
CEAI, Vol.13, No. 4, pp. 42-50, 2011 Printed in Romania

Context-aware agents for developing AmI
applications ?

Andrei Olaru ∗ , Adina Magda Florea ∗∗

∗ Computer Science Department, University Politehnica of Bucharest,
313 Splaiul Independentei, 060042 Bucharest, Romania (e-mail:

cs@andreiolaru.ro).
∗∗ Computer Science Department, University Politehnica of Bucharest,

313 Splaiul Independentei, 060042 Bucharest, Romania (e-mail:
adina@cs.pub.ro)

Abstract: In a layered vision of Ambient Intelligence, the intelligent services layer presents to
researchers a great number of challenges, and it is especially interesting from the perspective of
Artificial Intelligence and Multi-Agent Systems. While software agents have been used before
for building AmI middleware, this paper proposes an agent-based architecture that is both
scalability-oriented and context-aware. This research is based on two previous approaches by the
authors: one dealing with context-aware information sharing in a system using self-organization
mechanisms, and the other defining an implicit representation of context by means of agent
hierarchies. In this paper, elements of both approaches are used to build an architecture in
which agents are structured in a topology that relates to several types of context, and that can
be used for context-aware information sharing and searching.

Keywords: Multi-agent system, ambient intelligence, context-awareness.

1. INTRODUCTION

Ambient Intelligence is one of the prominent future appli-
cations in the domain of IT (Ducatel et al. (2001)). It inte-
grates elements from many domains: Artificial Intelligence,
distributed and mobile computing, human-computer inter-
faces, sensor networks, and many others (Satyanarayanan
(2001)). Derived from the concept of Ubiquitous Com-
puting introduced by Weiser (1995), the term of Ambient
Intelligence was coined at the beginning of the 21st century
to describe a ubiquitous electronic environment that would
pro-actively, but sensibly and non-intrusively support peo-
ple in their daily lives (Ramos et al. (2008)).

It is difficult to talk about Ambient Intelligence with-
out mentioning context-awareness. Many systems with
applications in Ambient Intelligence implement context-
awareness as one of their core features. One of the def-
initions of context is that it is the set of environmental
states and settings that either determines an application’s
behavior or in which an application event occurs and is
interesting to the user Chen and Kotz (2000). In previous
work in the field of context-awareness there are usually
two points of focus: one is the architecture for capturing
context information; the other is the modeling of context
information and how to reason about it. However, there is
little mention of a generic way to use context information,

? This work has been supported by CNCSIS–UEFISCSU, project
number PNII–IDEI 1315/2008 and by the Sectoral Operational Pro-
gramme Human Resources Development 2007-2013 of the Romanian
Ministry of Labour, Family and Social Protection through the Fi-
nancial Agreement POSDRU/6/1.5/S/16.

when context information does not only refer to physical
conditions.

One other essential issue in AmI environments is scale.
Many implementations proposed in the literature make
considerable use of centralized components, and many
applications are only demonstrated using a small number
of devices. It is important to observe that in a real-scale
implementation of AmI, the number of devices and users
will be outstanding, much larger than the number of users
and devices (including mobile ones) in the Internet today.

This work is based on two previous approaches by the
authors, towards dealing with context-awareness in a man-
ner that scales. A central element of these approaches is
the use of software agents as building blocks for and AmI
environment (Ramos et al. (2008); El Fallah Seghrouchni
et al. (2010a)). The first approach (Olaru et al. (2010))
studied the control of the distribution of information in
a large multi-agent system, by using simple and generic
context measures to direct the spreading of information in
terms of speed, direction and extent. The second approach
(El Fallah Seghrouchni et al. (2010b)) proposed an implicit
representation for context, by means of agent hierarchies,
using the CLAIM agent-oriented programming language
(Suna and El Fallah Seghrouchni (2004)) and inspired from
the ambient calculus of Cardelli and Gordon (2000).

This paper shows how the elements in the authors’ previ-
ous approaches can be used to build a new architecture:
using the agent behavior developed in the AmIciTy project
(Olaru and Gratie (2010)), that features scaling, local
context-aware behavior and scalability, and the context-
related agent hierarchies in the Ao Dai project (El Fal-



Control Engineering and Applied Informatics 43

Table 1. Features of the systems described in Section 2: the manner of representing knowledge;
the use of ontologies; implementation of context-awareness; learning capabilities; consideration
of security and privacy-awareness; use of mobile agents; support for scalability; flexibility of the

architecture; centralized vs decentralized system.

