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Abstract: Active ranging sensors are the most popular sensors in mobile robotics. One of them, laser rangefinder, 
has many advantages over other ranging sensors. Despite its considerably high costs, it is a very accurate, reliable 
and high-speed sensor. Data from laser rangefinder can be used in many ways. This paper shows some techniques 
that can be useful in solving tasks such as localization, environmental mapping or navigation. Our approach is based 
on data pre-processing, using a raw filter as well as a smooth filter. Raw filter allows for reduction of missing and 
invalid measurements and smooth filter smoothes up the data, so the shape of obstacles can be captured more 
precisely. In this manner, modified data can be used in further tasks, two of which are presented here: detection of 
extremes and environmental mapping. Detection of extremes covers corners and discontinuities detection. The result 
of environmental mapping is a global metric map of the environment. Finally, a short analysis of our future work is 
presented.  
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

1. INTRODUCTION 

The principle of laser rangefinder is well known (Siegwart 
(2004)). Laser rangefinders can be used in mobile robotics in 
many different ways. Their properties such as good 
measurement precision and accuracy make them very 
effective in range measurement, so they can be used in any 
tasks that are being solved in mobile robotics. It will be 
shown, how data from laser scanner can be used in mobile 
robot localization and navigation, the two most important 
objectives of mobile robotics. It is important to say, that 
despite many positive qualities, laser rangefinder has some 
limitations (Siegwart (2004)). The first limitation is that most 
laser rangefinders are planar. This means that obstacles or 
other essential parts of the environment below or above the 
measurement plane are not detectable (i.e. stairs). The second 
limitation results from the nature of transmitted energy. Laser 
rangefinder is not able to detect optically transparent 
materials. Moreover, the transmitted light reflects from small 
dust particles, therefore some measurements should be 
invalid. In addition, measuring against dark and distant 
objects has lower accuracy. The third limitation is based on 
modulation of transmitted signal. For single-valued distance 
measurement the wave-length of transmitted signal is limited, 
so that it restricts the measuring range of the laser 
rangefinder. Despite these drawbacks, it is a very efficient 
and accurate range finding sensor. 

Laser rangefinders have multiple applications in mobile 
robotics. They can be used for object tracking (Sasaki (2009), 
Brscic (2006)), obstacle avoidance (Negishi (2004)), feature 
extraction (Premebida (2005), Ueda (2006)), map building or 
self-localization (Lu (1997), Bahari (2008)). With additional 

hardware, laser rangefinder can be used for surface scanning 
or 3D modeling.  

The aim of this article is to present a method that uses laser 
rangefinder for feature extraction and map building. A brief 
outline of the solution for self-localization is also provided.  

The solution we propose does not give better results 
compared to other solutions, but the computational demands 
are much lower. Therefore, it is possible to use this method 
with a cheaper hardware or in tasks that require that results 
are obtained as quickly as possible. This has been conformed 
also by Typiak (Typiak (2008)), Bahari (Bahari (2008)) and 
Brsic (Brscic (2006)). Another positive effect of this fast 
algorithm is that it allows for the mobile robot to move faster 
without limiting precision or safety. In our experiments, the 
results of the proposed algorithms were accurate up to the 
velocity of 0,5m/s.  

These algorithms can also be used as a first step for line 
extractor methods (Borges (2004), which once again 
confirms that the use of methods based on simple logic 
is much more efficient  in real time applications, than the use 
of methods based on highly computationally demanding 
mathematical solutions.  

The results of the proposed algorithms could be refined 
further, using certain statistical methods, such as 
incorporating a probabilistic model of laser rangefinder.  

2. DATA PREPROCESSING 

Due to the limitations of laser rangefinder (Everett (1995)) 
mentioned above and its mechanical assembly on mobile  
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robot, measured data must be modified. We used laser 
rangefinder Hokuyo UTM-30LX [Communication Protocol]. 
Measuring range of this sensor is from 0,1m up to 30m 
(guaranteed) with angular resolution of 0,25°, detection angle 
270° and measuring resolution 1mm. The sensor is mounted 
on Indoor Mobile Robot as can be seen in Fig 1.  

Fig. 1 Laser rangefinder Hokuyo UTM-30LX (detail in left 
upper corner) mounted on Indoor Mobile Robot. 

