
CEAI, Vol.14, No.1, pp. 14 -21, 2012                                                                                                                Printed in Romania 
 

Discrete Sliding-Mode Control of Inventory Systems with Deteriorating Stock 
and Remote Supply Source 

 
P. Ignaciuk*, A. Bartoszewicz** 



Institute of Automatic Control, Technical University of Łódź  
Stefanowskiego 18/22 St., 90-924 Łódź, Poland  

(e-mail: *przemyslaw.ignaciuk@p.lodz.pl,**andrzej.bartoszewicz@p.lodz.pl) 

Abstract: In this paper we propose control-theoretic approach for the design of inventory management 
policy for systems with perishable goods. We consider periodic-review systems with uncertain, time-
varying demand. The challenging issue in this type of systems is to achieve high service level with 
minimum costs for arbitrary demand pattern when the stock replenishment orders are procured with 
nonnegligible delay. In contrast to the classical, stochastic approaches, we employ a formal design 
methodology based on discrete sliding-mode (DSM) control. The proposed DSM controller with the 
sliding plane selected for a dead-beat scheme ensures the maximum service level (full demand 
satisfaction from the readily available resources) with smaller holding costs and reduced order-to-demand 
variance ratio as compared to the classical order-up-to policy. 
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1. INTRODUCTION 

An appropriate inventory management policy is crucial for 
efficient operation of production and logistic systems 
(Zipkin, 2000). Due to the similarity between the considered 
class of systems and engineering processes, it is a natural 
choice to apply control-theoretic methods in the design and 
analysis of strategies governing the flow of goods. However, 
it follows from the extensive review papers documenting the 
research work in the field performed in the last four decades 
(Nahmias, 1982; Rafaat, 1991, Goyal and Giri, 2001; Ortega 
and Lin, 2004; Sarimveis et al., 2008; Karaesmen et al., 
2008) that certain areas of inventory control are not 
sufficiently addressed at the formal design level. The 
deficiency of application of systematic control approaches 
concerns in particular a large and very important class of 
problems related to the management of perishable 
commodities. Indeed, many products, such as food, drugs, 
gasoline, etc., lose market value over time, deteriorate due to 
the changes in the chemical structure or even become 
obsolete. The primary difficulty in developing control 
schemes for perishable inventories is the enlarged state space 
required for conducting the exact analysis of product 
lifetimes. The situation aggravates when the product demand 
varies rapidly in subsequent review periods and inventories 
are replenished with a nonnegligible delay, which frequently 
happens in modern supply chains. In such circumstances, in 
order to meet the service level constraints and at the same 
time keep stringent cost discipline, when placing an order it is 
necessary not only to account for the demand during 
procurement latency but also for the stock deterioration in 
that time. 
There are very few successful design examples based on 
formal control methods for perishable inventory systems. In 

paper (Andijani and Al-Dajani, 1998), a linear-quadratic 
optimization is performed for an undelayed process. 
Rodrigues and Boukas (2006) developed a piecewise affine 
control law for a production system with deteriorating on-
hand inventory and zero lead-time. On the other hand, for a 
continuous-time system with uncertain processing time and 
delay in control Boukas et al. (2000) proposed a robust 
controller obtained by minimizing an H-norm. However, the 
implementation of the strategy presented in that paper 
requires numerical procedures for calculating the control law 
parameters, which limits its analytical tractability. 
In this paper, we apply control-theoretic methodology to 
develop a new supply policy for periodic-review inventory 
systems with perishable goods. In the considered systems, the 
on-hand stock at a goods distribution center is used to fulfill 
unknown, time-varying demand placed by retailers (or 
customers). The stock deteriorates exponentially at a constant 
rate and is replenished with delay from a remote supply 
source. We assume that the lead-time delay can span multiple 
review periods. The design objective is to obtain high service 
level of the (unknown) customers’ demand with minimum 
on-hand inventory. For this purpose, we propose discrete-
time sliding-mode (DSM) control, which is well known to be 
efficient and robust regulation technique (Bandyopadhyay 
and Janardhanan, 2006; Milosavljević et al., 2006). Since the 
proper choice of the switching plane is the key part of the 
design of sliding-mode controllers (Bandyopadhyay et al., 
2009, Bartoszewicz and Nowacka-Leverton, 2009, Ignaciuk 
and Bartoszewicz, 2011), in this work, we determine the 
plane parameters for a dead-beat scheme. In this way we 
obtain fast response to the changes in demand and the 
minimum stock level. In contrast to other solutions reported 
previously in the literature for perishable inventory systems, 
we adopt a formal design approach based in part on our 
previous results reported for the traditional inventory systems 
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with nondeteriorating stock (Ignaciuk and Bartoszewicz, 
2010a, b), and obtain the controller in a closed-form. The 
closed-form solution allows us to define a number of 
advantageous properties of the proposed control scheme. In 
particular, we show that under the proposed policy the 
available stock is never entirely depleted despite 
unpredictable demand variations, which guarantees full 
demand satisfaction and the maximum service level. We also 
specify a precise value of the storage space which should be 
reserved at the distribution center to always accommodate all 
the incoming shipments. This means that the potential 
necessity of expensive emergency storage outside the 
company premises is eliminated. Finally, we show that the 
order quantities generated by the presented controller are 
always nonnegative and bounded, which is required from the 
practical point of view. 
The paper is organized as follows. First, in Section 2, the 
model of the considered inventory system with deteriorating 
stock and remote supply source is presented. Next, in 
Section 3, the design procedure is conducted, and properties 
of the obtained control law are discussed. The properties are 
illustrated in a numerical example described in Section 4. 
Finally, we provide conclusions in Section 5. 