Project Name k
n

o
w

le
d

g
e

re
p

re
se

n
ta

ti
o
n

o
n
to

lo
g
ie

s

co
n
te

x
t-

a
w

a
re

n
es

s

le
a
rn

in
g

se
cu

ri
ty

-
p

ri
v
a
cy

m
o
b

il
e

a
g
en

ts

sc
a
la

b
il
it

y

fl
ex

ib
il
it

y

ce
n
tr

a
li

ze
d

iDorm Hagras et al. (2004) - - - Yes - - ? - Yes

Spatial Agents Satoh (2004) - - - Yes Yes Yes ? - Yes

EasyMeeting Chen et al. (2004) Ont. SOUPA Yes - Yes - ? Yes Yes

SodaPop Hellenschmidt (2005) - - - - - - Yes Yes No

LAICA Cabri et al. (2005) - - - - - - Yes Yes partial

MyCampus Sadeh et al. (2005) CBR Yes Yes Yes Yes - Yes Yes Yes

AmbieAgents Lech and Wienhofen (2005) CBR Yes Yes - Yes - Yes - partial

ASK-IT Spanoudakis and Moraitis (2006) - some Yes some - - - No Yes

CAMPUS El Fallah Seghrouchni et al.

(2008)

Ont. Yes Yes some - - Yes Yes No

Dalica Costantini et al. (2008) tuples Yes - - - - - - partial

lah Seghrouchni et al. (2010b)), the result may be a multi-
agent system that spreads information across context hier-
archies, by only using local information and actions, thus
remaining context-aware and scalable.

The next section deals with related work in the field of
Ambient Intelligence, particularly with respect to context-
awareness and to the use of multi-agent systems. Sections
3 and 4 present the essential features of the AmIciTy and
Ao Dai projects, respectively. Section 5 is the main contri-
bution of the paper, presenting an architecture based on
two previous approaches. An example scenario is presented
in Section 6. The last section draws the conclusions.

2. RELATED WORK

In the field of agent-based Ambient Intelligence platforms
there are two main directions of development: one con-
cerning agents oriented towards assisting the user, based
on centralized repositories of knowledge (ontologies), and
one concerning the coordination of agents associated to
devices, and potentially their mobility, in order to resolve
complex tasks that no agent can do by itself, also consid-
ering distributed control and fault tolerance.

The first approach is closer to Intelligent User Interfaces
and local anticipation of user intentions, coming from
the field of intelligent personal assistants. For instance,
embedded agents form an AmI environment in the iDorm
implementation, by Hagras et al. (2004). Agents are used
here to manage the diverse equipment in a dormitory,
resulting in the control of light, temperature, etc. They
learn the habits of the user and rules by which to manage
those parameters

EasyMeeting, by Chen et al. (2004), is an agent-based
system for the management of a ”smart” meeting room.
It is centralized, and it manages all devices in the room
by means of reasoning on appropriate action. It is based

on the Context Broker Architecture (CoBrA) and uses the
SOUPA ontology.

MyCampus (Sadeh et al. (2005)) is a much more complex
system, in which agents retain bases of various knowledge
about their users, in what the authors call an e-Wallet.
There are also agents associated to public or semi-public
services (e.g. printers). The e-Wallet manages issues re-
lated to security and privacy. It represents knowledge using
OWL and accesses resources as Web Services. The e-Wallet
provides context-aware services to the user and learns the
user’s preferences. Other components of the system are
the Platform Manager and the User Interaction Manager,
that offer directory and authentication services in a semi-
centralized way.

Other projects that use similar approaches are ASK-IT
and DALICA, presented by Spanoudakis and Moraitis
(2006) and Costantini et al. (2008), respectively.

The second approach to agent-based AmI platforms con-
cerns solving different issues like user mobility, distributed
control, self-organization and fault tolerance, having a
more global perspective on how an AmI platform should
function.

The SpacialAgents platform (Satoh (2004)) employs mo-
bile agents to offer functionality on the user’s devices.
Whenever a device (used by a user), which is also an
agent host, enters a place that offers certain capabilities,
a Location Information Server (LIS) sends a mobile agent
to execute on the device and offer the respective services.
When the agent host moves away, the agent returns to the
server. The architecture is scalable, but there is no orien-
tation towards more advanced knowledge representation
or context-awareness, however it remains very interesting
from the point of view of mobile agents that offer capabil-
ities to the user.