In mobile robot localization and navigation, the coordinate 
systems of mobile robot and sensor must be identical. The 
construction of the robot and the detection angle of the laser 
rangefinder enable simple matching. Each complete scan 
made by the laser rangefinder contains 1080 entries which 
represent a 270° angle. It means that some parts of the scan 
"see" the construction of the robot. In our case this 
construction represents the front part of the body of the robot 
that has flat surface. This property can be utilized and that is 
why a simple function can compute angle difference between 
the sensor’s coordinate system and the robot’s coordinate 
system. Left and right edge of the robot’s construction can be 
located in the scan, i.e. how many entries represent the 
robot’s construction between the left and right edge of the 
scan. This difference represents angle displacement between 
the coordinate system of the laser rangefinder and that of a 
mobile robot: 
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where rd  and ld  is number of entries representing robot 

from right and left edge of the scan, i  is index of entry 

(measurement), id  is measured distance and   is angle 

displacement. Afterwards, each single entry from data array 
is shifted by this displacement. 

After data shifting, filtering of data must be applied. We used 
two types of filters: raw filter and smooth filter (Pásztó 
(2010)).  

Raw filter eliminates missing and invalid measurements. 
Usually, there are some error messages in the data. They can 
be considered as missing or invalid measurements. Raw filter 
eliminates these invalid measurements. At first, values from 
the interval <min_res;max_res> are set to zero. The values 
min_res and max_res specify the minimal and maximal valid 
measurement derived from the guaranteed measurement 
range. In our case, parameter min_res is equal to 190mm and 
parameter max_res is equal to 30000mm. If a data sequence 
of specified length contains a number of invalid 
measurements lesser than value max_var, then raw filter 
approximates the missing data in the sequence. The aim of 
this step is to increase the consistence of the data. The value 
max_var represents the maximum number of invalid or 
missing measurements, that will be replaced in the data 
sequence. For the data replacement, an index of data 
development ahead of missing data is calculated: 
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where i  is index of data, vi  is index of last valid data ahead 

of missing data, n  is number of valid data used  in 

calculation (i.e. length of data sequence) and id  is data itself 

(i.e. measured distances). The index of data development is 
an integer number. The specification of n depends on 
environment’s characteristics. If the environment is 
dynamically changing or contains a great number of objects, 
n  must be a small number, as the index of data must 
represent only a small section of the surroundings of the 
missing data. On the contrary, if the environment is static or 
contains few objects, n  can be bigger. In this case, the index 
of data must represent a bigger section of the surroundings of 
the missing data, so it can represent parts of objects in the 
environment.  

Each entry of the missing data is then replaced as the sum of 
the last valid measurement and the corresponding multiple of 
the index of data development di: 
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where vd  corresponds to last valid data, k  is relative 

position of md  and dd  is the index of data development.  

The principle of data approximation can be explained on a 
simple example. Let the data sequence contains: 

 823,819,815,0,0,0,805,803,800d   

It is clear, that zeros in the data sequence represent invalid 
measurements. In our example, the index of data 
development is calculated as follows: 
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Missing data are then derived from the last valid 
measurement and the index of data development. In our 
example, modified data: 

 823,819,815,814,811,808,805,803,800'd   

 

Fig. 2. Example of raw data and data filtered by raw filter. 

Smooth filter performs small corrections in two steps.  

First step divides data into appropriate segments (Fig. 3). A 
segment is defined as smooth sequence of data differing from 
zero that is logically connected. In ideal case, every segment 
in a scan represents one object. Usually, one segment 
represents one logical part of the environment. Heuristic 
parameter segmentDistance defines maximum distance of 
two consequent measurements in a segment. Value of this 
parameter depends on the shapes of objects in environment. 
If there are many sharp-edged objects, segmentDistance 
should be bigger than in an environment with smooth-edged 
objects. In our experiments, segmentDistance equal to 
100mm was used. 

 

Fig. 3. Data segmentation.  

