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Abstract: This paper presents an approach for the prediction-based optimization of meta-
scheduling in Large Scale Distributed Systems. Several methods are analyzed for resource state
prediction to be used in meta-scheduling. Because of the different levels and fluctuations of
the performance due to contention caused by competitive applications, schedulers must be
able to predict the deliverable performance that an application will be able to obtain when it
eventually runs. Time series predictions of the resource status of distributed systems resources,
such as CPU or free memory, are considered in order to improve the system availability. The
prediction model is based on actual parameter values and historical information, both provided
by the MonALISA monitoring system and its extensions: repository and ApMon. The prediction
system architecture is extensible, in the sense that other monitoring parameters can be easily
added and new prediction models can be included. The predictions of resources are used in
meta-scheduling for different types of tasks, especially tasks with dependencies that have an
associated communication cost. Based on the dynamic resource information, which sometimes
need to be predicted, the scheduler can choose the combination of resources from the available
resource pool that is expected to maximize performance for the application and use the resources
in an efficient way. The significant improvements obtained for scheduling optimization, with an
immediate effect on load balancing and resource utilization are presented.
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1. INTRODUCTION

Distributed systems grew rapidly in the past few years and
now we consider Large Scale Distributed Systems (LSDS).
This was due to the increasing applicability and number
of users. As a consequence, LSDS computing became an
active subject of the research in distributed systems. In
Computational Grid the performance and evaluation are
critical components leading to a better scheduling of the
jobs, detection of anomalies and also recovery from anoma-
lous behavior, ensuring that the negotiated QoS between
the users and providers of resources is met. Finding an
effective application performance prediction method for
Grid environments constitutes one of the particularly im-
portant but still open research problems. The ultimate
goal of the application performance analysis and predic-
tion is always answering the question of how particular ap-
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plication will perform in the particular environment. The
parallel application runtime prediction is thus the function
of used hardware, particular software environment, and
the application characteristics. One of the most important
aims of LSDS computing is balancing and optimizing the
resource utilization. To accomplish these goals, distributed
systems use different strategies and several software com-
ponents, such as management tools, schedulers and moni-
toring tools.

This paper is based on (1) and proposes a method for
predicting optimizing scheduling process using resources’
states in LSDS environments. We consider time series
predictions of the status of distributed systems resources
such as CPU load or available memory. The predictions
are based on historical information provided by monitor-
ing systems. The predictions are primarily used in task
scheduling, but they can also be used in real-time gather-
ing information about resources. Multiple prediction algo-
rithms have been analyzed and evaluated, which are based
on classical mathematical methods for investigating time
series data. Based on the real-time measured values, each
of these methods is aiming to predict future values. Multi
step-ahead prediction is achieved with an algorithm based
on a neural network. By using predictions, we can estimate
resources’ states. The states of resources in distributed
systems are used in task scheduling with the purpose to
satisfy every task requirements on the one hand, and to
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improve the use of available resources, on the other. For
tasks with dependencies that are submitted in bulks, a
dynamic scheduling approach can be applied but with a
small penalty of increasing the response time for these
tasks. The resource state predictions can be used in a static
scheduling algorithm, with an immediate effect on resource
load balancing.

The assumption about the hardware and applications,
techniques used to acquire the data and the methods
of predicting the behavior are the three most important
factors determining the accuracy and the scope of utiliza-
tion of the particular prediction technique. On the other
hand, application runtime information is a fundamental
component in application and for the Grid scheduler. Pre-
diction of application’s behavior may be used to evaluate
with accuracy and eventually rank different resource sets
according to their likely performance in order to select the
best set of target resources.

This paper is structured as follows: in section two we
review related work. In the third section we describe the
proposed method for meta-scheduling and present the ar-
chitecture of the proposed solution, the existing prediction
methods, the neural network prediction algorithm, and the
scheduling algorithm. We present the experimental results
obtained with our system in the fifth section. In section
six we state the conclusions and emphasize directions for
future work.

2. RELATED WORK

Grid scheduling is one of the active topics in the literature
nowadays. Most of the existing scheduling solutions do
not consider the prediction of future behavior of the Grid
resources, even if this approach can lead to far better
results in optimizing the scheduling decisions. To make the
best use of the resources in a shared LSDS environment, an
application scheduler should make a prediction of available
performance on each resource. Some solutions to develop
algorithms based on prediction methods are proposed
in (3)(4)(6)(8)(9).

In (3) the authors propose a conservative scheduling tech-
nique based on a predictor component to help in making
scheduling. The component is able to adjust the scheduling
decisions based on a feedback mechanism. The authors
compare the prediction accuracy of their method against
the ones obtained by using another prediction instrument,
Network Weather Service (NWS).