The LAICA project (Cabri et al. (2005)) brings good
arguments for relying on agents in the implementation



44 Control Engineering and Applied Informatics

of AmI. It considers various types of agents, some that
may be very simple, but still act in an agent-like fashion.
The authors, also having experience in the field of self-
organization, state a very important idea: there is no need
for the individual components to be ”intelligent”, but it
is the whole environment that, by means of coordination,
collaboration and organization, must be perceived by the
user as intelligent. However, here the middleware itself is
not agent-oriented and is not distributed.

The AmbieAgents infrastructure (Lech and Wienhofen
(2005)) is proposed as a scalable solution for mobile,
context-ware information services. Context Agents man-
age context information, considering privacy issues; Con-
tent Agents receive anonymized context information and
execute queries in order to receive information that is rele-
vant in the given context; Recommender Agents use more
advanced reasoning and ontologies in order to perform
more specific queries. The structure of the agents is fixed
and their roles are set.

The CAMPUS framework (El Fallah Seghrouchni et al.
(2008)) considers issues like different types of contexts and
decentralized control. It uses separate layers for different
parts of an AmI system: context provisioning is close to the
hardware, providing information on device resources and
location, as well as handling service discovery for services
available at the current location; communication and coor-
dination manages loading and unloading agents, directory
services, ACL messaging and semantic mediation, by using
the Campus ontology; ambient services form the upper
layer, that agents can use in order to offer other services
in turn. The architecture is distributed, having only few
centralized components, like the directory service and the
ontology.

We have summarized some features that are relevant to
our work, as they are manifested by the systems that we
have reviewed above, in Table 1. It easy to observe that
different agent systems consider different aspects of Am-
bient Intelligence and adopt different approaches to their
implementation – for instance regarding centralization of
the system. It is also worth noting that few of the systems
address only the problem of the middleware, and many of
them are trying to propose a complete architecture, from
the sensing level to the user interface.

In our work, we are trying to focus only on one layer of
an Ambient Intelligence environment, and use agents for
what they are good at: reasoning, autonomy, proactivity.
We assume that the information can be provided by the
layers below, and that interfacing with the user can be
done in the layer above – we believe that applying a layered
structure is a better way to deal with the design of such a
complex system as a flexible, generic Ambient Intelligence
environment.

Ever since the first works on context-awareness for perva-
sive computing Dey et al. (1999), certain infrastructures
for the processing of context information have been pro-
posed (Hong and Landay (2001); Harter et al. (2002); Lech
and Wienhofen (2005); Henricksen and Indulska (2006);
Baldauf et al. (2007); Feng et al. (2004)), containing sev-
eral layers: sensors, processing, storage and management,
and application. This type of infrastructures are useful
when the context information comes from the environ-

ment and refers to environmental conditions like location,
temperature, light or weather. However, physical context
is only one aspect of context. Moreover, these infrastruc-
tures are usually centralized, using context servers that are
queried to obtain relevant or useful context information.

3. A MAS FOR INFORMATION SHARING

We see an Ambient Intelligence environment like a large
number of devices that serve the needs of their respective
users. The devices are mostly going to deal with informa-
tion: delivering relevant information to interested users,
aggregating, filtering and reasoning about information.
The problem that is asked is: given a certain piece of
information, how to deliver that piece of information to
the interested users – the users to which that information
is relevant? This is a problem that is addressed to the
intelligent services layer of an AmI system (the layer below
the intelligent interfaces and above network and interop-
erability, as defined by El Fallah Seghrouchni (2008)) and
can be solved by a middleware, between the lower layers of
the system and the applications that need the information.
We have named this middleware AmIciTy:Mi , as a part of
the AmIciTy Ambient Intelligence system that we are in
the process of building (see Olaru et al. (2010) and Olaru
and Gratie (2010)).

The design of the MAS that is presented in this section
started from the following idea: at realistic scale, an AmI
system will have to deal with a very large number of users
and an even greater number of devices that communicate
between each other. The implementation is based on
two elements: the use of agents and the application of
mechanisms of self-organization. In this project a structure
for individual agents was defined, that will allow them,
by means of large numbers and intense interaction, to
fulfill the global desired goal – the context-aware sharing
of information – and this by means of limited knowledge
and reasoning, and local behavior and communication.

The purpose of the system is the following: a large number
of agents is given, that have a location in space and
cover a certain rectangular area. The agents can only
communicate locally, with their neighbors. A user of the
system can insert a piece of data into the system, that
contains indications of the domains to which it is of
interest, of its importance, and of its validity. The purpose
of the system is to distribute the said piece of knowledge
among the agents in the system, so that other users – in
other locations – that are interested in the data will be
able to know it.