2. PROBLEM FORMULATION 

We analyze the inventory system, faced by unknown, 
bounded, time-varying demand, in which the stock is 
replenished from a remote supply source. Such setting, 
illustrated in Fig. 1, is frequently encountered in production-
inventory systems where a common point (distribution 
center), linked to a factory or external, strategic supplier, is 
used to provide goods for another production stage or a 
distribution network. The task is to design a stable control 
strategy which will minimize lost service opportunities 
(occurring when only part of the imposed demand can be 
satisfied from the stock available at the distribution center). 
The design procedure should explicitly consider the delay 
between placing of an order at the supplier and goods arrival 
at the center, and the stock reduction of perishable items 
during this lead-time delay. 

2.1  System Model 

The model of the analyzed periodic-review inventory system 
is illustrated in Fig. 2. The stock replenishment orders u(·) 
are issued at regular intervals kT, where T is the review 
period and k = 0, 1, 2,... . The order quantity is calculated on 
the basis of the current stock level y(kT), the stock reference  
 

value yref and the orders history. Each non-zero order placed 
at the supplier is realized with lead-time Lp > 0 assumed to be 
a multiple of the review period, i.e. Lp = npT, where np is a 
positive integer. The saturating integrator in the internal loop 
represents the operation of accumulating the stock of 
perishable goods characterized by decay factor σ. 
The imposed demand (the number of items requested from 
inventory in period k) is modeled as an a priori unknown, 
bounded function of time d(kT), 

  max0 .d kT d   (1) 

Notice that this definition of demand is quite general and it 
accounts for any standard distribution typically analyzed in 
the considered problem. If there is a sufficient number of 
items in the warehouse to satisfy the imposed demand, then 
the actually met demand h(kT) (the number of items sold to 
the customers or sent to the retailers in the distribution 
network) will be equal to the requested one. Otherwise, the 
imposed demand is satisfied only from the arriving 
shipments, and the additional demand is lost (we assume that 
the sales are not backordered, and the excessive demand is 
equivalent to a missed business opportunity). Thus, we may 
write 

    max0 .h kT d kT d    (2) 

For the considered system with perishable inventory the stock 
balance equation takes the following form 

       1 ,Ry k T y kT u kT h kT       (3) 

where uR(kT) is the order received in period k and ρ = 1 – σ 
represents the fraction of the stock which remains in the 
warehouse when inventory deteriorates at rate σ. For 
instance, if σ = 0.05, then 5% of the stock perishes in each 
review period and ρ = 0.95 or 95% of the stock remains. We 
assume that the warehouse is initially empty, i.e. y(kT) = 0 for 
k < 0, and the first order is placed at kT = 0. Consequently, 

     
1 1

1 1

0 0

.
k k

k j k j
R

j j

y kT u jT h jT 
 

   

 

    (4) 

Due to the lead-time delay the first order arrives at the 
distribution center in period np, and y(kT) = 0 for k ≤ np. We 
assume that the goods arrive at the distribution center new 
and deteriorate while kept in the on-hand stock. Taking into 
account the initial condition y(0) = 0 and the fact that 
uR(kT) = u[(k – np)T], the stock level for any k  0 may be 
calculated from the following equation 

 
 

Fig. 1.  Inventory system with a strategic supplier. 
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Moreover, since u(kT) = 0 for k < 0, we can write 

     
1 1

1 1

0 0

,
p

p

k n k
k n j k j

j j

y kT u jT h jT 
  

    

 

    (6) 

which provides a closed-form expression for the on-hand 
stock level in the considered periodic-review inventory 
system with perishable goods. In order to save on notation in 
the remainder of the paper we will use k as the independent 
variable in place of kT. 