In (4) the architecture proposed uses Globus (5) as an
underlying middleware to provide scheduling based on
performance predictions. One weakness of both approaches
is that, for the most part, they don’t consider the local
characteristics of individual cluster sites and allow the
selection of jobs that can lead to the increase of job queuing
time.

The Real-time Scheduling Advisor (RTSA) (6) is a user-
level system. An application running on a typical shared,
unreserved distributed computing environment can ask
advice on how to schedule its compute-bound soft real-
time tasks. Given a list of hosts, a description of the CPU
requirements of the task, the deadline, and a confidence
level, the RTSA recommends one of the hosts and predicts

the running time of the task on that host. The solution
is based on statistical predictors. In the end, the system
presents to the user the confidence intervals for the running
time of a task. These confidence intervals are formed using
time series analysis of historical information about host
load. The disadvantage of the system is, however, that it
assumes a homogeneous environment, which is not always
true, especially in case of LSDS environments.

An approach similar to the one proposed in this paper is
presented in (8). In that paper, the authors are proposing
a set of long-term load prediction methods wich reference
the properties of processes and the runtime predictions.
These methods are used by a prediction module selector
that is able to select an appropriate prediction method,
based on the actual situation and according to a state
of dynamically changing CPU load. Like the approach
presented in this paper, their solution is also based on the
use of a neural network. However, the scheduling decisions
are strictly based on CPU load predictions. Our proposed
solutions makes use of a wider range of performance
parameters.

In (9) the authors propose the use of a batch-mode
scheduling algorithm called First-order Prediction-based
Dynamic FPLTF (FP Dynamic FPLTF), abbreviated as
FP. It represents a prediction-based scheduling algorithm
that works similar to the FPLTF (10) except that it needs
the host’s latest two load records. The scheduler uses these
two records to reconstruct an approximated hosts loading
model to predict the host’s speed in the future, based on
a linear function. FP is able to achieve good performances
but, it needs detailed information about tasks and hosts,
which is not offered by a Computational Grid composed
of a large number of heterogeneous resources.

In fact, the resources in LSDS environments are hetero-
geneous and widely distributed. This is a problem for
many of the previous scheduling attempts to make deci-
sions based on prediction techniques. Previous attempts to
develop scheduling solutions based on predictions faced the
difficulty of installing monitors to record the performance
of the LSDS components and feed a predictor component,
a problem that we overcame by using one of the widely
used monitoring frameworks today, MonALISA. Another
problem faced by previous schedulers is the difficulty in
accurately predicting the hosts’ characteristics (such as
CPU computational power, CPU load, etc). Some of them
have proposed techniques to predict the values regarding
hosts and tasks by using the Network Weather Service
(NWS) (11), a distributed system that periodically moni-
tors and dynamically forecasts the performance of various
network and computational resources. The difficulty with
this approach comes from the need to install an extra
component, in this case the NWS system, to monitor
all resources of a LSDS. Our solution uses a monitoring
system that is already part of the LSDS infrastructure.
The NWS operates a set of forecasting methods that it can
invoke dynamically, passing as parameters the CPU load
measurements it has taken from each resource. Conversely,
the availability prediction is based on a nonparametric
method called Binomial Method (12). This method is
able to make future availability prediction (with provable
confidence bounds) with as few as 20 measurements of the
previous availability values. We argue that our solution
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that is based on neural networks provides better results
that the Binomial Method, as presented in the next sec-
tions.

3. PREDICTION BASED METHOD FOR
META-SCHEDULING IN LSDS ENVIRONMENTS

3.1 Prediction Architecture

In order to achieve complex prediction of various mon-
itored resource parameters or large-scale network events
and characteristics, cooperation of many, and possibly
heterogeneous, monitoring data collectors distributed over
a wide-area network must be accomplished. In such an
environment, the processing and correlation of the data
gathered at each collector gives a broader perspective of
the state of the monitored resources, in which related
events become easier to identify.

Therefore, within the MonALISA framework (7), we de-
veloped a distributed prediction architecture, able to col-
lect relevant information, present global views from the
dynamic set of services running in the distributed envi-
ronment to higher level services and to further make ac-
curate predictions of the monitored resources’ behaviour.
Our architectural model consists of Sensors - MonALISA
Services executing monitoring tasks, which are able to in-
teract autonomously with other services through dynamic
Proxies or via Agents that use self-describing protocols;
Web Clients - MonALISA Repositories can dynamically
discover these Services by their attributes, interact with
them and use the monitored data for further processing,
representation of the predicted parameters and automated
decision control based on predictions; Web Service Client
- uses the WSDL/SOAP interface published by the reposi-
tory to acces information received from several monitoring
Services which will be used for further predictions; Pred-
itction Tool - based on the information obtained through
the web services and using the methods presented in the
following section develops the parameters predictions; Ap-
Mon - is used for injecting the predicted information back
into the distributed monitoring system. Figure 1 presents
these main components of the architectural model and
their communication infrastructure.