To provide context-awareness (i.e. providing the user with
the relevant information, in the current context) for infor-
mation sharing, four simple and generic aspects of context-
awareness have been proposed: first, space is implicitly
considered, because of the structure of the system, that
relies on local behavior and communication; second, tem-
poral context is implemented as a period of validity for
each piece of information; third, each piece of information
is related to certain domains of interest; last, each piece
of information carries a direct indication of its relevance
(estimated by the source).



Control Engineering and Applied Informatics 45

(a) step 130, Specialty

(b) step 271, Distribution of new facts

Fig. 1. In each panel, a view on the multi-agent system
is presented: each cell in the grid corresponds to an
agent and shows its specialty or if it knows contains
a certain piece of information: (a) specialty of agents,
aggregated for all domains of interest (first panel)
and for each of the domains A, B and C (next three
panels); (b) distribution of facts, 140 steps later, for
facts with Specialties related to domains A, B and C.

Context compatibility can be seen as proximity between
the two contexts – the context of the new information and
the context of agent – in terms of the aspects enumerated
above. A more detailed description of these aspects of
context-awareness, together with their influence on how
information is shared and spread through the system is
presented below:

Local behavior and interaction – leads to inherent
location awareness. New information will first reach the
agents in the area where the information was created
(e.g. where the event took place). In function of the
other aspects of context-awareness, the information will
only stay in the area or will spread further. Also, all
other measures equal, agents will give less relevance to
information related to a farther location.

Time persistence – shows for how long is the informa-
tion relevant. When its validity expires, the agents start
discarding the piece of information.

Specialty – shows how the information relates to some
domains of interest. In time, agents form their own notion
of specialty in function of the information that they have.
New information is considered more relevant if it is more
similar to the agent’s specialty, and agents share relevant
information first, and they share it with agents that are
more likely to consider it relevant. This influences the
direction in which information is spread.

Pressure – shows how important it is for the information
to spread quickly. Pressure translates into higher relevance
and the agent will treat the information with higher
priority. Also, the higher the pressure, the more neighbors
the agent will send the information to. This way, pressure
controls how quickly the information spreads.

The relevance of a certain piece of information for a certain
agent is calculated by aggregating the last three measures
above, which are associated with the information, and
also by comparing the specialty of the information to the
specialty of the agent.

Figure 1 shows some results that have been obtained, that
related especially to the direction in which information

Fig. 2. Example of an abstract logical hierarchy for the Ao
Dai project: The root Site offers a Service and also
contains another Site that contains a Device. The user
is inside the second site, and its PDA can offer him
the capabilities of two Devices and a Service.

Fig. 3. The user (and its PDA) enters the floor of a build-
ing. It uses a navigation service, an agenda service and
its screen device. On the floor there is also a screen
device. The figure presents the sequences of messages
exchanged between agents: Agenda announces a new
meeting, PDA asks a path from Navigator, which in
turn requires a larger screen – which is searched on
the floor, and found.

spreads: it is easy to see the direction of the spreading is
strongly influenced by the preexisting specialty of agents.
The other context measures also influence the spread:
higher pressure makes information spread considerably
faster; after the persistence of information expires, it
quickly disappears from the system; and, of course, the
first agents that get to know a piece of information are the
ones closer to its source.

4. THE AO DAI PROJECT

This section presents a second approach to the imple-
mentation of Ambient Intelligence. If AmIciTy:Mi deals
with the scalability of future AmI systems, the Ao Dai
project – Agent-Oriented Design for Ambient Intelligence
– studies in more detail the connection between agents
and context-awareness, in which context is represented in
a more advanced manner than in AmIciTy:Mi .

The purpose of the Ao Dai project (presented in El Fal-
lah Seghrouchni et al. (2010b)) was to demonstrate how



46 Control Engineering and Applied Informatics

an agent-based AmI system can assist the user in a sim-
ple scenario, based on the awareness of several types of
contexts.

The Ao Dai project has been implemented in CLAIM.
CLAIM, developed by Suna and El Fallah Seghrouchni
(2004), is an agent-oriented programming language that
is based on explicit declaration of agent’s characteristics:
knowledge, goals, messages, capabilities. All these compo-
nents are defined using first-order predicate logic and the
programmer can program agents by working only at this
higher level – the Java-based Sympa platform manages the
creation, execution and migration of agents.