2.2  State-Space Representation 

In order to adapt formal design approach, it is convenient to 
represent the considered inventory system in the state space. 
We propose the following state-space representation 

       
   

1 ,

,T

k k u k h k

y k k

   



x Ax b v

q x
 (7) 

where x(k) = [x1(k) x2(k) ... xn(k)]T is the state vector with 
x1(k) = y(k) representing the stock level in period k and 
xj(k) = u(k – n + j – 1) for any j = 2, ... , n equal to the delayed 
input signal u(·); A is n  n state matrix, b, v, and q are n  1 
vectors 
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, , , ,

0 0 0 1 0 0 0
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
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 (8) 

and the system order n = np + 1 = Lp/T + 1 depends on review 
period T and lead-time Lp. The desired system state is defined 
as 
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dx     (9) 

where yref denotes the reference stock level. Consequently, 
the control objective is to stabilize the first state variable (the 
on-hand stock) at the level yref. Since the goods perish at the 
rate σ = 1– ρ while kept in the warehouse, in order to 
maintain the on-hand stock at the desired level once yref is 
reached, it needs to be refilled from the incoming shipments 
at the rate σyref. Therefore, using (3), all the state variables 
which represent the in-bound shipments x2, ..., xn, should 
converge to σyref once y(k) = yref, precisely as specified in (9). 
In a latter part of the paper we develop a control strategy 
which meets these design objectives. We will also show how 
to choose a suitable reference stock level such that a number 
of advantageous properties related to handling the flow of 
goods is achieved. 

3. PROPOSED INVENTORY POLICY 

In this section, we design a new supply policy for the 
considered inventory system with perishable goods. We 
adopt a formal approach based on the theory of discrete 
sliding-mode control. First, the design procedure is 
conducted, and the control law is presented a closed-form. 
Afterwards, the important properties of the obtained 
controller related to the flow of goods are formulated, and 
strictly proved. 

3.1  Sliding-Mode Controller Design 

Let us define the system error as 

   .k k de x x  (10) 

We introduce the sliding hyperplane described by the 
following equation 

    0,Ts k k c e  (11) 

 
 

 
 

Fig. 2.  System model. 
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where cT = [c1  c2 …  cn] is the vector describing the sliding 
plane such that cTb ≠ 0. Substituting (7) into equation 
cTe(k + 1) = 0, the following feedback control law can be 
derived 

     1
.T Tu k k


   dc b c x Ax  (12) 

Using (8) we can rewrite (12) as 

   

   

1
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                               .

n
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


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
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 
 
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 




 (13) 

It is clear from (13) that the controller properties will be 
determined by an appropriate choice of the sliding plane 
parameters c1, c2, ..., cn. Since typically in inventory control it 
is favorable to provide fast reaction to the changes in market 
conditions, we intend to find such parameters of the plane 
which will allow for the error elimination in the smallest 
number of steps after a demand surge (or decline). Thus, we 
opt for dead-beat control. 
The closed-loop state matrix Ac = [In – b(cTb)–1cT]A with 
control (13) applied is determined as 

11 1 2
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,
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n
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

 
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
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



 (14) 

and its characteristic polynomial as 

 
1 21 2 3 1 2

det

... .n nn n

n n n

z

c c c c c c
z z z z

c c c

  



  
    

n cI A

 (15) 

In order to obtain a dead-beat controller, det(zIn – Ac) should 
be equal to zn, which is satisfied when 

1 2 1 2 3 1 2,  ,...,  ,  .n n n nc c c c c c c c          (16) 

Having solved recursively this set of equations we obtain the 
following vector describing the parameters of the sliding  
plane 

1 2 3 1 .T n n n
nc        c   (17) 

 
 
 
Substituting (17) into (13), we get the control law 

     1
1

2

.
n

n n j
ref j

j

u k y x k x k   



    (18) 

From (8) the state variables xj (j = 2, 3, ..., n) may be 
expressed in terms of the control signal generated at the 

previous n – 1 samples as xj(k) = u(k – n + j – 1). Since 
x1(k) = y(k) and n = np + 1, we obtain 

