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Abstract: Standard identification techniques usually result in a single point estimate of
the system parameters. This is justified in cases when the number of observations is large
compared to the number of system parameters. However in case of small sample count it is
more reasonable to identify a set of possible parameters which contain the nominal parameters
with a given probability. These confidence sets cannot be calculated directly. The paper proposes
interval analytic techniques to approximate confidence sets of model parameters up to arbitrary
precision. The origins of interval analysis lie in the field of reliable computing, giving certified
results for every computation. It has been used to solve global optimization problems numerically
providing theoretical certificates on the optimality of the results. This method of global
optimization is modified in a suitable way to generate the needed confidence sets. Introduction
to interval analytic techniques is given and the methodology of global optimization via these is
also presented. The modifications of this algorithm needed to construct the confidence sets are
discussed and the method is illustrated on a simple example. The presented algorithm is focused
on the output error model structure but the methodology can be extended to more general cases
as well.
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1. INTRODUCTION

The goal of this paper is to present an algorithm capable of
generating confidence sets for the parameter estimates of a
system from measurement data. This type of identification
output is favoured compared to single point estimates in
cases where the number of measurement points is not
high enough compared to the number of parameters to be
estimated. This is the case in some biological and medical
applications where the sampling possibilities are really
restricted (Godfrey et al., 2011).

Interval analytic methods are used in the presented algo-
rithm and these were the major points of inspiration as
well. The use of interval analysis is not new to system
identification. The methodology of unknown but bounded
errors was already used some forty years ago (Schweppe,
1968) and it is inherently an interval analytic method
(Jaulin and Walter, 1993).
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grant TÁMOP - 4.2.2.B-10/1–2010-0009. Support was also provided
by the Fund for Scientific Research (FWO-Vlaanderen), in part by
the Flemish Government (Methusalem) and in part by the Belgian
Government through the Interuniversity Poles of Attraction (IUAP
VI/4) Program.

The start of interval analysis is said to be the publication of
Moore (1966). Back then, the focus of interval analysis was
to analyse the propagation of errors caused by numerical
algorithms towards the final results. These are usually
caused by rounding errors. In time these methods were
used not just to bound the errors on the results but also
to solve systems of equations. Later on a full optimization
framework was developed on the bases of interval analytic
concepts. The book of Hansen (1992) contains an extensive
introduction to interval analysis and its application for
solving linear and non-linear systems of equations and
global optimization problems.

The use of interval analytic methods in system identi-
fication is partly concentrated around the framework of
unknown but bounded errors. In that case the errors are
assumed to be bounded meaning that for each measure-
ment an interval can be specified in which the true value
lies. Given these intervals one is interested in the set of
model parameters which would imply that any particular
model from the set would result in noiseless measurements
in the given intervals (Belforte and Milanese, 1978). In
other occurrences of interval analytic methods it is used as
a global optimization procedure to solve the identification
as an optimization problem (Kampen et al., 2011) or to
get certified numerical estimates (Braems et al., 2003).

The rest of the paper is built up as follows. Section 2
contains the necessary introductions to interval analysis
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and how global optimization problems are solved using
these techniques. The identification problem of output
error models and some notation is defined in Section 3.
Following these, Section 4 defines confidence sets for pa-
rameter estimation with a given confidence level. The
algorithm which approximates these sets up to any user
defined precision is presented in Section 5, while Section 6
demonstrates the applicability of the method on a simple
first order system. Concluding remarks are given in Sec-
tion 7.

2. INTERVAL ANALYSIS, OVERVIEW

This section briefly presents the concepts of interval arith-
metic and its application for global optimization. The no-
tation follows that of (Hansen, 1992). In interval analysis,
as the name shows, intervals are used instead of numbers.
A closed bounded interval X is defined as

X = [a, b] = {x ∈ R|a ≤ x ≤ b} (1)

Simple numbers are represented as degenerate intervals.
For example 2 = [2, 2]. In case of numbers that are
not representable by machine numbers, such as π or
0.1, small intervals are defined which contain the actual
number. These intervals have the nearest smaller and
larger machine numbers as bounds.