What is more important about CLAIM is that, on the one
hand, it offers strong mobility of agents (which is made
seamless and effortless by the Sympa platform), and on
the other hand, it allows agents to be placed in a logical
hierarchy (that can span across different machines). The
idea of the Ao Dai architecture is to map the hierarchy of
agents to a hierarchy of contexts, considering physical and
computational contexts, as well as user’s preferences.

An example of such an hierarchy is presented in Figure 2:
the hierarchy of agents reflects the hierarchical structure
of spatial and computational context. Figure 3 presents
the interaction between the Ao Dai agents: the agents
communicate based on the local context. For instance,
searching for devices / services with certain capabilities
is done first in the agent’s subtree of agents, then the
agents queries its parent, which in turn searches in a
larger context. This procedure has two advantages: first,
the communication is decentralized, and the system is able
to scale; second, the first results will be found in a context
that is closer to the user.

5. A NEW APPROACH TO CONTEXT-AWARENESS

AmIciTy:Mi offers a behavior for agents that allows them
to obtain a useful global behavior by means of only local
knowledge and actions. Ao Dai offers an architecture
that allows for implicit context-awareness in a multi-agent
system. Combining the two approaches is the natural
choice. But: how would this combination look, and what
would it do?

The result that is proposed in this paper is a middleware,
as the two projects were themselves. In this middleware,
there are one or more agents associated to each device, and
one agent associated with each service. The middleware
is formed only of the agents that compose it – no other
components are needed. The devices access the middleware
by means of the agent(s) that exist on them. It is the
devices that provide information (perceptions) to the
agents, in a uniform representation – which is provided
by the interoperability layer of the AmI system – and it
is the agents that offer to the applications the potentially
relevant information – applications that execute on the
devices; the information is then used by the applications,
or presented to the users by means of the intelligent
interfaces. Figure 4 depicts this process.

Unlike in AmIciTy:Mi , the new middleware does not use
a simple topology: it will use a topology based on the ideas
in Ao Dai, where agents were placed in a hierarchy. It will,
however, use the same behavior for agents and the same

Fig. 4. The structure of the middleware, as seen from
the perspective of the devices. The ”system”, i.e. the
middleware, is actually formed of the agents that
compose it. The agents are executing on the devices,
using their communication hardware.

policies for the spreading of information, but within the
new topology.

Ao Dai uses a hierarchical topology, where agents are
placed in one or more trees of agents. This is because
CLAIM offers the possibility of working easily with agents
that are placed in hierarchies, and it is very easy to move
whole sub-hierarchies of agents. But Ao Dai considers only
two types of context: location and computational resources.
These types of context are inherently hierarchical: places
are part of larger places, and computational resources
cover certain spaces. But there are also other types of
context: temporal context, social context, and activity as
a context.

These last three types of context also have a hierarchical
aspect: time can be iteratively divided in intervals of time;
activities are formed of sub-activities; and social groups
may also have hierarchies. Moreover, activities take place
in a certain interval of time, and concern certain users,
which, by participating in the same activity, form a group.

It is clear that, in order to support more types of context,
more complex relations between agents than in Ao Dai are
necessary. We introduce the following set of relations, and
some new types of agents, that are also depicted in Figure
5:

• for spatial context – places – the Place agent (already
existing in Ao Dai as Site) and the is-in relation.
This relation can exist between subordinate Place
agents, or between Place agents and other types of
agents – like Users, Devices, Services or Activities.
For instance, when a Service agent is a child of a Place
agent, it means that it is a context-aware service that
is offered within that place (and is useful only there,
as it is specifically configured for that place). Place
agents execute on machines that are connected to the
network access points in those respective spaces.

• for computational context – devices and services
– the Device and Service agents (already existing
in Ao Dai) and several relations: executes-on for
services, controlled-by and is-in for devices. In the
case of devices, we must already break the structure of
hierarchy, and introduce multiple parents for Device



Control Engineering and Applied Informatics 47

(a) (b) (c)

(d) (e)

Fig. 5. Possible relations between agents, relative to the different types of context: spatial (a), temporal (b),
computational (c), activity (d) and social (e).

agents. When a device is not in use, it will only
have one parent, a Place or another Device, and the
relation will be is-in. However, when used, it will
become a logical child of the User agent, by means of
the relation controlled-by, while keeping the link with
its location (in the case the device does not move –
like a presentation screen).

• for temporal context – time and time intervals – the
Time interval agent and the within relation. The
within relation designates time intervals contained
by larger intervals, or Activities that take place in a
certain interval of time. Because time is continuous,
a time interval (that is relevant in relation with some
activity) may span across multiple higher-level inter-
vals. Similarly, an activity or event may happen at
regular intervals of time. For these types of complex
relations, the activity’s time interval will have as a
”main” parent (the parent of the agent) the interval
which contains the present moment. The Time inter-
val agents execute on the same machines where the
corresponding Activity agents are executing.

