
CEAI, Vol.13, No. 1, pp. 25-34, 2011 Printed in Romania

An Integrated Robot Simulation
Workspace for Real Time Collision Free

3D Laser Scanning Applications

Alexandru Dumitrache, Theodor Borangiu

University Politehnica of Bucharest, Romania
Centre for Research & Training in Robotics and CIM (CIMR)

(e-mail: alex@cimr.pub.ro, borangiu@cimr.pub.ro)

Abstract: This paper presents a methodology, related techniques and tools for robot modelling
and simulating, with focus on real-time collision detection and avoidance. Applications of the
methods presented include collision-free path planning for 3D scanning, and collision avoidance
in real-time robot tasks for robust operation. The techniques presented were integrated into
a real-time robot simulation environment, with rigid body dynamics capabilities, used for
development of complex robot applications.

Keywords: Robot simulation; Collision avoidance; Robustness; 3D scanning

1. INTRODUCTION

This paper presents a series of techniques for modelling a
simulating a virtual robot environment, together with pe-
ripheral equipment (sensors, conveyor belt, grasping end-
effector and 3D scanning sensor) using collision detection
primitives and rigid body dynamics.

One good reason for developing a simulated robot environ-
ment is the limited support for collision detection offered
by commercial robot controllers. In the present research,
Adept Technology controllers and their programming en-
vironment V + allow the user to define maximum 4 obsta-
cles of simple shapes: square, sphere, cylinder or frustum:
(Adept Technology, Inc., 2004). Only the tool centre point
is tested against these obstacles, and experiments showed
that only the final destination of a motion instruction is
actually checked. Therefore, if one would define a square
obstacle between two points A and B, the robot would
move from A to B passing through the obstacle without
any warning.

A 6-d.o.f. robot had to be used in a 3D object scanning
application, which employs automatic trajectory planning,
optimized with respect to certain performance constraints.
The trajectory planner had to know whether a certain
robot configuration is collision-free or not, and the answer
to this kind of queries should be given by the collision
detection module of the simulation software.

Aside from being able to run robot programs in a simu-
lated environment, it is also possible to use the developed
application as a supervising module for real-time collision
avoidance of robot applications outside the simulation.
The geometry of the robot and workspace is either ex-
tracted from CAD data or acquired by 3D scanning.

A 3D scanning sensor is modelled either accurately, using
ray tracing, or fast, using geometric intersections between
rays and triangular meshes.

To extend the generality of the software, the following
peripheral equipments are also modelled:

• part grasping is simulated with friction forces;
• presence and distance sensors are implemented with

collision primitives;
• a conveyor belt is also implemented.

1.1 Motivation of the research

Using a simulation environment for developing complex
robot programs has several advantages:

• There is no risk of damaging expensive equipment due
to collisions. One of the applications of this simulation
is automatic path planning in 3D scanning, and the
laser probe used for scanning is an expensive device.

• The behaviour of the system can be analysed in
ideal conditions. For the robot, this means ideal
control loops, lack of vibrations and ideal kinematics
computation. For the 3D sensor, there are no surface
reflections, external light sources or sensor noise.

• The effect of known perturbations can be stud-
ied. These include misalignments between mechan-
ical components, vibrations, and variations in robot
parameters. A ray tracing simulation of the 3D sensor
can model surface reflections and external lights.

There are also a number of disadvantages, the most
important being the computational power involved for
accurate simulations in real-time, the second one being
the difficulty for simulating the less-than-ideal conditions
of the real system.

Also, the robot simulator presented in this paper has also
high educational value from two points of view:

• Every student can have access to a virtual robot
and experiment his programs without the risk of
damaging the equipment;

26 Control Engineering and Applied Informatics

• Being an open source software, anybody can study
the system, learn how it works, and improve it.

2. RELATED WORK

The problem of collision detection has been extensively
studied, and many algorithms are available in the litera-
ture: there are general algorithms for dealing with arbi-
trary polygonal meshes with no particular structure (also
called polygon soups), and particular algorithms, which
exploit properties such as convexity or temporal coherence
for faster queries.

Usually, the general notion of collision detection encom-
passes the following elements:

• proximity detection, which refers to the minimum
distance between two solids
• collision detection, which detects whether two solid

bodies touch each other
• collision response, which computes the changes in

motion of the solid bodies after a collision

In 3D computer aided design (CAD), the following queries
are usually performed:

• clash (intersection) detection: detect whether two
bodies intersect each other
• tolerance verification: detecting whether two objects

are closer than a given tolerance
• distance computation: computing the minimum dis-

tance between two objects

Traditionally, collision detection (CD) is discrete: it tests
for overlapping between two static instances of moving
objects; however, CD routines might ignore collisions be-
tween two fast moving objects (e.g., they may not notice a
bullet passing through a narrow wall). In contrast, contin-
uous collision detection techniques (CCD) are guaranteed
to find the collision which has occurred between two given
static instances of the 3D scene, although they require
more processing power than CD. Recent research efforts
concentrate on optimizing continuous collision detection,
and also on applying it to deformable objects, which is
useful for more realistic simulations.

Two older surveys are available in (Lin and Gottschalk,
1998) and (Jimnez et al., 2001); however, they only present
non-continuous collision detection.