Fig. 1. Prediction Architecture

We detail in the following the main characteristics of the
components of our prediction architecture model.

The MonALISA Service monitors and tracks site com-
puting farms and network links, routers, and it dynam-
ically loads modules that make it capable of interfacing
existing monitoring applications and tools (e.g. Ganglia,
MRTG, LSF, PBS, Hawkeye.). The core of the monitor-
ing service is based on a multi-threaded system used to
perform the many data collection tasks in parallel, inde-
pendently. The modules used for collecting different sets of
information, or interfacing with other monitoring tools, are
dynamically loaded and executed in independent threads.
A Monitoring Module is a dynamic loadable unit which ex-
ecutes a procedure (or runs a script / program or performs
SNMP request) to collect a set of parameters (monitored
values) by properly parsing the output of the procedure.
In general a monitoring module is a simple class, which
is using a certain procedure to obtain a set of parameters
and report them in a simple, standard format. Monitoring
Modules can be used for pulling data and in this case it
is necessary to execute them with a predefined frequency
(i.e. a pull module which queries a web-service) or to
”install” (has to run only once) pushing scripts (programs)
which are sending the monitoring results (via SNMP, UDP
or TCP/IP) periodically back to the Monitoring Service.
Allowing to dynamically load these modules from a (few)
centralized sites when they are needed makes much easier
to keep large monitoring systems updated and to provide
new functionalities dynamically; users can also implement
easily any new dedicated modules and use it in the Mon-
ALISA framework. This architectural model of the Service
makes it relatively easy to monitor a large number of
heterogeneous nodes with different response times, and at
the same time to handle monitored units which are down
or not responding, without affecting the other measure-
ments. We use the Service to collect key parameters (ex:
Load5, FreeMemory, DiskSpace) which are further used for
accurate predictions.

The MonALISA Repositories are special types of
clients used for long periods storage and further processing
of monitoring data. They subscribe to a set of parameters
or filter agents to receive selected information from all the
Services. This offers the possibility to present global views
from the dynamic set of services running in the distributed
network environment to higher level services. The received
values are further stored locally into a relational database,
optimized for space and time. The collected monitoring
information is further used to present a synthetic view
of how the global system performs. The system targets
developing the required higher level services and compo-
nents of the network management system that provide
decision support, and eventually some degree of automated
decisions and control.

We developed a special Prediction Repository in our ar-
chitectural model. We used it to store for long periods
of time both the actual monitoring data on which we
base our predictions and the actual predictions, for fur-
ther analysis, fine tuning and eventually some degree of
automated decisions and control to higher level services.
The Prediction Repository is capable to dynamically plot
the parameters we focused on (load, free memory, free disk
space, job resources etc.) into a large variety of graphical
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charts, statistics tables, and interactive map views, follow-
ing the configuration files describing the needed views, and
thus offering customized global or specific perspectives.
Within the Prediction Repository we created several views
for comparing our prediction models and also different
charts to test the accuracy of our predictions showing
both the predicted information and the real data. Within
the Prediction Repository we developed an automated
management systems that uses the predictions. Hence we
created special types of data filters, called Actions. They
can register for the data produced by the monitoring
modules and also for the predictions produces by the
Prediction tool, and can take specific actions when some
configurable condition is met. This way, when a given
threshold is reached, an alert e-mail can be sent, or a
program can be run, or an instant message can be issued.
Actions represent the first step toward the automation of
the decisions that can be taken based on the monitoring
and predicted information. It is important to note that
Actions can be used in two key points: locally, close to
the data source (where monitored data / predictions are
produces) where simple actions can be taken like restarting
a dead service and globally, in the Prediction Repository,
where the logic for triggering the action can be more
complicated, as it can depend on several flows of data.
This automated management framework becomes a key
component. Apart from monitoring and predicting the
state of the various LSDS components and alerting the
appropriate people of any problems that occur during the
operation, this framework can also be used to automate
the processes.

We enhanced the Prediction Repository System with fault
tolerance capabilities in order to achieve high availabil-
ity. Hence, we used replication of the Repository Service
aiming for a warm standby configuration: in case one
repository fails, one or more replicas are ready to take
over clients’ queries in a transparent way. In this respect
we deployed three instances of the repository, located at
distinct locations so that local network failures wouldn’t
affect the system. Deployed repository replicas are per-
manently aware of each other’s current state and after
recovery from failure an instance synchronizes its state
with the other running replicas ensuring consistency of
monitored data.