Results of operations having interval operands are defined
in a way that the resulting interval contains all possible
results for any possible choices of operands. More formally
in case of operations with two operands if (2) is satisfied

∀x ∈ X, y ∈ Y : f ≤ f(x, y), f ≥ f(x, y) (2)

then the result is correctly defined as

f(X,Y ) = [f, f ] (3)

The basic concept is that every operation defined for num-
bers is also defined for intervals in a way that the possible
results for numbers are contained in the result set for
interval operands. It is not required that the defined result
interval should be tight around the possible results but it is
beneficial. The following examples illustrate the definition
of summation, multiplication and exponentiation.

[−1, 1] + [1, 2] = [0, 3] (4)

[−1, 1] · [1, 2] = [−2, 2] (5)

[−1, 1]
2

= [0, 1] (6)

[−1, 1] · [−1, 1] = [−1, 1] (7)

One of the fundamental drawbacks of carrying out calcula-
tions with interval operands is illustrated by the examples
(6) and (7). When working with interval variables multi-
plication X · X and squaring X2 does not give the same
result. This is called decoupling and it is a consequence of
the definition of interval operations (2). Another typical
example of decoupling is that if X = [x, x] then X −
X = [x− x, x− x] 6= [0, 0].

Decoupling has an important role in every interval arith-
metic based algorithm. The implementation and sequence
of operations is really important. As a special case special
care should be taken to calculate the simulated output of
linear systems for a given input signal.

For more details on interval arithmetic, such as using the
extended real numbers and handling division by zero, the
reader is directed to (Hansen, 1992).

Using interval analytic operations one can evaluate an
objective function over a whole domain of operands. Since
almost every computer architecture allows the configura-
tion of the rounding behaviour, it can be guaranteed that
the boundaries of the result intervals are calculated with
outward rounding. This fact helps to discard whole por-
tions of the variable space in case of global optimization.

The rest of this section presents the most basic type of
interval analytic global optimization algorithm. This will
be modified in Section 5 to approximate confidence sets.
The presented version is a non-derivative version of the
state-of-the-art interval analytic optimization algorithms
but it will be enough for the purposes of this paper.
Only “unconstrained” optimization is considered where
the optimization is given as

min : f(x) x ∈ X(0) ⊂ Rn (8)

This problem formulation is called unconstrained because
of the simple structure of X(0) as it is a box without real
structural constraints.

X
(0)
i =

[
xi, xi

]
i = 1, . . . , n (9)

Interval analytic optimization algorithms can approximate
globally optimal solutions up to any user given precision
ε. Along the course of the algorithm two lists of boxes
(L1, L2) are maintained and a known upper bound for
the optimal value (f). L1 contains boxes representing
portions of the variable space which may contain the global
solutions. L2 contains portions of the variable space which
have diameter less than ε and at the current state of the
algorithm these may contain the global solution.

Algorithm 1 shows the outline of a the non-derivative
global optimization algorithm.

Algorithm 1 Global optimization

(1) L1← X(0), L2← ∅
(2) f =∞
(3) while L1 is not empty
(4) select an element X(i) from L1
(5) f = min

(
f, sup

(
f
(
C
(
X(i)

))))
(6) if inf(f(X(i))) > f continue from (3)
(7) split X(i) into smaller boxes LX
(8) add elements of LX smaller in diameter than ε to

L2
(9) add elements of LX larger in diameter than ε to L1

(10) endwhile
(11) foreach X(i) in L2
(12) if inf

(
f
(
C
(
X(i)

)))
> f discard X(i) from L2

(13) endforeach

The notation C(X) denotes the center of the given box
X. The algorithm starts with the whole variable space as a
single box. When selecting a new box X(i) for processing it
is sure that evaluating the objective function in the center
of X(i) will give an upper bound on the globally optimal
value. Also, if the interval evaluation of the objective
function over X(i) results in a set which is above the
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currently known upper bound, it is sure that the global
optimum cannot be in X(i). If this cannot be decided
then there might be a point in X(i) at which the objective
function results in a better upper bound. In this case the
set X(i) is split into a number of smaller boxes. If a box
is smaller than the user specifications then it is considered
at the end of the algorithm. If it is still large enough than
it is added to the list of boxes needed to be processed,
L1. Evaluating the objective function over smaller boxes
reduces the effects of decoupling and results in sharper
bounds on the result sets. At the end there is a list of ε
small intervals. Evaluating the objective function on these
intervals may result in sets which are completely above the
known upper bound f , these are discarded. The remaining
sets will contain all globally optimal points. The algorithm
can be restarted with a different precision ε2 < ε and
L12 = L2, thus refining the results even more.