2.1 Software implementations of collision detection

There are two main classes of publicly available libraries
which implement collision detection:

• rigid body dynamics engines, used in video games;
• standalone libraries for collision / proximity queries.

Rigid body dynamics simulation packages

There are numerous rigid body dynamics engines which
implement state-of-art collision detection algorithms. They
may be used only for collision queries, with some overhead.

Rigid body engines available under proprietary licenses
include NVidia Physx (formerly known as AGEIA and
Novodex), Intel HAVOK, Newton Game Dynamics and
True Axis. There are also engines available under public

licenses, such as BSD, ZLib and GPL, including Open
Dynamics Engine, Bullet, JigLib and Tokamak. Most of
the above engines can be wrapped in a unified abstraction
system, like PAL, OPAL and GangstaWrapper. A compar-
ison between engines supported by PAL is in (Boeing and
Bräunl, 2007).

Libraries for discrete collision queries

Such libraries can be grouped in two classes:

a) Limited to convex polyhedra:

• GJK - Gilbert, Johnson and Keerthi distance routine;
runs in expected constant time (Van den Bergen,
1999); implemented in Bullet Physics;

• I-COLLIDE: exact collision detection for large envi-
ronments (Cohen et al., 1995); uses Lin-Canny Clos-
est Features Algorithm; used in “Impulse” rigid body
simulator (Mirtich, 1996);

• SWIFT: supports also bodies made of convex pieces.
Possible queries: clash, distance and contact determi-
nation (Ehmann and Lin, 2000);

b) For arbitrary non-convex polyhedra (polygon soups):

• RAPID: uses OBBTree, a hierarchy of oriented
bounding boxes (Gottschalk et al., 1996);

• PQP: intersection tests, distance query and tolerance
verification (Larsen et al., 1999);

• V-COLLIDE: optimized for a large number of objects;
uses 3 tests: n-body, OBB tree, and exact (Hudson
et al., 1997);

• SWIFT++: for arbitrary polyhedral models. Queries:
clash, tolerance, distance and contact determination
(Ehmann and Lin, 2001);

• V-CLIP: Voronoi Clip algorithm; similar to Lin-
Canny, less complex and more robust (Mirtich, 1998);

• OPCODE: memory-optimized AABB-tree (Terdi-
man, 2001);

• GIMPACT: Supports concave triangle meshes and
deformable models. Implemented in ODE and Bullet.

Libraries for continuous collision detection (CCD)

• FAST: Performs CCD for general, rigid polyhedra
(Zhang et al., 2006);

• CATCH: CCD for articulated models (Zhang et al.,
2007); uses FAST for rigid body CCD, SWIFT++ for
distance queries, and QHull for 3D convex hull.

3. ROBOT SIMULATION

For the robot arm, the simulation should be able to render
it in any user-defined position. The user should be able to
control either the joint angles for each articulation, or the
Cartesian position together with the orientation given by
ZYZ ′ Euler angles. Higher level positioning will also define
the tool and base transformations.

3.1 Kinematic simulation

At the lowest level, 4 × 4 homogeneous transformation
matrices are defined as primitive data types. They include
translation and elementary rotations (around X, Y and
Z). The next level include direct and inverse kinematics

Control Engineering and Applied Informatics 27

of the robot, which transform from a joint space configu-
ration to a Cartesian position and vice-versa.

Z6

X6

Y6

θ6
Z5

X5
Y5

θ5

Z4

X4

Y4

θ4

Z3

X3

Y3

θ3

Z2X2

Y2

θ2

Z1

X1

Y1

θ1

Z0

X0

Y0

Fig. 1. Reference frames for 6-DOF robot arm

Table 1. Denavit-Hartenberg parameters for
the 6-DOF robot

Link ai [mm] di [mm] αi [deg] thetai [deg]

1 75 335 -90 θ1
2 270 0 0 θ2
3 -90 0 90 θ3
4 0 295 -90 θ4
5 0 0 90 θ5
6 0 80 0 θ6

Direct and Inverse Kinematics The direct kinematics for
the robot arm function is obtained by using the Denavit-
Hartenberg (Spong et al., 2005) convention. The first
step is to assign individual reference frames to each link
from the kinematic chain, which includes the six robot
arms and the laser probe (Fig. 1). The direct kinematics
function is the product of the individual homogeneous
transformations (Davis, 2001) for each robot link i = 1..n.
An individual matrix, called T i−1

i , is the transformation
from the (i − 1)th link reference frame to the ith link
reference frame. The 0th link is the robot base, and the last
link is the end effector. Knowing the Denavit-Hartenberg
parameters ai, di, αi and θi for each joint i = 1..n, with
θi being the joint variables, the individual transformations
T i−1
i can be written:

T i−1
i = RZ(θi) T (ai, 0, di) RX(αi) (1)

where T (x, y, z) is the homogeneous translation, and
RA(φ) is the homogeneous rotation around axis A with
angle φ.

The direct kinematics transforms are 4× 4 matrices:

TDK = T 0
6 = T 0

1 T 1
2 T 2

3 T 3
4 T 4

5 T 5
6 (2)

The World coordinate system used here, X0Y0Z0, is right-
handed, with the X0Y0 plane being horizontal, X0 axis
pointing forward, Z0 axis pointing upwards, and the origin
being at the base of the robotic arm.