The Web Service Client is used to access data from
the Prediction Repository via its published Web Services
interface. We have implemented a Web Service client that
periodically requests monitoring data from the repository.
The client selects the parameters depending on the farm,
cluster, node and the parameter name. The number of
values that the user is interested in is specified with
two time parameters, which describe the amount of time
between the return results. Each returned values will have
a time-stamp associated with it, which will be later used
to compute the predicted value time-stamp.

The time delays values that appear in the communica-
tion between framework entities is not significant in the
scheduling process because we proposed a method for
optimizing advance reservation, so this not have real-time
requirements and constrains.

The Prediction Tool is using the Web Service client
periodically in order to compute the future values for
the monitoring parameters. A different client will be used
for each parameter for which the user wants to predict
the future behavior. The prediction program processes
the monitoring parameters values returned by the Web
Service client and the computed predictions are sent to
the MonALISA service employing the ApMon library, as a
new parameter with the appropriate time-stamp. Thus we
have developed Java programs that run in a background
thread and calculate at regular intervals one-step ahead
predictions for the most important monitoring parameters.

ApMon is a set of flexible APIs that can be used by any
application to send monitoring information to MonALISA
services. The monitoring data is sent as UDP datagrams to
one or more hosts running MonALISA services. Applica-
tions can periodically report any type of information the
user wants to collect, monitor or use in the MonALISA
framework to trigger alarms or activate decision agents.
We use this tool to inject our predicted information back
into the system for further analysis and comparison.

3.2 Prediction methods

There are two types of prediction algorithms that have
been developed. Some simple one step ahead prediction
methods will be described, together with a neural network
based algorithm capable of multi-step ahead prediction.
Real data in the form of one of the parameters used
to describe the machine load, ”Load10”, is employed
to illustrate the effectiveness of the various prediction
algorithms. The time series interval for the monitoring
parameters is 1 minute. The prediction algorithms use the
last five values to predict the next value (12).

Simple Moving Average. A simple prior moving av-
erage (SMA) is the unweighted mean of the previous n
values. For example, a 5-minute simple moving average of
the Load5 parameter is the mean of the previous 5 minutes
values. Considering the values are Lt, Lt−1, ..., Lt−4, the

formula is SMA = Lt+Lt−1+Lt−2+Lt−3+Lt−4

5 . The simple
moving average prediction algorithm computes one step
ahead point as the mean of the last five values.

Restricted Moving Average. Experimental results
have shown that the behavior of the simple moving average
prediction algorithm is not the desired one. The predicted
value is sometimes an increasing value, and the real value
is actually decreasing. To eliminate this behavior, a restric-
tion on the moving average algorithm has been introduced.
If the predicted value is higher than the last value, the
predicted value will become the last real value that has
been provided.

Weighted Moving Average. A weighted moving aver-
age (WMA) is an average that has multiplying factors to
give different weights to different data points. The weights
are decreasing arithmetically as the values are older in
time. In an n-value weighted moving average, the last value
has weight n, the value before the last has weight n− 1,

and so on: WMA = 5Lt+4Lt−1+3Lt−2+2Lt−3+Lt−4

5+4+3+2+1 .

Exponential Moving Average. In an exponential
(weighted) moving average (EMA) algorithm, the applied
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weights are decreasing exponentially. In this way, a more
recent observation is given much more importance than
the weighted moving average algorithm. In the same time
the algorithms does not discard older observations entirely.

The constant smoothing factor α is the degree of weighing
decrease and is a number between 0 and 1. If the value
at the time t is Lt and the vales assigned to EMA at
the same time is St, then S1 will be undefined and S2

will be initialized as the average of the first 5 values. The
formula for calculating the exponential moving average at
any time periods t ≥ 2 is St = α× Lt−1 + (1− α)× St−1.
Depending on the constant α, older values have more or
less importance in the sum. If the smoothing factor α is
higher, the older observation are discounted faster.

Random Prediction. The random predictions are based
on the standard deviation theory. In probability and
statistics, the standard deviation of a set of values is
a measure of the spread of its values. In this case, the
predicted values will be a random real number in the
same interval. The standard deviation (σ) is defined as the
square root of the variance. The variance is the average of
the squared differences between data points and the mean.
Standard deviation, being the square root of units squared,
therefore measures the spread of data about the mean,
measured in the same units as the data. In other words,
the standard deviation is the root mean square deviation of
values from their arithmetic mean. The standard deviation
for a a sample of the population is calculated using the

following formula: σ =
√

1
N−1

∑N
i=1(xi − x)2 where N is

the number of values, x1, x2, ..., xN are the set of values
and is the mean.

