t), t=h, η1(t)> 
η2(t), 0<h≤T. Further according to Eq.(15),  people can get: 
t<h, ρ1(t)= ρ2(t). When t=h, because η1(h)> η2(h),  they have, 
ρ1(t)> ρ2(t), when t=h+1, because η1(t)= η2(t) and ρ1(t)> 
ρ2(t),  they have ρ1(t)> ρ2(t). When t>h, because η1(t)= η2(t),  
they have ρ1(t)> ρ2(t) which can be proved in the same 
manner as above by Eq.(15). So it can easily get ρ1(T)> ρ2(T). 
In fact, E(X(T)) can be described as follows, 

1
( ( )) ( ( )) ( )N

i ii
E X T E P T NP T

=
= =∑  

So they satisfy, E(X(T))u1=Nρ1(T), E(X(T))u2=Nρ2(T). From 
analysis above, E(X(T))u1> E(X(T))u2 is right. So E(X(T)) is 
really increasing with stochastic order p(t).                   □ 

4. NUMERICAL RESULTS 

Numerical results have been obtained by simulating the 
discrete-time system with Matlab. This paper gives the 
network parameters the same as paper (John Whitbeck, 2011), 
that is, α=0.05, β=0.58 and the slot duration Δ=15s, the 
number of nodes N=50, L=10 and T=10. For the stochastic 
policy, at t-th slot, infected nodes forwarding with probability 
p(t) selected from [0, 1] randomly, so p(δt+1(j) =1) can be 
seen as a random value, too. For simplicity, because p(δt+1(j) 
=1) is smaller than π1, this paper randomly selects p(δt+1(j) =1) 
from [0, π1]. 

4.1 Impact of the Maximal Energy 

In this section, the maximal energy σ is increased from 5 to 
50, and other parameters equal to the default ones and the 
numerical results is shown in Fig.2. 

Random 1 to 3 in Fig.2 indicate the three operational results 
of the stochastic policy. Obviously, the performance of the 
optimal threshold policy is better than other policies. The 
satisfied destinations in all policies are increasing with the 
increasing of the maximal energy, and if the energy is 
sufficient, all of them can infect nearly all the destinations, 
but if the maximal energy is less than 25, the advantage of the 
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optimal threshold policy is obvious. Fig.2 also shows that the 
stochastic policy is worse than the optimal static policy, and 
this shows that some control methods is necessary of Two-
hop routing in NCPS. 

 

 

Fig. 2. Performance with different maximal energy 

4.2 Impact of the Maximal Lifetime 

 

Fig. 3. Performance with different maximal lifetime 

Now set σ=20 and increase T from 2 to 20. The result is 
shown in Fig.3. This result also shows that the optimal 
threshold policy is the best, but the stochastic policy 
fluctuates with different maximal lifetime, this is because the 
maximal energy is fixed, given two stochastic policies s1 and 
s2 with different maximal lifetime of T1 and T2, separately. 
Even if T1>T2, the performance of s1 may be still worse than 
s2. For example, the forwarding probability p(t) is very big in 
the front part, the limited energy may be exhausted soon, 
though there is much time left, there is no energy to run, so 
the policy may be less powerful, and the result of Fig.3 
shows the analysis is right. 

 

4.3 Impact of the Number of Destinations 

Here, let the parameter L increase from 1 to 10, σ=20, T=10 
and other parameters keep invariance. The result is shown in 
Fig.4, and it indicates that when L is small, all of the policies 
can achieve good performance, including the stochastic 
policy. That is to say, when the number of destination nodes 
is small, it is not necessary to control the algorithm in this 
setting. But when L reaches to 8, the performance of the 
stochastic policy is reduced, and the optimal threshold policy 
is also the best. 

 

Fig. 4. Performance with different destination number 

4.4 Impact of Different Requests 

In this section, the paper only considers the optimal threshold 
and static policies. Let the parameter L =10, T=10 and other 
parameters keep invariance, and the minimal number of 
destinations that must be satisfied is increased from 1 to L, 
with the different request, this paper explores the minimal 
energy consumption to finish the task. Fig.5 shows that the 
optimal threshold policy used less energy. 

 

Fig. 5. Minimal energy consumption with different requests 

From above numerical results it can easily see that the 
optimal threshold policy is the best. 
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4.5 Impact of the Forwarding Probability 

This section will explore the monotone increasing property of 
E(X(T)) with p(t). Because there are infinite stochastic orders 
of p(t), it only considers some special cases, that is, p(t) keeps 
invariance in the same policy (called equal probability 
policy), for example, p(t)=c1(0≤c1≤1 is a constant). It is 
worth mentioning that this policy is different from the static 
policy above, because in static policy, p(δt(j)=1) = 
p(t)p(eij(t)=1)= p, but in equal probability policy though p(t) 
keeps invariance, p(eij(t)=1) is different in different slots, 
because p(δt(j) =1) is changing all the time. 

c1 is increased from 0 to 1 and T from 1 to 20. Because here 
the objective is to study the monotone increasing property of 
E(X(T)), there is no need to constraint the maximal energy, 
and other parameters are the same as the default ones. 
According to (6) and (7), Eq.(16) can be got, 

1

( ( 1) 1)(1 ( 1))(1 )
( ( ) 1)

1 ( ( 1) 1) ( 1)

( (0) 1)

Sj
Sj

Sj

Sj

p e t p t
p e t

p e t p t
p e

α β
α

π

− = − − − −
= = + − − = −

 = =

(16) 

Combined with (8), the numerical result can be got and is 
shown in Fig.6. 

 

Fig. 6. Number of Infected Relay Nodes with Different 
Forwarding Probability and Maximal Lifetime 

From the figure people can see that E(X(T))) increases with 
the increasing of the forwarding probability under fixed T 
and this matches our expectation. Fig.6 also shows that under 
fixed forwarding probability the bigger of the maximal 
lifetime of message, the more nodes will be infected. Now set 
T=10, the paper gets Fig.7. 

Obviously, E(Y(T)) increases with forwarding probability, 
and this proves Lemma 5, further. When c1 reaches to about 
0.16, E(Y(T)) has already reached to its maximal value L, in 
this situation, if forwarding probability is keep on increasing , 
it only wastes energy foolishly, so the optimal equal 
probability policy exists and is near this value. Next, this 
paper will check the model through simulation using (The 
Network Simulator NS-2), and it uses the Rollernet trace (P. –

U. Tournoux, 2009) where the parameters of the graph are 
originated from. 

Fig. 7. Performance with different forwarding probability  

 

Fig. 8. Theoretic and Simulation Results 

Because the number of polices is infinite, here, the simulation 
only adopts the equal probability policy, the result is shown 
in Fig.8. So the theoretical model fits the simulation result 
very well, and this proves that this model is right. In the 
future, more simulations will be carried out with different 
data sets and different policies. 

5. CONCLUSIONS 

This paper studied the stochastic control problem of Two-hop 
routing in NCPS. The NCPS was modelled as an Edge-
markovian graph, and based on it, this paper studied the 
evolving process of Two-hop using the discrete time Markov 
process, then it explored three control polices, theoretical 
result shows that the optimal policy is threshold form. At last, 
it introduced the numerical results and checked the model 
through some simulation. 

In many applications, most of the nodes in NCPS are 
heterogeneous, and it is interesting to explore this 
optimization problem with multi-class nodes in the future. 
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