• for activity context, the Activity agent and the part-
of relation. The Activity agents execute on a machine
that is related to the organization of the activity, or to
the user that coordinates the activity – for activities
where multiple users take part. For the user’s personal
activities, the Activity agent is a child of the User
agent, linked by a part-of relation.

• finally, for social context, the User agent is used
to represent users of the system. The User agent
executes on the user’s PDA, or on any device that the
user is currently using. For representing relationships
between users of the system, two relations are used:
the in relation shows that the user is part of a

larger group of users – managed by a Group agent.
The connected-to relation shows that two users are
connected, without them being part of a common
group, taking part in a common activity or being in
the same place. While the in relation is hierarchical,
the connected-to relation is not.

The result of using the elements described above is both
an architecture for a context-aware middleware, and also
a way to model context. The resulting structure contains
different hierarchies – corresponding to different types of
context – that are intertwined. One may ask: Why did
we need hierarchies after all? First, because hierarchies
are easier to manage, even if now there are multiple, in-
tertwined hierarchies. Second, because, thanks to CLAIM,
agents in the sub-tree of an agent can easily move together
with their parent, and this remains true now: for instance,
if an activity changes place (e.g. moves to a different
room), when the Activity agent changes parent, the User
agents that are part-of the activity, and the Services and
Devices that the users use, move with them.

The topology presented above has an essential advantage:
the links between agents represent common context. When
an agent needs a certain piece of information, or needs a
device / service that offers a certain capability, it will first
search for it in its sub-tree of agents, then in its ”main”
parent, then in the other connections that it has. This
manner of interaction assures that the search is first done
in the context closest to the agent. When information is
disseminated (as in AmIciTy:Mi ), the agent will send it to
its connections that are potentially interested in that piece
of information. However, this time its connections are not
only related to location in space or to abstract domains
of interest, but they are also related to common context.



48 Control Engineering and Applied Informatics

Fig. 6. Structure of agents for the scenario presented in Section 6. The figure displays the names of the agents, the types
of the agents, and the relations between the agents.

If the information itself relates to a certain context, the
agent needs to send it only to the hierarchy that is related
to that context.

6. AN EXAMPLE

Take the following scenario: on Monday 22nd, there is a
Seminar in Room 400 of the Laboratory. The presenter is
Albert. One of the participants is Celia, who is not working
within the Lab, so the AmI services that exist there must
assist her to find her way to the room. At some point, the
projector that is in the room brakes down, because of a
malfunction of its cooling. At this point, Albert needs to
find another room for the presentation. Also, other people
that are giving presentations in the same room in the
following days should be announced, so they would first
check if the projector is working.

The structure of the multi-agent system is presented in
Figure 6. It uses the types of agents and the relations
from figure 5: The Seminar is an Activity that takes place
in Room 400 (which is part of the Laboratory), within
the interval 14:00-16:00 of Monday 22. The Projector is a
Device that is in the Room. Part of the Seminar there is a
Presentation, that is held by Albert, which is a User. The
User Celia also takes part in the Seminar. Since she is not
a member of the Laboratory, the agent that handles the
services offered by the Laboratory produced an instance
of the Navigator agent (a context-aware Service) that was
sent to Celia’s PDA, in order to help her reach Room 400.

Given the event described at the beginning of this section,
two things happen. First, Albert issues a search for a room

with a projector. He does this with the help of the Room
Allocator, which is a context-aware Service offered by the
Lab. This search will be sent from agent to agent, starting
from the agent Albert. The search will only be sent to
agents to which the search is relevant: the search relates
to a Room (which is a Place) and to a Projector (which
is a Device) so the search will follow only relations of
the type is-in between Places or between a Place and
a Device. Also, agents will first search in their sub-trees
before searching in their parent. When a room will be
found, the participants will move and the agents that are
concerned by the movement (Seminar, Celia, Albert, etc.)
will become part of the new room’s sub-tree of agents.

A second piece of information that will be sent through
the system will be that the Projector in Room 400 is
not working. This will be shared by Albert’s agent with
agents to which the information is considered relevant.
The information will reach the Room 400 agent, the
Laboratory agent and finally the PhD Presentation – an
Activity agent – and its organizer – Doug. Although the
connection to Doug can also be done by means of users
Celia and Benny, the information will not take this path,
because it is not relevant to them – there is no need
for those agents to have it. It may also be possible that
Benny’s agent receives the message. But as Benny is not
the presenter, his agent (being aware, according to his
internal knowledge, of Benny’s role in the activity) will
reason that this information is not relevant to Benny and
will discard it.