The random prediction algorithm computes one step
ahead value as a random real number contained in the
interval (µ− σ, µ+ σ), where µ is the mean of the values.

3.3 Neural Network Prediction Algorithm

Neural networks have been used in economics and financial
prediction because of their ability to learn from historical
data. Another reason for this choice is that a neural
network is also capable of a multi-step ahead prediction
model (13). A prediction algorithm using a neural network
has been developed as a form of regression. The network
will receive as input historical monitoring data and will
predict one or more values ahead.

Neural networks are complex modeling techniques that
are able to shape nonlinear functions. They are used
in situations when there is a dependency between the
known input and the unknown output, but the nature
of that relation cannot be expressed exactly. In the case
of CPU Load5 prediction, the future value will always
depend on the current and the past behavior, but is
impossible to define the exact relation between those two.
This makes the use of neural network ideal for a prediction
tool (14)(15).

One Step-Ahead Prediction. One step-ahead predic-
tion is produced by a neural network with one neuron
in the output layer. The network is trained to predict
the next value of a monitoring parameter, such as CPU
Load5 or Free Memory, based on its last five values. The

model can be extended for any monitoring information,
the accuracy of the predictions depending on the data’s
behavior in time.

Fig. 2. Two step ahead prediction with a neural network

The Neural Network’s Structure. The structure of
the network has been established based on a trial and
error approach. The number of input neurons has been
chosen as a consequence of the simple moving average
prediction. Real-time tests have shown that five values are
sufficient for evaluating the performance of one parameter
for a short period of time. The number of hidden layers
as well as the number of neurons in each of the hidden
layer was established by conducting tests. Two hidden
layers can approximate any non-linear function that would
describe the relationship between past and current values
and future behavior. The numbers of neurons in the hidden
layers are 19, and 5 respectively.

Pre- and Post- Processing. Although all the moni-
toring parameters are numeric and thus appropriate to
be passed to the network, some pre-processing and post-
processing must be done. Due to the sigmoid activation
function used, the output is in the range (0, 1). As a
consequence, some scaling algorithm must be applied to
ensure that the network’s output will be in the right
range. The simplest scaling function is minimax: this finds
the minimum and maximum values of a variable in all
training data, and performs a linear transformation (using
a shift and a scale factor) to convert the values into the
target range (typically [0, 1]). Experiments have shown
that because of the wide range of the variables, the resulted
predictions have a low precision. In order to improve the
predictions, a different scaling approach has been imple-
mented. Instead of finding the minimum and maximum
values in all training data, the patterns are considered



Control Engineering and Applied Informatics 37

individually. The minimum and maximum values required
for the scaling algorithm are computed as µ−σ and µ+σ
respectively, where µ is the mean of the set of values in one
pattern and σ is the standard deviation. Using this scaling
algorithm, the accuracy of the prediction is significantly
better then when using the minmax function.

Training the Network. The neural network is trained
using the back propagation algorithm. The patterns in the
training set are selected from the historical monitoring
data. If the interval between values is one minute, then
a training set must contain at approximately two hours of
gathered monitoring information.

The historical data is provided by the Web Service client.
The training patterns are chosen at run time, given that
the performance of the resources can change over time.
The large amount of data is divided into input and target
patterns and passed to the neural network for training.
The back propagation algorithm will analyze the training
set a large number of times, until the network’s error
will reach an acceptable level. After the neural network is
trained, recent historical data is passed to the network and
it produces the next value of that particular parameter. In
the case of the program that runs as a background thread,
the process is repeated every minute in order to predict
periodically the next future value.

Multiple Step Ahead Prediction. In the case of mul-
tiple step ahead prediction, the same neural network is
used. After the next value in a time series is produced, the
following values can be estimated by feeding the newly
generated value back into the network with other values.

Figure 2 shows an example of a two step ahead prediction
and how is generated. In order to predict two steps ahead,
the procedure needs the last five values. The prediction
process begins at the current moment t, and is trying to
predict the value at the time t+ 1. The predicted value is
considered correct and it is fed back into the network as
an input, along with the shifted past values. The process
is repeated and the network produces the predicted value
for the time t+ 2.

3.4 Prediction Method for Resource Reservation

After negotiation phase a Service Level Agreement (SLA)
is established between the Broker and the Agent that
represents the resources on which the job will be executed.
Through this SLA, the Broker agrees to pay the price asked
by the Agent for the execution of the job and the Agent
agrees to deliver the results obtained by executing the job
in the specified time. Any violation of the SLA by the
Agent in an Economic Grid conducts to a bad rating from
the Broker, eliminating it from the selection process. To
ensure that the SLA is respected by the Agent the resource
reservation mechanism needs to be implemented using an
accurate performance prediction of the resources when the
job will be actually executed.