3.2 3D rendering

For 3D rendering, the relative transformations for each
link i with respect to its parent link (i − 1) have to be
known, and they are given by Eq. 1 when the individual
joint angles θi are known. This requires every geometric
link to have its reference frame assigned according to the
Denavit-Hartenberg convention.

For rendering the mesh of link i, the transformation to be
passed to OpenGL is:

TGL(i) = T 0
i = T 0

1 T 1
2 · · · T i−1

i (3)

The meshes used for rendering (Fig 2) were imported
from the CAD files, available on the manufacturer’s web
site, and were simplified to 5000 faces per mesh using
MeshLab, with the function Quadric Edge Collapse Deci-
mation (Cignoni et al., 2008).

Fig. 2. Geometric models of the robot links, rotary table
and the 3D scanning sensor

3.3 Grasping simulation

A useful simulation should have a high degree of general-
ity, and should not be limited to a single application. A
simulation which models correctly the interaction between
the robot and its environment even when there are pro-
gramming mistakes is more useful because it lets the user
to debug its application inside the virtual environment,
without risking to damage expensive equipment.

With grasping simulation, the robot can interact with ob-
jects in the virtual environment according to physics laws,
i.e. by means of contact forces and friction. Therefore, a
good grasping simulation can show the following effects:

• Contact slippage due to high accelerations in robot
motion and inertial movements;

• Effects of grasping on soft bodies;
• Instability when only two contact points are present.

When implementing grasping simulation, it is compulsory
that the robot moves on a smooth trajectory, with accel-
eration and deceleration profiles. A naive implementation,
which would simply enforce the position of each link ac-
cording to the kinematics model, will render correctly the
robot, but will fail to keep the grasped part in the gripper
due to very high accelerations that are necessary to move
the robot suddenly in a single time step.

For a two-fingered gripper, two forces are necessary to keep
the gripper closed and holding the object, and a third one
to keep the gripper fingers centred with the end-effector
axis. The implementation uses two slider joints, each joint
connecting the finger and the gripper base.

28 Control Engineering and Applied Informatics

4. COLLISION HANDLING TECHNIQUES

4.1 Collision detection

In the robot simulation presented here, collision detection
is employed in two situations:

• between the robot links themselves;
• between the robot and other objects.

The first situation has to make sure that the robot tra-
jectory would not cause collisions between the robot links
themselves. For 6-DOF robots, it is easy to program a
trajectory which will collide, for example, the end effector
with the first link.

When performing queries to the collision library, the pairs
of consecutive robot links should be excluded, since their
geometries are always in contact. Performing collision
queries between them will only return superfluous results
and slow down the simulation.

4.2 Collision avoidance

This step is performed by a trajectory planner, which
knows the initial state, the final state, and can perform
collision queries for intermediate states.

The simplest robot programs do not include collision
avoidance; they simply move the robot between predefined
or computed locations, without any validation. They are
usually not robust, since they are based on the assumption
that the trajectories are computed in such a way that
collisions are not possible.

4.3 Collision response

This step is only a visual feedback which shows that
a collision happened. In rigid body dynamics engines,
contact forces or impulses are applied to the simulated
bodies in order to simulate the effect of collisions.

The collision detection module will return, for a pair of
bodies, a set of N contact points. For simple models like
sphere-plane, only a contact point is returned. For box-
plane, there are usually 4 contact points. However, for
high resolution meshes, the collision detection routine may
report a large number of contact points (maybe hundreds).

In ODE, there are two possible solvers for advancing the
simulation in time: Step and QuickStep. These solvers
take into account the joints between bodies (e.g. the robot
links) and the contact joints which appear only when two
bodies collide. The method Step is the most accurate
method according to Boeing and Bräunl (2007), but its
time complexity is O(m3) where m is the number of
constraints. QuickStep is an iterative method with O(m ∗
n) complexity (n is the number of iterations per time
step), and is comparable with the solvers used currently
in video games; however, experiments showed it is not
accurate enough for simulated the grasping process and
it was unstable with vertical stacks of boxes.

For a fluent simulation, the number of contacts has to
be reduced, since the O(m3) complexity would not be
adequate with hundreds of contact points. In areas when

accuracy is important (e.g. grasping simulation), there
should be enough contacts; for a contact between two
parallel boxes, good results are obtained with 4 contact
points. However, when the robot is colliding with the floor,
the accuracy of the collision response is not important, and
only one contact point is sufficient.

5. PERIPHERAL DEVICE SIMULATION

5.1 Presence sensor

The presence sensor is a device with Boolean output which
is activated when another part is in the sensor proximity.
The naive implementation simply checks if the position
of all scene objects is in a desired interval. However, this
approach will not work correctly when it has to detect
parts of different sizes, or parts with non-trivial geometry.

An implementation using a rigid dynamics package can
model the sensitive volume of the sensor as a solid, allow
it to collide with the objects of interest, and ignore the
collision response step, letting the object and the sensor
geometries to penetrate each other.

5.2 Distance sensor

Optical distance sensors, which use triangulation, can be
simulated using ray geometries. The implementation will
check their intersections with all the possible objects of
interest. For more realistic simulations in concave areas,
one would create an extra ray, coming from the reflection
point through the sensor’s lens. If the second ray would
hit another object, the measurement is discarded.