There is a number of different possibilities to enhance
the performance of this variant of the optimization al-
gorithm. The choice of X(i) from L1 and the choice of
dimensions used during the splitting can be made using
different heuristics but these are not considered here. For
detailed discussion on these topics the reader is directed
to (Hansen, 1992).

Algorithm 1 will be modified in Section 5 to approximate
confidence sets with arbitrary precision. The algorithm
implementation is based on the interval analytic toolbox
Rump (1999).

3. IDENTIFICATION PROBLEM

The generalized Box-Jenkins model structure, as defined
in (Ljung, 2003) is given by (10)

A(q)y[k] =
B(q)

F (q)
u[k] +

C(q)

D(q)
e[k] (10)

where A(q), B(q), C(q), D(q) and F (q) are polynomials
in q−1 and q is the forward shift operator, meaning that
(qx)[k] = x[k + 1] for any time series x. The noise source
e[k] is assumed to be white, zero mean and Gaussian.
The polynomials A(q), C(q), D(q) and F (q) are monic,
meaning that the coefficient of q−0 is one in each of these
polynomials.

The identification problem is determined by the model
structure chosen to be identified, the available measure-
ment data and the measure of fitness used to rank specific
models.

The rest of the paper concentrates on the output error
(OE) model structure. This means that A(q) = C(q) =
D(q) = 1. This is a simple model structure but complex
enough to require the presented techniques for approxima-
tion of confidence sets. The presented procedure can be
generalized to other model structures as well but it would
take the focus away from the main points, the concept of
confidence sets and the algorithm to approximate these.

Models are ranked according to the `2 norm of the noise
sequence required by the model to generate the measured
data. This means that the objective function value corre-
sponding to a particular model is defined as

J(θ) =
1

N

N∑
k=1

e2[k] (11)

where N denotes the number of samples. It is important
to note that if the values e[k] are assumed to be zero mean
independent identically distributed random variables then
the objective function (11) is an unbiased and efficient
estimate for the variance of their distribution noise.

Classical system identification aims at finding a single
model in the possible set of models which minimizes the
objective function (11). This approach is justified when
the number of samples is large compared to the number
of system parameters. However in case of relatively small
sample count the best fitting model might be over-fitted,
also it is not very reliable. Because of these issues it is
reasonable to search for a set of parameters. The algorithm
presented bellow searches for confidence sets which are
centred around the globally optimal parameter values but
also include parameters which are not significantly differ-
ent from those. The next section provides a way to decide
whether two models are considered to be significantly
different or not.

4. CONFIDENCE SETS

The concept of confidence intervals is a basic element in
elementary statistics, in the multivariate case these are
usually called confidence sets or regions. In parametric
statistical analysis a basic problem is that there is a
number of independent and identically distributed samples
from an unknown distribution and one wants to estimate
the unknown parameters of this distribution. For instance
in case of Gaussian samples Xi ∼ N (µ, σ2) this means
estimating the mean and the variance. The average of the
samples is an unbiased and efficient estimate of the mean.

X =
1

N

N∑
k=1

Xi (12)

However, since the Gaussian distribution is an absolutely
continuous one, the probability P(X = µ) = 0. To
overcome the fact that every estimate has zero probability
of being right, an interval is given around X. If this
interval is constructed in a way that it contains the actual
expectation µ with probability p then it is called a p-
confidence interval. For rigorous definition of confidence
sets see (Anderson, 2003).

This section generalizes the concept of confidence sets to
system parameters. For the time being it is assumed that
the globally optimal parameter vector θ∗ is known. The
question is that when can a different parameter vector θ be
considered as significantly different with a given confidence
p.

