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Abstract: The paper deals with a new recursive controller for trajectory tracking of MIMO
nonlinear affine in control systems. The proposed controller comprises stabilization and com-
pensation sub-controllers and dose not require knowledge of the physical model parameters. The
stabilization sub-controller is developed using the theory of a particular class of hybrid systems
called piecewise continuous systems and characterized by autonomous switchings and controlled
impulses. The compensation sub-controller is designed based on the time delay estimation
theory. The proposed recursive controller is tested and compared with a classical PID controller
for a three tank system.
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1. INTRODUCTION

With few exceptions the existing nonlinear control meth-
ods are based on mathematical models of the plants
(Isidori, 1995; Khalil, 2002; Tahir et al., 2009). The model
based control design provides mathematically rigorous re-
sults concerning the controller structure and properties.
The potential limitation of this approach is that the con-
troller performances strongly depend on the availability
of an accurate plant model. Plant modelling and iden-
tification are always difficult problems (Gédouin et al.,
2008). Moreover, the use of highly accurate models taking
into account many coupled nonlinear effects, gives rise to
substantial difficulties in parameter and state estimation.

Despite the development of more and more sophisticated
model based control methods, their practical application
remains very limited (Sun, 2007). Over 90% of industrial
processes are operated by Proportional-Integral-Derivative
(PID) controllers (Aström and Haglund, 1995) for their
conceptual simplicity and usage of uncomplicated mathe-
matical model. However, the quite tedious tuning and poor
performance of PID controllers in case of severe coupling
plant nonlinearities have prompted the introduction of
model-free control techniques like fuzzy logic, artificial
intelligence and neural nets. Recently, a numerical differ-
ential algebraic method has been proposed using a phe-
nomenological model to approximate the plan dynamics
in a short amount of time. This model is updated step
by step and the desired system behavior is obtained using
a standard PID controller (Gédouin et al., 2008; Fliess et
al., 2006b; Fliess et al., 2006a). Moreover, an experimental
method called ”active disturbance rejection control” and
based on a nonlinear combination of PID errors and an
extended state observer has been developed in (Han, 1998;
Han, 2009; Gao, 2006).

In this paper a Composed Recursive Controller (CRC) is
proposed for MIMO nonlinear affine in control systems.
This controller consists of stabilization and compensation
sub-controllers and does not require identification of pro-
cess parameters. The stabilization sub-controller is devel-
oped by using the theory of a particular class of hybrid
systems called piecewise continuous systems (Koncar and
Vasseur, 2003). In turn, the compensation sub-controller is
developed based on the time delay estimation theory (Cho
et al., 2005).

The paper is organized as follows. The problem statement
is given in Section 2 and the existing piecewise contin-
uous controllers are briefly described in Section 3. The
development of CRC is presented in Section 4. The CRC
application to a nonlinear three tank system is considered
in Section 5. Some concluding remarks are given in Section
6.

2. PROBLEM STATEMENT

The following MIMO nonlinear, affine in control system is
considered

[

ẋ1(t)
ẋ2(t)

]

=

[

f1(x, t)
f2(x1, x2, t)

]

+

[

g(x, t)
0

]

u(t) (1)

y(t) = x1(t) (2)

where x(t) =
[

xT1 (t), x
T
2 (t)

]T
is the system state vector

with x1(t) ∈ ℜ
m, x2(t) ∈ ℜ

n−m; u(t) ∈ ℜm is the control
vector, y(t) ∈ ℜm is the output vector, f1(x, t), g(x, t) ∈
C1 in ℜn × ℜ and f2(x1, x2, t) ∈ C

1 in ℜm × ℜn−m × ℜ.
It is assumed that the subsystem

ẋ2(t) = f2(x1, x2, t) (3)

is input-to-state stable (Pan et al., 2005).
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The system output y(t) is required to track a known
bounded reference signal yd(t):

y(t)→ yd(t). (4)

In particular, yd(t) can be generated by a dynamical
reference model

ẋr(t) = fr(xr(t), r(t), t) (5)

yd(t) = hr(xr, t) (6)

where r(t) is a smooth reference input.