Control Engineering and Applied Informatics 49

7. CONCLUSIONS

In the implementation of AmIciTy:Mi a simple, local
behavior for agents was created, that allows agents, with
only very little knowledge, to share information so that,
at the global level, information reaches the agents that are
potentially interested by that piece of information.

The realization of the Ao Dai project showed was that
agents can be placed in a hierarchy that will reflect
the structure of the user’s context, making context-aware
communication and action natural and easy to implement.

Using elements of these previous approaches, this paper
presents an architecture for a multi-agent system to serve
as a layer of an AmI system. This architecture is based on
a topology of connections between agents that reflect the
relation between different types of context. An example
was presented, showing how this architecture would work,
on a simple scenario.

As future work, formal semantics for the agent topology,
as well as for the operations with it, should be developed,
as in the CLAIM language. This way it would be easy to
prove that the system cannot reach any inconsistent state
– i.e. a structure inconsistent with the presented rules –
and that information will follow the intended paths.

Implementation on a large scale system is mandatory for
validating of the architecture. Since CLAIM is based on
Java, and the Sympa platform manages the creation and
mobility of agents, as well as all their interactions, it
will be reasonably easy to deploy the system in a larger
environment. Validation will also need a more complex
scenario that the one presented in the paper.

ACKNOWLEDGEMENTS

The authors would like to thank Cristian Gratie, who par-
ticipated in the implementation of AmIciTy:Mi , Nguyen
Thi Thuy Nga and Diego Salomone, who implemented
the Ao Dai project in CLAIM, and prof. Amal El Fallah
Seghrouchni, who supervised the realization of the Ao Dai
project.

REFERENCES

Baldauf, M., Dustdar, S., and Rosenberg, F. (2007). A
survey on context-aware systems. International Journal
of Ad Hoc and Ubiquitous Computing, 2(4), 263–277.

Cabri, G., Ferrari, L., Leonardi, L., and Zambonelli, F.
(2005). The LAICA project: Supporting ambient intel-
ligence via agents and ad-hoc middleware. Proceedings
of WETICE 2005, 14th IEEE International Workshops
on Enabling Technologies, 13-15 June 2005, Linköping,
Sweden, 39–46.

Cardelli, L. and Gordon, A.D. (2000). Mobile ambients.
Theor. Comput. Sci., 240(1), 177–213.

Chen, G. and Kotz, D. (2000). A survey of context-aware
mobile computing research. Technical Report TR2000-
381, Dartmouth College.

Chen, H., Finin, T.W., Joshi, A., Kagal, L., Perich, F.,
and Chakraborty, D. (2004). Intelligent agents meet
the semantic web in smart spaces. IEEE Internet
Computing, 8(6), 69–79.

Costantini, S., Mostarda, L., Tocchio, A., and Tsintza, P.
(2008). DALICA: Agent-based ambient intelligence for
cultural-heritage scenarios. IEEE Intelligent Systems,
23(2), 34–41.

Dey, A., Abowd, G., and Salber, D. (1999). A context-
based infrastructure for smart environments. Proceed-
ings of the 1st International Workshop on Managing
Interactions in Smart Environments (MANSE’99), 114–
128.

Ducatel, K., Bogdanowicz, M., Scapolo, F., Leijten, J., and
Burgelman, J. (2001). Scenarios for ambient intelligence
in 2010. Technical report, Office for Official Publications
of the European Communities.

El Fallah Seghrouchni, A. (2008). Intelligence ambiante,
les defis scientifiques. presentation, Colloque Intelligence
Ambiante, Forum Atena.

El Fallah Seghrouchni, A., Breitman, K., Sabouret, N.,
Endler, M., Charif, Y., and Briot, J. (2008). Ambient
intelligence applications: Introducing the campus frame-
work. 13th IEEE International Conference on Engi-
neering of Complex Computer Systems (ICECCS’2008),
165–174.

El Fallah Seghrouchni, A., Florea, A.M., and Olaru, A.
(2010a). Multi-agent systems: a paradigm to design
ambient intelligent applications. In M. Essaaidi, M. Mal-
geri, and C. Badica (eds.), Proceedings of IDC’2010, the
4th International Symposium on Intelligent Distributed
Computing, volume 315 of Studies in Computational
Intelligence, 3–9. Springer. Invited paper.