Let eθ∗ [·] and eθ[·] denote the noise samples needed to gen-
erate the measurement data for the models θ∗ and θ. Mind
that the objective function (11) is actually an estimate of
the noise variance. Thus the question is whether the two
variance estimates J(θ∗) and J(θ) do differ significantly or
not. Comparison of variances is done using the one sided
F -test, which is based upon the fact that if both eθ∗ [·] and
eθ[·] are zero mean Gaussian with different variances then
the ratio (13) follows F distribution with both degrees of
freedom being N .
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F =
J(θ)

J(θ∗)
∼ F (N,N) (13)

If the F value is greater than the p percentile of the
F (N,N) distribution then the two noise sequences eθ∗ [·]
and eθ[·] are said to have significantly different variance.
Thus the corresponding model parameters significantly
differ. If there are parameters already estimated from
the samples (such as the mean) then the degrees of
freedom should be decreased with the number of estimated
parameters.

Confidence sets with confidence level p around θ∗ can be
characterized with a positive multiplier αp,N−n ≥ 1, where
n denotes the number of unknown system parameters. This
multiplier is chosen in a way that if J(θ) > αp,N−nJ(θ∗)
then the two parameter vectors are considered to be
significantly different. It is important to note that this
multiplier does not depend on the actual value of θ∗. It is
simply the p-percentile of the F (N−n,N−n) distribution.

To summarize the contents of this section, the p level
confidence set of model parameters is defined as

Ωp = {θ : J(θ) ≤ αp,N−nJ(θ∗)} (14)

Figure 1 shows the values of αp,N−n for 90% confidence as
a function of degrees of freedom. It is worth mentioning
that as the sample count grows the multiplier α in the
definition of the confidence set (14) converges to one.
This means that even a small deviation from the globally
optimal objective function value is considered significant.
Since the objective function is continuous in the system
parameters this fact transfers to the system parameters as
well. Even small deviation in the parameters is considered
significant, meaning that a point estimate is sufficiently
reliable. On the other hand for small number of degrees
of freedom the multiplier αp,N−n is rather large. This
means that a large range of objective function values is
acceptable. This range can be generated by a large set of
system parameters. Thus rendering a single point estimate
basically useless.

Fig. 1. The values of αp,N−n with p = 0.9 and N − n
ranging from 1 to 150

5. APPROXIMATION OF CONFIDENCE SETS

The scope of this section is to present an algorithm
which will approximate the confidence sets (14) to an
arbitrary precision. As input the algorithm will have the
desired confidence level p, the desired resolution ε, the
measurement data u[k] and y[k] for k = 1, . . . , N and the
order of the system needed to be identified.

The first step of the algorithm is to determine the multi-
plier α which is used to distinguish between the different

parameter values. This is done as presented in the previous
section.

As the second step the set of parameters X(0) needs to be
defined. Since output error models (15) are considered, the
decision variables θ are now composed of the coefficients
of the polynomials B(q) and F (q). It assumed We stated
in Section 3 that the polynomial F (q) is monic. This is
not a necessary restriction, it is one of many possible
ways to eliminate having multiple solution to the problem.
Multiple solutions are due to the fact that J(θ) = J(cθ)
for every c 6= 0.

The OE model is given as

y[k] =
b1q

−1 + · · ·+ bnq
−n

a0 + a1q−1 + · · ·+ anq−n
u[k] + e[k] (15)

In order to be able to use interval analytic calculations
efficiently the model is searched for as the sum of first and
second order systems and it is assumed that the system
has no poles with multiplicity more than one. In this case
the system can be decomposed to a number of first order
components and a number of second order components
with complex conjugate poles.

y[k] =

F∑
f=1

bf,1q
−1

af,0 + af,1q−1
u[k] +

+

S∑
s=1

bs,1q
−1 + bs,2q

−2

as,0 + as,1q−1 + as,2q−2
u[k] + (16)

+e[k]