Second step consists of data smoothing by applying a simple 
moving average technique on each segment (Fig. 4). The 
simple moving average technique is defined as the 
calculation of average value in specific number of period - 
n : 

n

d...d
SMA n1 

 ,  (4) 

where n1 P,...,P  stands for measured values (i.e. measured 

distances) and n  is number of periods.  

 
a) 

 
b) 

Fig 4. Example of data: a) filtered by raw filter b) filtered by 
raw and smooth filter 
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3. DETECTION OF EXTREMES 

For detection of extremes in the environment, data divided 
into segments are used, just as in data smoothing. Segments 
of short total length (i.e. counted as a number of measured 
distances) are neglected. Our data analysis proves that a 
significant environment mark (i.e. extreme) can be detected 
as local minimum or local maximum in a segment. For this 
purpose function Extr (Balda (2006)) was used. This function 
returns the placement of local extremes in a data sequence. 
The output of the function Extr divides segments into smaller 
sub-segments. Data in these sub-segments are either 
increasing or decreasing. If  data in the sub-segment are 
increasing, then each measured distance in this sub-segment 
is equal to or bigger than the preceding one. Vice versa, if  
data in the sub-segment are decreasing, then each measured 
distance in this sub-segment is equal to or smaller than the 
preceding one: 
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where ins  is increasing sub-segment, des  is decreasing sub-

segment and id  are measured distances. Local extremes are 

located on places of sub-segment type alternation. In this 
way, two sets of extremes are obtained (Fig. 5). First set 
defines places of local minimums and second set defines 
places of local maximums.  

Fig. 5. Examples of sub-segments, local maximum and local 
minimum in measured data. 

For usage in mobile robotics, only significant extremes (e.g. 
corners or gaps) in the environment are important. Therefore, 
the function ExtremeProcessing is introduced. This function 
removes non-significant extremes from the set of extremes. 
Local extremes divide particular segments into a large 
number of sub-segments. The vector of each sub-segment is 
defined by its length and angle in global coordinate system:  
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where  BB y,x  are coordinates of the starting point of the 

vector,  and  EE y,x  are coordinates of the ending point of 

the sub-segment.  

The absolute value of the relative angle of two consequent 
vectors defines the significance of the extreme and can be 
calculated: 

21  .  (7) 

If this angle is bigger than minAngle and smaller than 
maxAngle, the extreme is significant (Fig. 7). In our case, 
minAngle is equal to 40° and maxAngle is equal to 140°. It is 
clear, that we focused on searching corners.  

 

Fig. 6. Non-significant extreme (note: scaling factor of x and 
y axis is different) 

Fig. 7. Significat extreme (note: scaling factor of x and y axis 
is different). 

 



54                                      CONTROL ENGINEERING AND APPLIED INFORMATICS 
 

Finally, significant extremes are classified into real extremes 
and auxiliary extremes (Fig. 8). Auxiliary extremes are 
defined as a boundary in measured distances which are bigger 
than the heuristically defined parameter segmentDistance: 

tancesegmentDisddtancesegmentDisddSE,he:he 1hehe1hehe  

  (8)  

where he  is auxiliary extreme, SE  is set of extremes and 

hed  is the distance measured at position of auxiliary 

extreme. We proposed SegmentDistance equal to 100mm. 
The auxiliary extreme indicates that the obstacle at a given 
location probably continues. That is why it can be stated that 
the detected adjacent extreme is real (e.g. corner). Auxiliary 
extremes can be utilized as places of interest that must be 
explored by a robot.  

 

Fig. 8. Classification of extremes. 

4. ENVIRONMENTAL MAPPING WITH LASER 
SCANNER 

There are four assumptions defined in our laser rangefinder 
environmental mapping: 

1. Robot starts its activity at coordinates  0,0,0  and 

the coordinate system of the robot is defined as 
right-handed. This means, that x and y coordinate of 
the robot is equal to zero and the robot is oriented in 
positive  x-direction.  

2. The map of environment must be orthogonal, like 
maps used by humans.  

3. Environment map is a global metric map.  

4. Laser rangefinder measurements are performed at 
stationary positions, because these measurements do 
not include compensation for the robot’s movement.  

With regard to these assumptions, environment map can be 
created as integration of many local metric maps. In other 

words, global metric map is created by simply matching the 
scans from laser rangefinder. Naturally, values in a scan are 
defined by angle and distance. However, a map is global and 
metric, i.e. defined in global coordinate system xy.  Thus 
values from a scan must be interpreted into the global map as: 
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where  clcl y,x  define the central point of local metric map 

in global coordinate system, id  is measured distance and i  

is the corresponding angle of measuring. The coordinates of 
the central point of local metric map in global coordinate 
system are defined: 
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where  cgcg y,x  are coordinates of central point of global 

coordinate system and  j,pj,p y,x  are robot coordinates in 

global coordinate system in step j .   