3. PIECEWISE CONTINUOUS SYSTEMS AND
CONTROLLERS

The Piecewise Continuous Systems (PCS) introduced first
in (Koncar and Vasseur, 2003) and then developed in
(Wang et al., 2008; Wang et al., 2010a; Wang et al.,
2010c), are hybrid systems with autonomous switchings
and controlled impulses. PCS are characterized by two
input spaces and two time spaces. The first time space
is the discrete time space S = {tk, k = 0, 1, 2, . . .} called
switching space, where tk are the switching instants. The
second time space is the continuous time space Φt = {ℑ−
S} where ℑ = {t ∈ [0,∞)}. In reference to these time
spaces, PCS are controlled by two types of inputs: sampled
inputs at switching and continuous inputs between two
switching instants. For a constant switching period te one
has S = {kte, k = 0, 1, 2, . . .}.

Based on the PCS theory, a Piecewise Continuous Con-
troller (PCC) was developed in (Koncar and Vasseur,
2003), (Wang et al., 2006), enabling sampled tracking
of linear time-invariant systems. For constant switching
period PCC can be described as

λ(kt+e ) =Bc2ψ(kte), ∀k ∈ S (7)

λ̇(t) =Acλ(t) +Bc1ϕ(t), ∀t ∈ Φt (8)

us(t) =Ccλ(t), ∀t ∈ ℑ. (9)

Equation (7) defines the controller state λ(t) ∈ ℜp at
switching instants by means of the sampled input ψ(kte) ∈
ℜq. Equation (8) describes the continuous-time evolution
of the controller state under the action of the continuous
input ϕ(t) ∈ ℜr. Equation (9) is the PCC output equa-
tion, the controller output us(t) ∈ ℜ

m being the plant
control signal. Bc2, Ac, Bc1 and Cc are constant matrices
with appropriate dimensions. Fig. 1(a) and Fig. 1(b) show
respectively the PCC realization diagram and state evo-
lution. Note that normally λ(kt−e ) 6= λ(kt+e ) according to
equations (7), (8). Further on we shall denote f(kte) by fk
and f(kt+e ) by f

+

k .

A simplified PCC can be obtained choosing Bc1 = 0
and Cc diagonal matrix with positive diagonal elements.
Thus the only parameter defining the controller behavior
between two switching instants is the matrix Ac which is
chosen to ensure the PCC stability. In this case the tuning
of PCC consists of determining Bc2 and ψ(t) in order to
achieve a sampled tracking of a desired state trajectory
xd(t) by the plant state xs(t) with one sampling period of
delay:

xs,k+1 = xd,k, k = 0, 1, 2, . . . (10)
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Fig. 1. PCC realization diagram and state evolution

Let the plant be modelled as

ẋs(t) =Axs(t) +Bus(t) (11)

ys(t) =Cxs(t) (12)

where xs(t) ∈ ℜ
n, us(t) ∈ ℜ

m and ys(t) ∈ ℜ
m are

the plant state, input and output, respectively, and A,
B and C are constant matrices. As shown in (Wang et
al., 2008), the sampled state tracking for such plants
is ensured by a simplified PCC with Bc2 = M−1 and
ψ(t) = xd(t) − Adxs(t), where Ad = eAte and M =

Ad

∫ te

0
e−AτBCce

Acτ dτ .

PCC can be further simplified for sampled tracking of a
desired output trajectory yd(t) :

ys,k+1 = yd,k, k = 0, 1, 2, . . . (13)

by enabling switching at high frequencies (te → 0+). In
this case one obtains

λ+k = I−mλ
−

k + ek (14)

where I−m = Im − CBCcte − ς(t2e) and ek = yd,k − ys,k
(see Wang et al., 2008). Equation (14) can be interpreted
algorithmically as an iterative evaluation of λ+k at each
calculation step:

λ+k ← I−mλ
−

k + ek. (15)

The evolution of the controller state for te → 0+ being
negligible, PCC can be regarded as a zero order hold.
Furthermore, if switching occurs at each calculation step
of the computer, PCC can be realized by a simple circuit
as shown in Fig. 2.
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Fig. 2. Derived Piecewise Continuous Controller
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In practice I−m can be chosen as a diagonal matrix I−m =
diag(i−

1
, i−

2
, . . . , i−m) with ‖i−k ‖ < 1, k = 1, 2, . . . ,m

and thus the knowledge of the plant parameters is not
necessary.