El Fallah Seghrouchni, A., Olaru, A., Nguyen, T.T.N., and
Salomone, D. (2010b). Ao Dai: Agent oriented design
for ambient intelligence. In Proceedings of PRIMA 2010,
the 13th International Conference on Principles and
Practice of Multi-Agent Systems.

Feng, L., Apers, P.M.G., and Jonker, W. (2004). Towards
context-aware data management for ambient intelli-
gence. In F. Galindo, M. Takizawa, and R. Traunmüller
(eds.), Proceedings of DEXA 2004, 15th International
Conference on Database and Expert Systems Applica-
tions, Zaragoza, Spain, August 30 - September 3, volume
3180 of Lecture Notes in Computer Science, 422–431.
Springer.

Hagras, H., Callaghan, V., Colley, M., Clarke, G.,
Pounds-Cornish, A., and Duman, H. (2004). Creating
an ambient-intelligence environment using embedded
agents. IEEE Intelligent Systems, 12–20.

Harter, A., Hopper, A., Steggles, P., Ward, A., and Web-
ster, P. (2002). The anatomy of a context-aware appli-
cation. Wireless Networks, 8(2), 187–197.

Hellenschmidt, M. (2005). Distributed implementation of
a self-organizing appliance middleware. In N. Davies,
T. Kirste, and H. Schumann (eds.), Mobile Computing
and Ambient Intelligence, volume 05181 of Dagstuhl
Seminar Proceedings, 201–206. ACM, IBFI, Schloss
Dagstuhl, Germany.

Henricksen, K. and Indulska, J. (2006). Developing
context-aware pervasive computing applications: Mod-
els and approach. Pervasive and Mobile Computing,
2(1), 37–64.

Hong, J. and Landay, J. (2001). An infrastructure ap-
proach to context-aware computing. Human-Computer
Interaction, 16(2), 287–303.



50 Control Engineering and Applied Informatics

Lech, T.C. and Wienhofen, L.W.M. (2005). AmbieAgents:
a scalable infrastructure for mobile and context-aware
information services. Proceedings of the 4th Interna-
tional Joint Conference on Autonomous Agents and
Multiagent Systems (AAMAS 2005), July 25-29, 2005,
Utrecht, The Netherlands, 625–631.

Olaru, A. and Gratie, C. (2010). Agent-based information
sharing for ambient intelligence. In M. Essaaidi, M. Mal-
geri, and C. Badica (eds.), Proceedings of IDC’2010, the
4th International Symposium on Intelligent Distributed
Computing, MASTS 2010, the The 2nd International
Workshop on Multi-Agent Systems Technology and Se-
mantics, volume 315 of Studies in Computational Intel-
ligence, 285–294. Springer.

Olaru, A., Gratie, C., and Florea, A.M. (2010). Context-
aware emergent behaviour in a MAS for information
exchange. Scalable Computing: Practice and Experience
- Scientific International Journal for Parallel and Dis-
tributed Computing, 11(1), 33–42. ISSN 1895-1767.

Ramos, C., Augusto, J.C., and Shapiro, D. (2008). Ambi-
ent intelligence - the next step for artificial intelligence.
IEEE Intelligent Systems, 23(2), 15–18.

Sadeh, N.M., Gandon, F.L., and Kwon, O.B. (2005). Am-
bient intelligence: The MyCampus experience. Technical
Report CMU-ISRI-05-123, School of Computer Science,
Carnagie Mellon University.

Satoh, I. (2004). Mobile agents for ambient intelligence. In
Proceedings of Massively Multi-Agent Systems I, First
International Workshop, MMAS 2004, Kyoto, Japan,
December 10-11, 2004, Revised Selected and Invited
Papers, volume 3446 of Lecture Notes in Computer
Science, 187–201. Springer.

Satyanarayanan, M. (2001). Pervasive computing: Vision
and challenges. IEEE Personal communications, 8(4),
10–17.

Spanoudakis, N. and Moraitis, P. (2006). Agent based
architecture in an ambient intelligence context. Pro-
ceedings of the 4th European Workshop on Multi-Agent
Systems (EUMAS’06), Lisbon, Portugal, 1–12.

Suna, A. and El Fallah Seghrouchni, A. (2004). Program-
ming mobile intelligent agents: An operational seman-
tics. Web Intelligence and Agent Systems, 5(1), 47–67.

Weiser, M. (1995). The computer for the 21st century.
Scientific American, 272(3), 78–89.