The reservation method used by the Agent can be im-
proved by predicting the running time of the jobs on re-
sources with different level of performance at a given time.
The prediction will be based on the instance based learning
technique. This technique will use a training database (for
each executed job, the attributes - user name, number of

CPUs needed to execute the job, the input parameters,
etc, and the execution time will be saved in the database)
to find the similar jobs with the query point. Once the set
of nearest neighbors are identified the runtime of the q job
will be predicted using the weighted average of the nearest
n neighbors:

P (q) =

∑n
i=1WiV al(Ti)∑n

i=1Wi

where ei it the ith nearest neighbor and V al(Ti) is the
recorded runtime for Ti job. We consider K(d) the function
that calculates a weight from the distance and k is a
smoothing factor:

Wi = K(D(q, Ti))

K(d) = exp−(
d

k
)2

The relevance between two jobs with input attributes
vector x and y is measured by the distance function:

D(x, y) =

√∑m
i=1 widi(xi, yi)∑m

i=1 wi

where wi is the weight of attribute i, and the di is: overlap
if a is a nominal attribute, nsdiff if a is a numeric scalar
or nvdiff if a is a numeric vector. The overlap and nsdiff
are used to determine job similarity using:

nsdiffi(x, y) =
|x− y|

maxi −mini
overlap(x, y) = δxy

where maxi and mini are the maximum and the mini-
mum observed values for attribute i. The resource state
similarity is determined using the following formula:

nvdiffi(x, y) =

∑Ni

a=1 |xa − ya|
range(i)

where a is the ath category, the Ni is the total number of
categories of x and y, range(i) is the maximum value of
difference in the training data for attribute i. The recorded
resource status for the executed jobs will be categorized by
group name, user name and queue name to minimize the
search in the training data set. The history size, neighbor
size and smoothing factor are determined by trial-and-
error, to minimize the average prediction error.

3.5 Prediction Based Meta-Scheduling Algorithm

In the case of a static scheduling approach, resources are
allocated as soon as the request arrives at the Agent. When
dealing with task dependencies, it is possible that some
tasks will have the start time in the future, due to prece-
dence constrains. In the case of DAG scheduling, the nodes
and edges are obtained by estimation at compile time.
Based on the requirements of each tasks and available
resources the start time for each task can be estimated.

We present in section 2 the related work describing the
latest tentative to elaborate a scheduling algorithm based
on predictions. We propose a method to use the prediction
component described in the last section in a distributed
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Fig. 3. Scheduling Framework

framework. The proposed prediction-based meta-scheduler
uses the two entities model for the scheduler architecture
(see figure 3).

When a user wants to execute a job, the job requirements
are sent to the Broker. The Broker will then start a
communication with all the available Agents (computa-
tional nodes) in the system. Because the application is an
economic one, the Brokers and Agents will negotiate the
price for the needed/offered resources. When the Agent
receives a request from a Broker, it will evaluate the jobs
requirements to see if it can execute the job in the required
time. If it can execute the job in the required time, the
Agents send back to the Brokers the offers that contain
the estimated price for using their resources. The Brokers
receive the offers from Agents, and choose the resources
with the best offer for the user.

The Broker collects the users requests and the start time
for each task is determined. In the case when the start time
is in the future, rather than at the current moment, the
Agent uses the predicted state of the system. Using this
approach, an optimal scheduling solution can be achieved
in a static manner. This way the much more expensive
dynamic scheduling approach can be avoided. When the
start time for each task is known, the resource status
predictions can be used to schedule the task in a static
approach. The Agent running the scheduler algorithm can
use the estimated resource status to match them with the
submitted tasks.

Fig. 4. Communication between framework entities

Here is a description of the proposed scheduling algorithm
in a logical flow of activities:

Step 1. A user requests that one or more tasks are
scheduled. His request has as a parameter the name of
the file containing a description of the tasks. The file
has a standard XML format and presents requirements
for each task relative to memory, cpu usage, execution
time, etc. An important parameter specifies the start

time and another specifies the completion time for each
task.

Step 2. The input file is processed and a “batch of tasks”
(group of tasks) object is constructed.

Step 3. The batch of tasks is broadcast to all the nodes
in the cluster (Machine Agents).

Step 4. The nodes receive the group of tasks to be sched-
uled. Each Machine Agent analyzes the task description
and predicts the system state at the start time moment,
indicated in task’s description.

Step 5. Each Node send to Broker the analysis results.
The response is represented by a set of tasks identifica-
tion that could be executed on that machine.