4. COMPOSED RECURSIVE CONTROLLER

4.1 Controller Design

In this section a new controller, called Composed Recur-
sive Controller (CRC) is proposed to solve the nonlinear
control problem (1), (2), (4). The proposed controller is
defined as

u(t) = G−1
(

us(t) + uc(t)
)

(16)

where us(t) is a stabilization sub-control, uc(t) is a sub-
control for compensation of unknown system nonlinearities
and G ∈ ℜm×m is a nonsingular diagonal weighting ma-
trix. Both us(t) and uc(t) are determined using recursive
calculation loops like in PCC, see Fig.2. It is important
to note that the stabilization sub-control us(t) is derived
from (15) as shown in (Wang et al., 2010b). The CRC
realization diagram is given in Fig. 3.
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Fig. 3. Composed Recursive Controller

As shown in Fig. 3, the stabilization control component
us(t) is computed by

λ(t) = ‖e(t)‖2e(t) + ξ(t)λ(t) (17)

us(t) =Ccλ(t) (18)

where λ(t) ∈ ℜm is the stabilization sub-controller state,
e(t) = yd(t)− y(t) is the output trajectory tracking error,
Cc ∈ ℜ

m×m is the sub-controller output matrix, and ξ(t) is
the sub-controller tracking coefficient. To realize e(t)→ 0,
the value of ξ(t) is tuned as

ξ(t) = exp
(−eT (t)e(t)

2σ2

)

(19)

with 0 < σ ≤ 1.

The compensation sub-control uc(t) is determined using
time delay estimation techniques (Cho et al., 2005) as

uc(t) = ẏd(t)− P
∗(t) (20)

where

P ∗(t) = Gu(t− ǫ)− ẏ(t− ǫ) (21)

and ǫ is the numerical integration step.
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Fig. 4. Three tank system

5. SIMULATION RESULTS

In order to illustrate the CRC design and trajectory
tracking performances, the controller is applied to the
three tank system shown in Fig.4.

The system is composed of three cylindrical tanks of same
section S, connected serially by pipes of cross section Sc .
The inputs of the system are u1 and u2 , the flow rates of
pumps 1 and 2 (not shown in Fig.4), and the outputs are
h1 and h2 , the liquid level of tanks T1 and T2. The outflows
through valves are L1, L2 and L3 which are zeros in the
modelling procedure but are considered as disturbance
in the numerical simulation. The output-flowing liquid is
collected in a reservoir, which is the source of pumps 1 and
2. The pumps 1 and 2 supply liquid for tank T1 and tank
T2, respectively, and tank T3 only gain liquid by coupling
effect from tank T1 and tank T2. The open-loop three tank
system response time is comparatively long (Bouzouita et
al., 2008), (Yang et al., 2008) and the main control problem
is to realize tracking of desired trajectories at a shorter
time.

The liquid level evolutions in tanks T1, T2 and T3 depend
on the input and output flows and can be expressed as
(Fliess et al., 2006a; Yang et al., 2008; Benayache et al.,
2008):

ḣ1 =−C1sign(h1 − h3)
√

|h1 − h3|+
u1
S

(22)

ḣ2 =C3sign(h3 − h2)
√

|h3 − h2| (23)

−C2sign(h2)
√

|h2|+
u2
S

ḣ3 =C1sign(h1 − h3)
√

|h1 − h3| (24)

−C3sign(h3 − h2)
√

|h3 − h2|

with Ci = µiSc

√

(2g)/S, i = 1, 2, 3. The corresponding
parameter values are given in Table 1.