5.3 3D scanning sensor simulation

The 3D scanning sensor, also known as the profile scanner,
projects a narrow stripe of laser light onto the surface
being digitized. A 2D camera, placed at a known angle
with respect to the laser plane, records the image of the
laser stripe and computes the local geometrical shape of
the surface. For better accuracy and improved visibility in
concave regions, two or more cameras may be used with
the same laser beam.

For reconstructing a full 3D model of the workpiece, the
profile scanner has to be swept around the part. The most
precise way is to use a coordinate measuring machine
(CMM). The sensors can also be mounted on robot arms,
which are more flexible in positioning and orienting the
sensor, but also less accurate.

There are two methods for 3D sensor simulation:

• Ray tracing simulation, which creates the image as
seen by the camera, and computes the sensor output
with an image processing algorithm, which detects
the laser stripe and computes 3D coordinates with
non-linear equations. This simulation was presented
in detail in (Borangiu et al., 2008b), and can be used
for testing the image processing algorithms in ideal
conditions or controlled perturbations.

• Geometric simulation, which computes the intersec-
tion between the sensor’s field of view and the objects
on the scene. It can be two orders of magnitude faster,
therefore suitable for realtime simulations.

Control Engineering and Applied Informatics 29

5.4 Ray tracing simulation of 3D scanning sensor

The sensor was modelled with POV-Ray, which uses a
Scene Description Language for describing the objects,
lights and cameras that interact in a virtual environment
by means of ASCII-based input files. This capability allows
easy interfacing with many programming environments.

Camera modelling and triangulation

The laser probe emits a laser beam focused into a plane,
such as when it intersects a surface, it casts a line or a
curve. This laser beam is approximated with a point light
source, constrained to pass to a narrow opening.

The cameras used in the laser probe are modelled as two
standard perspective cameras which may be implemented
in POV-Ray by entering their parameters such as position,
orientation and focal length. In the following text, only one
of the two cameras will be described, as the other one is
identical and symmetrical to the first one.

Let XYZ be the reference frame of the laser probe as in
Fig. 3(b), and let xyz be the reference frame of the CCD
array from the camera (Fig. 3(a) and 3(b)). Referring to
Fig. 3(b), the camera position and orientation with respect
to the laser device are given by the scalars a, b and φ.

Using these notations, let P = (PX ; PY ; PZ) the point of
reflection of a laser ray in the XYZ reference frame, and
let p = (px; py) be the coordinate of the pixel at which
the ray was detected on the CCD matrix, in xy reference
frame. Knowing the pixel coordinates p, the location of
the 3D point P can be expressed using the triangulation
equations (4):

PX = 0

PY =
a

f sin

(
φ− arctan

py
f

) px (4)

PZ =
a

f tan

(
φ− arctan

py
f

) + b

wheref =
H

2 tan γ
if the unit length is considered to be 1

pixel, i.e. the distance between two adjacent pixels on the
CCD array.

The area in the plane determined by the laser rays, i.e.
YZ plane in Fig. 3(c), is a trapezoid determined by zmin,
zmax, ymin and ymax, whose expressions are given in Eq. 5.
The scanning range is thus given by zmin and zmax, and
the length of the laser line LL that is effectively being
analyzed is dependent of the distance of the scanned
object with respect to the laser probe, and varies from
LLmin = 2 ymin when the workpiece is close to the probe,
to LLmax = 2 ymax when the workpiece is far from the
laser probe.

ymin =
a tan γ

sin(φ+ γ)
zmin =

a

tan(φ+ γ)
+ b (5)

ymax =
a tan γ

sin(φ− γ)
zmax =

a

tan(φ− γ)
+ b

5.5 Geometric simulation of 3D scanning sensor

A much faster alternative for simulating the 3D scanning
sensor is to use a number of rays which cover the entire
field of view of the sensor, and which will intersect with the
scanned geometry. The simulation only has to compute the
intersection points between each ray and the rigid bodies
on the scene, and choose for each ray the point which is
closest to the origin of the laser source (Fig. 4 a).

The simulation will perform queries for intersection be-
tween rays and other solid geometry (sphere, box, triangle
mesh) using the collision detection library.

The 3D data obtained by the laser sensor is expressed
relative to a local reference frame on the laser sensor,

CCD Array

x

y

O

CCD Plane

α

p

f

Focal Point

γ

y

zx
1 W

H

1

(a) CCD sensor and its reference frame

Laser Camera
a

b

φ

β

α

dmin
Z

X Y

d0

P¢d

dmax

y

x

z

(b) Side view of the laser probe

dmin

dmax
¢d

Z

Y X

ymin

ymax

Laser rays

Area seen by camera

Laser

(c) Front view of the laser probe

Fig. 3. Triangulation process for 3D reconstruction

30 Control Engineering and Applied Informatics

Viewed object

Probe rays

(a)

ZL

XL

XW

YW

ZW

Laser

 Robot
 Wrist

TW
L

(b) (c)

Fig. 4. (a) Geometric simulation of 3D scanning sensor; (b) Tool transformation for aligning the sensor data; (c) Ideal
position of laser sensor with respect to the robot end effector

XL YL ZL (Fig. 4 b). However, for surface reconstruction
and 3D robot guidance tasks, the sensor data has to be
expressed in a reference frame attached to the robot. This
can be achieved by pre-multiplying the 3D scanner data
with the transformation matrix representing the position
of the robot at the moment of data acquisition, taking
also into account the relative position of the sensor with
respect to the robot tool centre point (TCP).