In case of the first order components the parameter vector
is composed a θf = [af,0 af,1 bf,1]T . Multiple solutions
are excluded by restricting the optimization to norm one
vectors ‖θf‖ = 1 with af,0 > 0. The efficient way to obey
these constraints is to translate the problem into polar
coordinates φf where φf (1) ∈ [0, π/2 − ε] and φf (2) ∈
[0, 2π]. φf (1) is separated from π/2 to avoid situations
with af,0 = 0. The coordinate transformation is given as

af,0 = cos(φf (1))

af,1 = sin(φf (1)) cos(φf (2)) (17)

bf,1 = sin(φf (1)) sin(φf (2))

Calculating the output of a first order component with
zero initial conditions can be realized using the state space

representation A = −af,1af,0
B =

bf,1
af,0

C = 1 D = 0. Using

the Toeplitz matrix H generated by the column vector
with entries CAkB, the vector of output values Yf is given
by Yf = HU where U is the column vector input values.

Yf =


0
CB 0
CAB CB 0

...
. . .

CAN−2B . . . CAB CB 0

U (18)

Second order systems are parametrized in a different
manner. Every second order component H(q) can be
decomposed as the sum of two first order components
which are complex conjugates of each other.
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H(q) =H1(q) +H1(q) =

=
B1e

iρ1q−1

A0 +A1eiρ2q−1
+

B1e
−iρ1q−1

A0 +A1e−iρ2q−1
= (19)

=
2B1A0 cos(ρ1)q−1 + 2B1A1 cos(ρ2 − ρ1)q−2

A2
0 + 2A0A1 cos(ρ2)q−1 +A2

1q
−2

The parameter vector for second order systems is θs =
[As,0 As,1 Bs,1 ρ1 ρ2]T . It is immediate that the values
of A0, A1 and B1 can be multiplied with any non-
zero number without changing the system. Thus, the
representation of these parameters is converted to polar
coordinates again. The last two unknowns ρ1 and ρ2 are
already angular values. The first two elements of the vector
φs correspond to the polar representation of A0, A1 and
B1, while the last two elements are exactly ρ1 and ρ2. The
sign of A0 is fixed to be positive so the first two coordinates
are just as in the first order case, φs(1) ∈ [0, π/2− ε] and
φs(2) ∈ [0, 2π]. If ρ2 can have values from [0 π/2] and
ρ1 from [0 2π] then all possible second order systems can
described as

As,0 = cos(φs(1))

As,1 = sin(φs(1)) cos(φs(2))

Bs,1 = sin(φs(1)) sin(φs(2)) (20)

ρs,1 = φs(3)

ρs,2 = φs(4)

The output of second order systems in the presented
parametrization can be calculated as follows. Consider the
state space representation

A = −As,1
As,0

eiρs,2 B =
Bs,1
As,0

eiρs,1 C = 1 D = 0 (21)

With this description the output of a second order system
assuming zero initial conditions is given as

Ys = 2 Re(Y ∗
s ) Y ∗

s = HU (22)

where H is defined as for the first order systems but with
the current state space representation.

The decomposition to first and second order systems is
necessary to reduce the effect of decoupling during the
evaluation of the objective function. In case of the output
error model this is done by simply simulating the system
with the measured input signals and subtracting the re-
sults from the measured output values. These differences
are the estimated output errors. The effect of decoupling
between interval parameters is minimized by the calcula-
tion of the Toeplitz matrix H. In each entry of the matrix
the exponentiation can be carried out without decoupling.
When calculating the simulated output, different rows and
entries within the same row are decoupled but that cannot
be eliminated from the process.

If the order of the system to be estimated is n and every
pole has multiplicity one than there are at most bn/2c+ 1
different decompositions of it depending on the number of
second order components. Independent from the number
of second order systems in the given realization the length
of the parameter vector is always 2n. In case of k first
order components the first 2k elements are understood as
representations of first order systems put one after the
other while the rest is interpreted as parameters of second

order systems. With this representation all possible system
parameters can be described with bn/2c + 1 different
boxes. Each box corresponds to a given number of first
order components in the system decomposition. This list
of boxes is used to start the algorithm that generates the
confidence sets of the parameter estimates.

Algorithm 2 presents the outline of the modified algorithm
used to approximate the confidence set.