Step 7. The Broker make the system selection for each
task.

Step 6. The scheduling obtained is saved in a history file
on each node in the cluster.

The next section presents the experimental results of
testing the prediction methods. The very good results for
prediction methods sustains the correctness for the Step 4
from the described algorithm.

4. EXPERIMENTAL RESULTS

In order to evaluate the accuracy of the prediction meth-
ods, a Java class has been implemented for each algorithm.
The program runs as a background thread providing real
time prediction for some of the most important monitoring
parameters.

Most of the parameters have a very instable behavior. Con-
sequently, the predictions are rarely 100 percent accurate,
but rather give a good estimate of near future behavior.
In this sense, various parameters were chosen in order to
test the prediction algorithm. The test benches includes
parameters with high variation in time and parameters
with a periodical behavior.

4.1 Prediction results

We will present the results of the experimental tests made
for “Load10” parameter. While it is easy to implement
and requires no additional overhead, its performance is
marginally satisfactory. By the nature of the calculation,
this algorithm produces results that are both delayed and
dampened. The algorithm has a tendency to flatten local
peaks as a result of the averaging function, but the result
generally follows the real trends.

Simple Moving Average. While it is easy to implement
and requires no additional overhead, its performance is
marginally satisfactory. By the nature of the calculation,
this algorithm produces results that are both delayed and
dampened. The algorithm has a tendency to flatten local
peaks as a result of the averaging function, but the result
generally follows the real trends (see figure 5).

Restricted Moving Average. When using this algo-
rithm, the peak sensitivity problems persist and the re-
striction itself is a big source of errors, especially in the case
of fast, high amplitude variations (see figure 6). In some
cases the predicted values and the real ones show opposite
trends (e.g. the real value increases but the predicted value
is lower than the previous one).
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Fig. 5. Load10 real (red) and predicted (blue) values using
a simple moving average

Fig. 6. Load10 real (red) and predicted (blue) values using
a restricted moving average

Fig. 7. Load10 real (red) and predicted (blue) values using
a weighted moving average

Weighted Moving Average. Although this prediction
algorithm is giving extra weight to more recent data
points, the predicted values are not very accurate. The
reason is that the recent past may not offer sufficient
information with regard to the next value of the monitored
parameter. The weighting procedure assumes that more
recent data is more significant, which in some cases may
not be the case, for example for rapid fluctuations (see
figure 7).

Exponential Moving Average. While the performance
is generally better than the one expected from a simple
moving average algorithm, this method fails to produce
accurate results when there is a significant difference
between values at consecutive time points. Good results
can be achieved by tuning the smoothing factor α, if the
general behavior of the signal is known. For a completely
random signal, like Load10, the results are only slightly
better than the ones produced by the moving average
technique, with the greatest error being produced mostly

Fig. 8. Load10 real (red) and predicted (blue) values using
a exponential moving average with the constant α =
0.6

when the signal varies abruptly after a period of little or
no change (see figure 8).

Random Prediction. Intuitively, it can be seen that this
method is well suited for predicting signals with small vari-
ations. However, the real Load5 parameter has a variation
that is seldom small, meaning that the performance of
this algorithm can decrease dramatically when the signal
changes rapidly (see figure 9).

Fig. 9. Load10 real (red) and predicted (blue) values using
a random prediction

Neural Network Prediction. Neural networks have
been used with success in problems concerning time series
prediction. They process records one at a time, and ”learn”
by comparing their prediction of the record (which, at
the outset, is largely arbitrary) with the known actual
record. The errors from the initial prediction of the first
record is fed back into the network, and used to modify
the networks algorithm the second time around, and so on
for many iterations. An artificial neural network provides
an efficient technique for a multi-step ahead prediction.
If large amount of historical data is available, a neural
network is capable of discovering hidden dependencies
between values at fixed time intervals without the need
of other information.

Load10 parameter, that shows the load of the system in
the last 10 minutes, generally has large variations and
its behavior is rarely repetitive, therefore the training set
cannot include all the situations. According with this, the
prediction achieves good performance in the case of large
variations of Load10 parameter (see figure 10).
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Fig. 10. Load10 real (red) and predicted (blue) with neural
network algorithm

4.2 Errors Interpretation

This section discusses the experimental results obtained
by our new algorithm in the situation of one-step ahead
prediction for the earlier described parameters. The results
are also compared with those obtained by other algorithms
on the same historical data set, comparison made using the
absolute percentage error criterion. The presented graphics
highlight the errors obtained by the following prediction
approaches:

• SMA (simple moving average) represented with pur-
ple
• EMA (exponential moving average) represented with

blue
• WMA (weighted moving average) represented with

green
• Rand (random prediction) drawn using dark blue
• Cascor (the prediction algorithm proposed in (2)

based on the Cascade Correlation NN and genetic
algorithms) drawn with dark green
• FA (the new prediction approach based on decompo-

sition using a perceptron) represented using red
• FC (the new prediction approach based on decompo-

sition using the Cascade Correlation NN architecture)
represented using orange

Table I presents the absolute percentage errors obtained
using those prediction algorithms for different system
parameters where the minimum error for each parameter
is bolded. As the table emphasized, in each situation
the minimum error is obtained using the new prediction
approach using the Cascade Correlation NN architecture.
This table presents a comparison with other optimization
techniques based on prediction, applied in large scale
distributed systems.