The position of the sensor with respect to robot TCP is
modelled using a Tool transformation (Fig. 4 b), whose
ideal value can be computed from the dimensions of the
mechanical fixture (Fig 4 c).

In the physical 3D scanning system, the tool transforma-
tion encompasses the misalignment between the sensor and
the robot, and is determined using a calibration procedure
(Borangiu et al., 2009a). Also, the laser measurements
are synchronized with the robot position by means of
a trigger signal, therefore the sensor can acquire data
while the robot is moving. This operation mode is called
dynamic scanning. The other mode is stop-and-look, where
the sensor is only allowed to take measurements when the
robot does not move. This mode is much slower, but the
measurements are more accurate.

5.6 Rotary table

The table can be simulated with a cylindrical body at-
tached to a hinge joint. Objects are attached to the table
using friction forces, and this behaviour is already im-
plemented in the rigid body simulation engines, without
requiring extra effort from the application developer.

For simulating the calibration algorithms for the laser
sensor, the table can be placed in the virtual scene with
a known eccentricity, or with a known angular deviation
from the ideal rotation axis. This will model the lack of
accuracy in low-cost positioning devices and are helpful
to test the ability of the calibration algorithms to com-
pensate for these inaccuracies. Calibration algorithms for
the 3D sensor and eccentric rotary table were presented in
(Borangiu et al., 2008a).

5.7 Conveyor belt

While a conveyor belt can be simulated as a set of small
elements moving on a closed curve, and using friction for
interacting with transported objects, this is very expensive
from a computationally point of view. A simpler imple-
mentation may use a stationary box object with a moving
surface, by setting a special flag for the contact joints
between the belt and the other bodies. This approach
still models friction between bodies and conveyor belt, and
no special care should be taken in order to keep the belt
moving continuously.

For rendering the conveyor belt, a static texture can be
used, and change the only texture coordinates within
OpenGL drawing routine. This approach is fast because
the texture is sent to the graphics card only once, and
inside the rendering loop, only the transformation matrix
is updated.

6. REAL TIME SIMULATION ISSUES

This section presents the bottlenecks which could affect
real-time operation, and solutions for overcoming them.

6.1 Programming language overhead

The simulation presented in this work was implemented
using Python scripting language, which is interpreted and
dynamically typed. While being a flexible language with a
concise syntax, every variable access generates a lookup
in the dictionary of names, and this results in a large
speed penalty. For a real-time system, bottlenecks can
be rewritten either in C/C++, or can be implemented in
Cython using static typing in the innermost loops. With
Cython, very small changes to Python code can result
in performance equal to the C equivalent of the same
algorithm (Seljebotn, 2009).

Control Engineering and Applied Informatics 31

6.2 Network delay

The network delay represents a perturbation in the com-
munication between the robot and PC workstation, when
using the latter as a watchdog for avoiding collisions.

Robot position query can be performed from PC terminal
every 32 milliseconds via Ethernet. A major cycle of the
robot controller has 16 milliseconds, therefore a position
query takes two robot cycles in the most favourable case.

However, when network delays occur, the PC would not
have the possibility to slow down the robot quickly enough.
Therefore, a protection mechanism has been employed: if
the time since last message received from the watchdog is
higher than normal, the monitor speed on robot controller
decreases gradually, even until a full stop if network delays
are very high. However, the method is not yet reliable for
high speed operations, and this will addressed in future
work.

6.3 Collision detection speed

It may seem surprising that the collision itself is not
actually a bottleneck in the current simulation, even if
each mesh has 5000 triangles on average. The collision
detection engine (OPCODE), as implemented in the ODE
library, uses a memory optimized AABB tree and is able
to run the collision queries for the entire scene in less
than 10 milliseconds on a Core2Duo CPU, therefore being
able to achieve 100 frames/second without considering
the 3D rendering, dynamics simulation, motion planning
and user interface tasks. The entire simulation runs at 30
frames/second on the same computer.

7. APPLICATIONS

This section presents applications developed with the help
of collision detection methods from in the simulation
engine presented in this paper.

7.1 Simulation of 3D scanning process

The screen shot of the simulation software is displayed in
Fig. 5(a). The user can control either the position and
orientation of the robot in Cartesian mode, relative to
either robot base or rotary table, or the individual joint
angles. The software may simulate a continuous movement
of the laser probe over the workpiece, compute the images
that would be seen by the two cameras, and generate a
point cloud from processing them (Fig. 5(b)-(d)).

The simulator has two modes of operation: static and
dynamic simulation. In the static mode, the robot main-
tains the position of the laser sensor fixed, and the two
CCD image sensors show a simulated image. In dynamic
mode, the user can specify complex scanning trajectories
which will be followed. The result from the laser sensor
is analyzed and a point cloud model, representing the
scanned virtual part, is created.

The simulator is also capable of exporting animations with
the scanning system following a predefined program.