The error of robot position estimation is the main limitation 
of this principle. This error is also translated into map. Thus, 
the techniques reducing error of robot position estimation 
must be used (e.g. Kalman filtering, statistical methods of 
odometry error estimation etc.) (Balogh (2007), Miková 
(2008), Rodina (2010), Teslić (2010)). However these 
techniques require not only information about the robot’s 
position from odometry, but also position estimation from 
other sensors. That is why we propose the algorithm for 
environment extremes detection. Using a simple triangulation 
and trilateration, detected extremes can be simply used for 
estimation of relative changes in a robot’s position. For more 
information about this technique, see (Jurišica 2009)).  

5. EXPERIMENTS 

A simple room, as shown in Fig. 12, was used for the 
verification of the proposed approach. Raw measured data 
can be seen in Fig. 9. As outlined in Section 2, preprocessing 
of raw data was applied. First, it is necessary to shift the data 
to achieve unification of the laser’s and robot’s coordinate 
system. Such data shifting as can be seen in Fig. 10, is 
usually a small number. Data filtering results in more 
consistent and realistic data. This can be seen from the 
comparison of Fig. 9 and Fig. 10. Let us consider euther of 
the walls. In Fig. 10 the walls are much smoother, which 
corresponds more closely to the character of  the real 
environment. 
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Fig. 9. Laser rangefinder data without shifting and filtering. 
Red dots are measured data in local coordinate system of the 
robot. Green dash line stands for maximum measuring range 
of the laser rangefinder. Example of data details can be found 
in Fig. 2. and Fig. 4. 

 

Fig. 10. Laser rangefinder data with correction 0,5° and data 
filtering. Example of data details can be found in Fig. 2 and 
Fig. 4. 

According to the procedures in Section 3, algorithms were 
applied on preprocessed data in order to search for extremes 
in the environment. The algorithm successfully found all the 
environment extremes as defined in Section 3.  

 

Fig. 11. Data with detected extremes (blue dots - real 
extremes, green dots - auxiliary extremes). 

Fig. 12 Environment used for mapping, robot is at the starting 
position 

In mapping, the assumptions stated in Section 4 were 
confirmed. The error of robot position estimation was, 
indeed, transferred into the map. Our robot uses only 
odometry for the position estimation, which is why bigger 
error is transferred into the map when the robot turns (Fig. 
14). When the robot performs only simple moves, such as 
straightforward movement, the introduced error is much 
smaller. The error occurs due the properties of laser 
rangefinder and odometry. Usually, laser rangefinder stores 
data in the buffer. That is why the data do not correspond to 
the position from which they were obtained (see Section 6). 
Moreover, odometry alone is not suitable for precise 
positioning of the robot. 
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Fig. 13. Environment map created from 9 positions (white 
dots) 

 

Fig. 14. Environment map created from 22 positions (white 
dots) 

6. CONCLUSIONS AND FUTURE WORK 

There are many ways to make use of detected extremes. They 
can be stored in form of a histogram (Mei (2008)). This 
histogram can be used as environment representation, which 
occupies less memory than classic environment 
representations. Moreover, environmental mapping can be 
simplified by storing of extremes instead of storing the entire 
map. Detected extremes can be useful in topological map 
creation, and finally, they can also be used for solving SLAM 
or for localization of the robot itself. What is more, defined 
auxiliary extremes may refer to areas that are not well known. 
To create a complete map of environment, these areas must 
be explored by the robot. 

The methods presented here have one big advantage over 
other methods. They are not computationally demanding. 
This property is very useful in mobile robotics, as a mobile 
robot solves many tasks in real time. Solution of each task 
has to be computed in milliseconds. That is why we made an 
attempt to propose simple methods that are close to human 
understanding. Of course, there are more robust methods 

available, however our methods were tested in real 
environment on real hardware and in real time and we can 
claim that they are quick and effective. 

However, the presented methods have some shortcomings. 
As mentioned above, errors from sensors are transferred into 
the data. For instance, errors from position estimation, grid 
impreciseness, and errors from laser rangefinder buffering 
and measuring are translated into the environment map. 
Therefore, our future work will focus on better position 
estimation. The first step to accomplish this aim is the 
reduction of odometry errors and elimination of systematic 
errors of sensors measurement. In the next step, several 
methods such as the above mentioned odometry and methods 
based on laser rangefinder and visual systems would be 
combined into a fusion method of position estimation.  
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