     
1

1 .p

p

k
n k j

ref
j k n

u k y y k u j 


 

 

     (19) 

3.2  Properties of the Proposed Inventory Policy 

Further in this section the properties of the proposed 
inventory policy will be defined in a lemma and three 
theorems. The lemma and the first theorem show that the 
order quantities established by the policy are always 
nonnegative and bounded, which is a crucial requirement for 
the practical implementation of an inventory management 
scheme. The second proposition specifies the warehouse 
capacity which needs to be provided to always accommodate 
the on-hand stock and the incoming shipments. Finally, the 
third theorem indicates how to select the reference stock 
value in order to ensure the maximum service level. 
First, notice that u(0) = yref. Afterwards, for k ≥ 1, the control 
signal satisfies the relation defined in the following lemma. 
Lemma: If the proposed inventory policy is applied, then for 
any k ≥ 1 

     11 1 .pn

refu k y h k       (20) 

Proof: Substituting (6) into (19), we get 

 

   

 

   

1 1
1 1 1

0 0

1

1 1
11 1

0 0

          

          

      .

p

p p

p

p

ref

k n k
n k n j k j

j j

k
k j

j k n

k k
nk j k j

ref
j j

u k y

u j h j

u j

y u j h j

  



   

  
     

 




 

 
   

 



 
  

  



  

 



 

 (21) 

For k = 1, it follows immediately from (21) that 

         1 11 0 0 1 0 ,p pn n

ref refu y u h y h           (22) 

which shows that the lemma is indeed satisfied for k = 1. Let 
us assume that (20) is true for all integers up to some l > 1. 
Using this assumption, from (21), the order quantity 
generated in period l + 1 can be expressed as 
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Since l is an arbitrary positive integer, we conclude that (20) 
actually holds for any integer k ≥ 1. This ends the proof of the 
lemma. � 
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Theorem 1: The order quantities generated by the proposed 
policy are always bounded, and for any k ≥ 0 the ordering 
signal satisfies the following set of inequalities 

  1

maxmax , .pn

ref ref refy u k y y d         (24) 

Proof: It follows from the algorithm definition (19) that 
u(0) = yref, which means that the theorem is satisfied for 
k = 0. On the other hand, since 0  h(·)  dmax and ρ = 1 – σ, 
we get from the lemma that for any k > 0 

  1

max .pn

ref refy u k y d       (25) 

This ends the proof. � 
The practical considerations of inventory management in real 
systems dictate the requirement of ensuring finite warehouse 
capacity which should be reserved at the distribution center to 
accommodate the stock. The next theorem demonstrates that 
the on-hand stock never exceeds the reference value. This 
means that in order to provide storage space for the goods at 
the center, it suffices to assign the warehouse of capacity yref. 
Theorem 2: The order quantities generated by the proposed 
policy are always bounded, and for any k ≥ 0 the ordering 
signal satisfies the following inequality 

  .refy k y  (26) 

Proof: The warehouse at the distribution center is empty for 
any k ≤ np = n – 1. Hence, it suffices to show that the 
proposition is satisfied for any k ≥ n. Let us assume that for 
some integer l ≥ n, y(l) ≤ yref. We will demonstrate that the 
theorem is also true for l + 1. Using the inventory balance 
equation (3), the stock level in the l + 1 period can be 
expressed as 
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Applying (21), we get 
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Using (6) we note that the term in the square brackets in (28) 
equals y(l). Thus, we get 
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Since h(·) is always nonnegative, y(l + 1) ≤ yref. Using the  

principle of the mathematical induction we conclude that the 
proposition is valid for any review period k ≥ 0. This 
completes the proof. � 
It comes from Theorem 2 that if for the considered inventory 
system the warehouse of size yref is assigned at the 
distribution center, then all the incoming shipments can be 
stored locally, and any cost associated with emergency 
storage is eliminated. Apart from the efficient warehouse 
space management, a successful inventory control strategy in 
modern supply chain is expected to achieve high service 
level. The proposition formulated below shows how the 
reference stock level should be selected so that all of the 
demand imposed on the distribution center is satisfied from 
the readily available resources, and the cost of the lost sales is 
reduced to zero. 
Theorem 3: If the proposed inventory policy is applied, and 
the reference stock satisfies 

max
0

,
pn

j
ref

j

y d 


   (30) 

then for any k  np + 1 the stock level is strictly positive. 
Proof: It follows from (2) that the realized demand is always 
upper bounded, i.e. for any integer k ≥ 0 the inequality 
h(k) ≤ dmax holds. Consequently, using (28) and the theorem 
assumption (30) we have for k ≥ np + 1 
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 (31) 

 
This completes the proof of Theorem 3. � 
The discussed properties of the proposed inventory control 
policy will be illustrated in numerical tests described in 
Section 4. 