(a) Screen shot of the simulator (b) Laser probe

(c) Images from
the two cameras

(d) Computed point cloud

Fig. 5. Laser probe simulator

7.2 Collision-free motion planning for 3D scanning

A heuristic planning algorithm for the robot arm and
rotary table was presented in Borangiu et al. (2009b). The
7-DOF mechanism (robot + table) is redundant, and this
property can be exploited to satisfy additional constraints.
The rotary table angle, θR, may be chosen freely; once this
angle is fixed, the remaining 6-DOF can be uniquely chosen
from the possible inverse kinematics solutions.

The algorithm supports additional constraints specified as
real-valued functions fi, with 0 ≤ f ≤ 1, which evaluate
any static robot pose, with the following meaning:

• fi = 0: the constraint is not satisfied;
• fi = 1: the constraint is fully satisfied;
• 0 < fi < 1: the constraint is only partly satisfied.

If there are many constraints, their functions can be
multiplied, resulting a metric for evaluating any static
robot configuration, with the same interpretation:

f =

m∏
i=1

fi (6)

where m is the number of constraints.

If only one constraint is not satisfied (fi = 0), the specific
robot configuration is avoided, since f = 0.

A set of constraints which keeps the robot away from its
joint limits, ensuring a natural configuration, is:

f∗j (θj) =

(
sin

(
θj − θmin

j

θmax
j − θmin

j

· π

))γj
(7)

where 1 ≤ j ≤ 6 is the joint number.

32 Control Engineering and Applied Informatics

(a) (b)

Fig. 6. Grayscale configuration map for static constraints: (a) plane view; (b) cylindrical view

Static constraints can be represented graphically as
graylevel configuration maps, where the pixel intensity is
the value of the metric function (6). An example is given
in Fig. 6 (a) and (b), where the two dimensions of the
map are the rotary angle θR and the discrete time t. The
planner attempts to find a path from a start configuration
(leftmost column in the map) to a final configuration
(rightmost column in the map) which, while obeying all the
constraints at least partly, has to be as smooth at possible,
and should not exceed the maximum angular speed and
acceleration values for the rotary table. The robot motion
is not constrained explicitely, but high speeds in robot
motions can be avoided by adding static constraints which
do not allow the robot to reach singular configurations.

Dynamic constraints for the rotary table are specified
using scalar weights for angular speed and acceleration,
kω and ka. The heuristic algorithm, called Ray Shooting,
attempts to try various constant-acceleration paths (rays)
and selects the lowest cost path at every time step. This
strategy ensures low variations in the angular speed of the
rotary table, which allows scanned parts to sit on the table
without any additional fixture. The planning algorithm
also attempts to reduce scanning time and increase scan-
ning accuracy by avoiding near-singular configurations.

A constraint suitable for avoiding collision detection de-
pends on the minimal distance between two rigid bodies,
dmin. If dmin is less than a threshold dlowmin, the constraint
is not satisfied, and this configuration is forbidden. If dmin
is higher than dhighmin , the constraint is fully satisfied:

fC(dmin) =

0, dmin < dlowmin

sin

(
dmin − dlowmin
dhighmin − dlowmin

· π

)γC
1, dmin > dhighmin

(8)

The exponent γC controls the constraint intensity for dmin
between [dlowmin...d

high
min]: higher values rejects values closer

to dlowmin, while lower values are more permissive.

The parameters dlowmin and dhighmin can be chosen the same for
every pair of possibly colliding bodies or can be adjusted
for each pair. For example, the distance between the laser
sensor and 4th robot link is by design 10 milimeters,

so there’s no point in setting a higher value for dhighmin .
However, if one has to keep the distance between the laser
sensor and the rotary table at least 20 mm, and preferably

50 mm, then dlowmin and dhighmin should be set to 20 and 50
respectively.

7.3 Real-time collision avoidance in robot tasks

In most robotic tasks, the robot is operated in two modes:

• From the manual control pendant (MCP) of the robot
• In automatic mode, where scanning trajectories are

generated by the control software

In manual mode, the robot is usually moving at low
speeds and the user is assumed to be careful not to cause
collisions. However, a robust user interface shouldn’t rely
on correct user input; it should not allow the user to
produce damage to the system no matter what the user
input might be.

In automatic mode, the robot moves along a programmed
trajectory, which is computed from user-input data, or
from parameters computed automatically using sensors or
vision equipment. However, users may make mistakes, and
autodetection may produce incorrect results.

Collision detection during manual operation

The proposed protection scheme (Fig. 7) is to have a
dedicated task for realtime collision checking during robot
operation. The protection task runs on the PC, continu-
ously monitoring the robot position and velocity.

In manual mode, no user program is allowed to move
the robot or change its speed, due to internal protection
mechanisms implemented in the robot controller.

When the robot is heading to a colliding situation, the
only actions that could be taken from a user program are:

• Give visual feedback on the MCP;
• Give audible feedback to the user;
• Assert the emergency stop signal (in extreme cases).

Audible
feedback

Manual Control
Pendant

PC software functions:
- 3D data acquisition

- Predictive collision detection
- E-stop triggering in extreme situations

USB

Robot and
 Laser

RS485

Robot
Controller

Ethernet

Fig. 7. Protection scheme for collision-free manual mode
operation

Control Engineering and Applied Informatics 33

The first option is useless if the user is not looking at
the MCP. The second option uses the control pendant’s
internal speaker to emit warning beeps. If a collision is
imminent, the only action allowed by the robot controller
is to assert the emergency stop signal.