Table 1. Physical Parameters of the Three
Tank System

Symbol Value Meaning

S 0.0154 m2 section of the tanks
Sc 5.10−5 m2 section of pipes
g 9.81 m/s2 gravity coefficient
µi, i = 1, 2, 3 µ1 = µ2 = 0.5, µ3 = 0.675 flowing coefficient

The system output is

y(t) = [h1(t) h2(t)]
T . (25)
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The CRC parameters are tuned as G = diag(2, 4), σ =
0.98, Cc = diag(100, 100) and the time delay ǫ is chosen
equal to the sampling period used te = 0.0001s.

CRC performances are compared with those of a classical
PID controller

u(t) = kpe(t) + ki

t
∫

0

e(t)dt+ kdė(t)

tuned according to Ziegler-Nichols method with kp = 1.87,
ki = 0.02, kd = 0.005.

CRC and PID controllers are tested and compared for
tracking three types of reference trajectories (a piecewise
constant reference, a multiple frequency sinusoidal refer-
ence and a transcendental reference) under the outflow
disturbances of L1 and L2 shown in Fig. 5. Denoting
e1(t) = h1d(t)−h1(t), e2(t) = h2d(t)−h2(t), where yd(t) =

[h1d(t) h2d(t)]
T is the the desired output trajectory, the

control objective is to realize e(t) = [e1(t) e2(t)]
T
→ 0.
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Fig. 5. Outflow disturbances

5.1 Tracking Piecewise Constant Reference Trajectories

The desired and obtained output trajectories using CRC
and PID controllers are given in Fig. 6 and Fig. 7,
respectively. The corresponding tracking errors e1(t) and
e2(t) are shown in Fig. 8 and Fig. 9.
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Fig. 6. CRC control for piecewise constant reference tra-
jectories

5.2 Tracking Multiple Frequency Sinusoidal Reference
Trajectories

Under the same outflow disturbances, the desired reference
trajectories are defined by a 3rd-order Bézier polynomial
and a sinus function as
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Fig. 7. PID control for piecewise constant reference trajec-
tories
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Fig. 8. Tracking error e1(t) for piecewise constant reference
trajectories
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Fig. 9. Tracking error e2(t) for piecewise constant reference
trajectories

yd =

[

0.05
(

(

sin(8t)
)3
− 3

(

sin(8t)
)2

+ 3 sin(8t)
)

+ 0.4

0.1 sin(20t) + 0.1

]

The corresponding results for CRC and PID control are
given in Fig. 10 – Fig.13. As in the previous case, it can
be seen that comparing to PID the proposed controller
ensures faster responses with small tracking errors.

5.3 Tracking Transcendental Reference Trajectories

Finally, CRC and PID tracking performances were tested
for transcendental reference trajectories defined as

ẋr(t) =

[

0 1
0 0

]

xr(t) +

[

0
100

]

r(t) (26)

x1d(t) =

[

1
0.5

]

Exr(t) (27)
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Fig. 10. CRC control for multiple frequency reference
trajectories
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Fig. 11. PID control for multiple frequency reference
trajectories
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Fig. 12. Tracking error e1(t) for multiple frequency refer-
ence trajectories
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Fig. 13. Tracking error e2(t) for multiple frequency refer-
ence trajectories

with xr(0) = [1 2π]T , E = [1 0] and r(t) being an external
signal defined by

r(t) =
1

25
π2 exp(sin(2πt))

[

1 + cos(4πt)

2
− sin(2πt)

]

(28)

The results obtained are presented in Fig. 14 – Fig. 17.
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Fig. 14. CRC control for transcendental reference trajec-
tories
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Fig. 15. PID control for transcendental reference trajecto-
ries
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Fig. 16. Tracking error e1(t) for transcendental reference
trajectories

The test results in all considered cases show that the pro-
posed controller ensures faster response time and smaller
trajectory tracking errors comparing to the classical PID
controller.

6. CONCLUSION

In this paper a composed controller with two recursive
calculation loops is proposed for MIMO nonlinear affine
in control systems. The new controller does not require
identification of the process model parameters and is easy
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Fig. 17. Tracking error e2(t) for transcendental reference
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to implement. The performances of the proposed controller
are tested and compared with standard PID controller
performances for a three tank system.
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