Figure 11 presents a comparison between the errors ob-
tained for the ’idle’ parameter using different prediction
algorithms. Because of the fact that the parameter’s be-
havior don’t vary very fast, the errors obtained are very
small (less than 0.12% for all algorithms). There aren’t
large differences between the results obtained using the
new prediction approach using a perceptron (marked with
FA in the graphic) and the results obtained by the new
algorithm using a Cascade Correlation NN architecture
(marked with FC in the graphic). The difference between
those two is 1.8%. The improvement offered by the new
approach in comparison with the algorithm proposed in (2)
is more than 51% and more than 90% in comparison

with the classical prediction algorithms. This scenarios is
important for scheduling oprimization because highlights
that the tasks’ idle time is reduced significantly by using
the predictions.

We can conclude that the performance of last mentioned
methods is better than the firsts methods. Neural networks
are selected for prediction because they are capable of a
multi-step ahead prediction with minimum error value.
Even they are slower than other prediction methods (e.g.
regression), having a higher computation times than re-
gression, the values for errors make this method to be a
better one.

Fig. 11. Errors’ evolution for the ’idle’ parameter

5. CONCLUSIONS

The present paper describes several prediction methods
for use in LSDS and distributed system environments.
Moreover, an original contribution to prediction meth-
ods, which uses a neural network has been developed,
and its structure and functionality are explained. The
project considers time series prediction of the status of the
distributed system resources. Historical monitoring data
provided by a monitoring service is used to predict one or
more values into the future. The predictions are used in a
meta-scheduler algorithm, improving this way the resource
utilization balance. LSDS computing has become an active
research area due to the increasing number of scientific ap-
plications that are both computing and data intensive. We
also present the architecture developed for the prediction
system in this project, along with the constituent modules.
The predictions are based on historical monitoring data
provided by MonALISA monitoring system.

Simple prediction algorithms have been implemented and
analyzed as a part of this project. The algorithms are
based on classical statistical methods such as moving
average and standard deviation. Some of the algorithms
predict the next values as the moving average of the
last five values. We used simple moving average as a
prediction method, along with a restricted version of the
same algorithm, weighted and exponential moving average.
Random predictions based on the mean and the standard
deviation are also evaluated. The resulted values were
compared in time with the real measured value in order to
investigate the predictions accuracy.

Neural networks have been used with success in problems
concerning time series prediction. An artificial neural net-
work provides an efficient technique for a multi-step ahead
prediction. The behavior of resources, although sometimes
periodical, is always non-linear, which makes the classic
linear regression methods obsolete. If large amount of his-
torical data is available, a neural network is capable of dis-
covering hidden dependencies between values at fixed time
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Table 1. Average Percentage Errors (%) for One-Step Ahead Prediction

Parameter SMA EMA WMA RAND CASCOR FA FC

idle 0.10 0.12 0.10 0.10 0.02 0.01 0.01

cpu usage 6.67 7.28 6.90 8.47 6.43 6.99 5.65

load5 0.72 0.83 0.56 0.91 0.48 0.46 0.27

free mem 12.11 12.77 9.89 14.27 12.46 8.75 7.40

intervals without the need of other information. Because
of these reasons, we have also implemented a prediction
system based on a neural network. The neural network pre-
dictions have been analyzed in comparison with the simple
prediction algorithms. Predicting the future status of the
resources composing a distributed system is important in
a highly dynamic system. An optimum task scheduling
based on resources state prediction will have an immediate
effect on the overall balance.

The selection of the system that will receive a submitted
job for processing is based on the detailed information
about the available resources to match the job’s require-
ments. The prediction based meta-scheduler can signifi-
cantly improve the time necessary to schedule tasks with
dependencies. Using the predictions, we have been able to
state that the idle time of tasks with the start time in the
future can be reduced significantly. Reducing the idle time
would result in resource utilization and load balance that
are close to the optimum.

Future work will consider the optimization for multi-
steps prediction method and the possibility of tunning the
scheduling algorithm.
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