A more useful approach would have been to automatically
reduce the robot speed when a collision is imminent;
however, in order to implement it, safety mechanisms from
the robot controller would have to be bypassed.

Warnings should be given only when two possibly colliding
bodies become closer. When the user moves the robot away
from the colliding situation, no warning should be given.

To implement this, the protection module should know
also in which direction the robot is moving. User-level
programs do not have access to the buttons pressed on the
control pendant. However, in manual mode it is relatively
easy to predict the robot motion, since the robot can be
moved using one of the following motion types:

• Cartesian translation (any direction in 3D space);
• End-effector rotation (around any fixed axis);
• Joint motion (rotate only one robot joint at a time).

Therefore, a predictive collision detection mechanism can
be used. The predictor has to detect the motion type:

• A joint interpolated motion;
• A Cartesian motion (translation and/or rotation).

A model for describing and predicting joint-interpolated
motions is given by:

J
(t+1)
i = J

(t)
i + s δji, i = 1, n (9)

where the robot has n independent joints, J
(t)
i is the

absolute position of ith joint at time t, δji are weights
which represent the relative speed of the ith joint and s
is the speed factor. This model represents general joint
interpolated motions; however, in manual mode, only one
joint is moving at a time.

Therefore, the model parameters are [δji], i = 1, n. They
remain constant during the motion and can be identified
by linear regression. In contrast, s may change freely
throughout the motion, due to acceleration.

Cartesian motions are described by linear interpolation in
X, Y and Z, and spherical linear interpolations (slerp) in
orientation. Therefore, the rotation axis remains constant
throughout the Cartesian motion. A model for predicting
linear motions in Cartesian space, where the end-effector
is allowed to change its orientation, is:

X(t+1) = X(t) + s δx

Y (t+1) = Y (t) + s δy

Z(t+1) = Z(t) + s δz

θ(t+1) = θ(t) + s δθ

R(t) = R[rx,ry,rz](θ
(t)) ·R(0) (10)

where (X,Y, Z,R) is the Cartesian end-effector position
and orientation (R is a 3× 3 rotation matrix), R(0) is the
initial end-effector orientation (at t = 0), and [rx, ry, rz] is
the rotation axis throughout the motion, which is constant.

The notation R[axis](angle) is a rotation matrix specified
by its axis and angle.

The model parameters, which remain constant throughout
the motion, are [δx, δy, δz, δθ, rx, ry, rz]. These parameters
remain constant throughout the motion and can be iden-
tified by nonlinear minimization.

The decision for the motion type (Cartesian or joint) is
taken by trying to fit both models and select the one which
gives lower residuals.

Transformations between Cartesian and joint spaces are
given by direct and inverse kinematics functions.

Collision detection during automatic operation

Even if the trajectory planner is programmed to generate
collision-free paths, nobody can be certain that there are
no programming mistakes in the robot software. In semi-
automatic modes, trajectory planning is performed solely
on the robot controller, which does not check for collisions;
however, collision checking can be done before sending a
motion instruction to the robot. Of course, this assumes
the robot program runs from the PC terminal.

The collision detection mechanism described in this section
is designed to be as general as possible, in order to be
useful regardless of the particular robot application. The
implementation is a watchdog task, which analyzes the
subsequent motion transparently, while the program is
running. If a collision becomes imminent, the following
actions can be taken:

• User feedback (visual or auditive);
• Gradually reduce monitor speed 1 (this can be per-

formed even while another program is running);
• Trigger the emergency stop (only in extreme cases).

In automatic operation, only one program is normally al-
lowed to move the robot. However, there may be additional
program tasks which can watch the robot motion, i.e. read
the current position within a loop, and also retrieve the
destination of the current motion. Therefore, the watch-
dog task knows in advance the robot trajectory, and no
prediction is necessary.

A schematic view of the protection scheme for automatic
operation is given in Fig. 8.

Continuous
Collision
Detection

Adjust
monitor speed

Robot
Controller

Motion Query
(current position
and destination)

Robot
Application

Watchdog Task

Fig. 8. Protection scheme for collision-free automatic mode
operation

1 Monitor speed is a global setting of the robot, regardless of
program speed

34 Control Engineering and Applied Informatics

8. CONCLUSION

This paper presented a set of robot modelling and simula-
tion techniques focused on collision queries, which are in-
tegrated in a multi-device virtual workspace for simulating
robot and 3D scanning applications. A 6-DOF arm is mod-
elled at a kinematics level and rendered using OpenGL,
and interactions between the robot and its environment
are simulated using rigid body dynamics. Presence and
distance sensors are implemented using collision queries
between their active space and the scene objects. A 3D
scanning sensor is simulated either with ray tracing (ac-
curate, but slow) or with geometric primitives (real-time
ideal simulation).

The following applications were developed with the help
of the simulation software which implements the discussed
collision handling and simulation techniques:

• Simulation of 3D scanning process
• Collision-free path planning for redundant mecha-

nisms, in particular, a 7-DOF system for 3D scanning
• Collision avoidance in real-time robot applications

ACKNOWLEDGEMENTS

This work is funded by the National Council for Sci-
entific University Research, in the framework of the
National Plan for Research, Development and Innova-
tion, grant 69/2007, and by the Sectoral Operational
Programme Human Resources Development 2007-2013
of the Romanian Ministry of Labour, Family and So-
cial Protection through the Financial Agreement POS-
DRU/6/1.5/S/19.