4. NUMERICAL EXAMPLE 

The properties of the proposed policy (19) are verified in a 
series of simulation tests. The system parameters are chosen 
in the following way: review period T = 1 day, lead-time 
delay Lp = npT = 7 days, inventory decay factor σ = 0.08, 
which implies ρ = 1 – σ = 0.92, and the maximum daily 
demand at the distribution center dmax = 60 items. The 
simulations are run for two demand patterns illustrated in 
Fig. 3. The first pattern (I) reflects abrupt changes in a 
seasonal trend, whereas the second one (II) represents the 
stochastic setting of normally distributed demand with mean 
equal to 30 items and standard deviation equal to 20 items. In 
order to ensure that all of the imposed demand is realized 
from the readily available resources, according to (30), the 
reference stock level should be set bigger than 365 items. We 
select yref = 370 items. 
Performance of DSM controller (19) is compared with the 
classical order-up-to (OUT) inventory policy. The OUT 
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policy can be synthesized in the following way (see e.g. 
(Sarimveis et al., 2008)) 

     OUT OUT ,u k y y k k    (32) 

which means to order up to a target level yOUT whenever the 
total stock – equal to the on-hand stock plus open orders Ω(·) 
– drops below yOUT. Two different settings of yOUT are 
considered: in the first simulation (curve (b) in the graphs) it 
is adjusted to achieve the same service level as the DSM 
policy, whereas in the second one (curve (c) in the graphs) 
the order-up-to level is set such both controllers result in the 
identical storage space assignment. Thus, for the OUT policy 
we choose the following values of yOUT: in simulation (b) it is 
set as 630 items, and in simulation (c) it is adjusted to 
380 items. 
The orders generated by the DSM controller (a) and the 
classical inventory policy (b) and (c) are shown in Fig. 4, and 
the on-hand stock in Fig. 5. It is clear from the graphs that the 
proposed controller quickly responds to the sudden changes 
in the demand trend without oscillations or overshoots (I), 
and reduces oscillations in case (II). Moreover, the stock does 
not increase beyond the warehouse capacity, and it never 
drops to zero after the initial phase, which implies the 100% 
service level. The OUT policy exhibits oscillations and 
requires bigger storage space to accommodate the stock to 
achieve the same service level (curve (b) in Fig. 5), which 
leads to increased holding cost. On the other hand, if the 
safety stock level is reduced for the OUT policy to maintain 
the same storage space as the one imposed by our controller, 
the OUT service level decreases to 85% (demand (I)). In that 
case, large oscillations appear in the ordering signal 
generated by the OUT policy leading to the bullwhip effect, 
which is avoided by our scheme. 
Figure 6 shows the evolution of the sliding variable 
s(k) = cTe(k). The vector describing the sliding plane 
parameters is determined (with cn = 1) as 

 0.56 0.61 0.66 0.72 0.78 0.85 0.92 1 .T c  (33) 

We can see from the graph that s(·) immediately decreases 
from its initial value s(0) = 370 items to a relatively narrow 
band s[0, 34 items) and then always remains in this band, 
which constitutes a clear evidence of a properly established 
sliding motion in discrete-time domain. 

5.  CONCLUSIONS 

In this paper, a new supply policy for periodic-review 
inventory systems with deteriorating stock was designed 
using strict control-theoretic methodology. The proposed 
policy based on sliding-mode dead-beat control provides fast 
reaction to the changes in market conditions and stable 
system operation for arbitrary lead-time. It also guarantees 
that all of the demand is satisfied from the on-hand stock, 
thus eliminating the risk of missed service opportunities and 
the necessity for backorders.  
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Fig. 3.  Demand at the distribution center: I – seasonal trend, II – stochastic pattern (normal distribution with 
mean = 30 items and standard deviation = 20 items). 
 

 
Fig. 4.  Order quantities: a) policy (19), b) OUT policy with yOUT = 630 items, c) OUT policy with yOUT = 380 items. 
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Fig. 5.  Stock level: a) policy (19), b) OUT policy with yOUT = 630 items, c) OUT policy with yOUT = 380 items. 
 

 
 

Fig. 6.  Sliding variable. 
 