REFERENCES

Adept Technology, Inc. (2004). Adept SmartMotion De-
veloper’s Guide.

Boeing, A. and Bräunl, T. (2007). Evaluation of real-
time physics simulation systems. In GRAPHITE ’07:
Proceedings of the 5th international Conference on Com-
puter graphics and interactive techniques in Australia
and Southeast Asia, 281–288. ACM, New York, USA.

Borangiu, T., Dogar, A., and Dumitrache, A. (2008a).
Integrating a short range laser probe with a 6-dof
vertical robot arm and a rotary table. In RAAD 2008 -
The 17th International Workshop on Robotics in Alpe-
Adria-Danube Region. Ancona, Italy.

Borangiu, T., Dogar, A., and Dumitrache, A. (2008b).
Modelling and simulation of short range 3D
triangulation-based laser scanning system. Int.
Journal of Computers, Communications and Control
(IJCCC), 3(Suppl. Issue - ICCCC’08), 190–195.

Borangiu, T., Dogar, A., and Dumitrache, A. (2009a). Cal-
ibration of wrist-mounted profile laser scanning probe
using a tool transformation approach. In RAAD 2009 -
The 18th International Workshop on Robotics in Alpe-
Adria-Danube Region. Brasov, Romania.

Borangiu, T., Dogar, A., and Dumitrache, A. (2009b).
A heuristic approach for constrained real time motion
planning of a redundant 7-dof mechanism for 3D laser
scanning. In INCOM 2009 - 13th IFAC Symp. on Infor-
mation Control Problems in Manufacturing. Moscow.

Cignoni, P., Corsini, M., and Ranzuglia, G. (2008). Mesh-
lab: an open-source 3D mesh processing system. ERCIM
News, (73), 45–46.

Cohen, J.D., Lin, M.C., Manocha, D., and Ponamgi, M.
(1995). I-COLLIDE: an interactive and exact colli-
sion detection system for large-scale environments. In
I3D’95: Proc. of the 1995 Symp. on Interactive 3D
graphics, 189. ACM, New York, USA.

Davis, T. (2001). Homogeneous coordinates and computer
graphics. URL www.geometer.org/mathcircles/.

Ehmann, S.A. and Lin, M.C. (2000). Accelerated prox-
imity queries between convex polyhedra by multi-level
Voronoi marching. In Proc. of IEEE/RSJ International
Conf. on Intelligent Robots and Systems, pp.2101–2106.

Ehmann, S.A. and Lin, M.C. (2001). Accurate and
fast proximity queries between polyhedra using convex
surface decomposition. In in Computer Graphics Forum,
pp.500–510.

Gottschalk, S., Lin, M.C., and Manocha, D. (1996). OBB-
Tree: a hierarchical structure for rapid interference de-
tection. In SIGGRAPH ’96: Proceedings of the 23rd an-
nual Conference on Computer graphics and interactive
techniques, 171–180. ACM, New York, USA.

Hudson, T.C., Lin, M.C., Cohen, J., Gottschalk, S., and
Manocha, D. (1997). V-COLLIDE: accelerated collision
detection for VRML. In VRML ’97: Proc. of the
second Symp. on Virtual reality modeling language, 117–
ff. ACM, New York, USA.

Jimnez, P., Thomas, F., and Torras, C. (2001). 3D collision
detection: a survey. Computers and Graphics, 25(2),
269–285.

Larsen, E., Gottschalk, S., Lin, M.C., and Manocha,
D. (1999). Fast proximity queries with swept sphere
volumes. Technical report, Department of Computer
Science, University North Carolina at Chapel Hill, USA.

Lin, M.C. and Gottschalk, S. (1998). Collision detection
between geometric models: A survey. In In Proc. of IMA
Conference on Mathematics of Surfaces, 37–56.

Mirtich, B. (1998). V-Clip: fast and robust polyhedral
collision detection. ACM Trans. Graph., 17(3), pp.177–
208.

Mirtich, B.V. (1996). Impulse-based dynamic simulation
of rigid body systems. Ph.D. thesis, University of Cali-
fornia, Berkeley.

Seljebotn, D.S. (2009). Fast numerical computations with
cython. In Proceedings of the 8th Python in Science
Conference (SciPy 2009), pp. 15–23. Pasadena, CA,
USA.

Spong, M.W., Hutchinson, S., and Vidyasagar, M. (2005).
Robot Modeling and Control. John Wiley and Sons, Inc.,
New York.

Terdiman, P. (2001). Memory-optimized bounding-volume
hierarchies.

Van den Bergen, G. (1999). A fast and robust GJK
implementation for collision detection of convex objects.
J. Graph. Tools, 4(2), pp.7–25.

Zhang, X., Lee, M., and Kim, Y.J. (2006). Interactive
continuous collision detection for non-convex polyhedra.
Vis. Comput., 22(9), 749–760.

Zhang, X., Redon, S., Lee, M., and Kim, Y.J. (2007).
Continuous collision detection for articulated models
using Taylor models and temporal culling. Proc. of
SIGGRAPH 2007, 26(3), 15.