Algorithm 2 Confidence set approximation

(1) L1← StartList , L2← ∅
(2) f =∞
(3) while L1 is not empty
(4) select an element X(i) from L1
(5) f = min

(
f, f

(
C
(
X(i)

)))
(6) if inf(f(X(i))) > αf continue from (3)
(7) split X(i) into smaller boxes LX
(8) add elements of LX smaller in diameter than ε to

L2
(9) add elements of LX larger in diameter than ε to L1

(10) endwhile
(11) foreach X(i) in L2
(12) if inf

(
f
(
C
(
X(i)

)))
> αf discard X(i) from L2

(13) endforeach

As the starting step, the list of possible boxes is set.
As opposed to Algorithm 1 in this case already a list of
possible boxes is given. These boxes are defined in a special
way. Their first coordinate is an integer number, showing
the number of first order terms in the decomposition.
After this, there are dimensions corresponding to the
polar coordinates of the individual first and second order
systems. Splitting is never carried out on the integer
dimension.

After setting the initial list of boxes a loop evaluates items
in this list. Every selected item is evaluated at its center
point. Sets are split in the same manner as in Algorithm 1.
Major differences are present in two steps. One of them
is that sets are not discarded when their lower bound
is larger than the known upper bound but only if it is
greater than αf (step 6). This ensures that no models
are discarded unless they are significantly different from
the yet unknown globally optimal solution. During the
execution of the algorithm the known upper bound of
the globally optimal objective function value decreases
to the true value. Parallel with this domains which were
not discarded in previous iterations may become discarded
and only those boxes are kept which are not significantly
different from the global optima.

The second difference is in the way how sets are added
to the list L1. In order to avoid multiple solutions in the
variable space, some constraints should be obeyed by the
algorithm. The first and second order terms in (16) should
be ordered for example in increasing order of static gain
within themselves.

At the end of the algorithm the list L2 contains sets for
which the objective function value is under αJ(θ∗). If this
is not the case then the distance of the worst parameter
in the set from one that is resulting in a small enough
objective function value is less then ε.
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It should be noted that this formulation of the algorithm
assumes that the system was started from zero state.
Otherwise the starting state should also be part of the
optimization variables.

6. DEMONSTRATION OF THE METHOD

This section illustrates the algorithm with a sample run on
a simple first order system. First order systems assuming
zero starting state contain only two decision variables this
makes them suitable for illustration because the state of
the lists L1 and L2 can be visualized.

The sample system is given with the impulse transfer
function

G(q) =
0.2658q−1

0.8282− 0.5460q−1
(23)

The input of the identification is given in Figure 2. The
input signal is the black one, the true output is the blue
signal whereas the red signal is the noisy measurement.

Fig. 2. The input of the identification problem.

Using the oe routine of the Matlab Control System Tool-
box, the obtained globally optimal model is

G(q) =
0.2325q−1

0.8172− 0.5256q−1
θ∗ =

[
0.8172
−0.5256
0.2325

]
(24)

Since the coefficient of a0 in the denominator is con-
strained to be positive and the norm of the vector θ is
constrained to be one the solution set is on the half sphere
positive in its first coordinate. The state of Algorithm 2
can be visualized by showing the projection of the half
sphere onto the plane (a1, b1).

The algorithm is started with confidence level p = 0.9.
Figure 3 shows the state of the algorithm after 25 it-
erations. There are 89 boxes in the list L1. Each such
box is presented in the figure with a different colour. It
can be seen that large portions of the variable space are
already processed and discarded as they cannot contain
the optimal solution.

Figure 4 shows the state of the algorithm after 225
iterations. The sharp edges around large blocks indicate
that these portions of the decision space are discarded in
blocks. It is also visible that the decision space is coved
with fine resolution boxes around the global optimum. The
reason for this is that approximating the confidence set

Fig. 3. The state of the algorithm after 25 iteration.

requires fine resolution covering of the neighbourhood of
the optimum point.

Fig. 4. The state of the algorithm after 225 iteration.

Letting the algorithm finish, the list L2 contains boxes
covering the confidence set around the optimal value.
Figure 5 shows the center of each box inf the resulting
list. The red point is the globally optimal solution to the
problem found by both Matlab and Algorithm 2.

Figure 6 contains the simulated outputs of the models in
the obtained confidence set. The black line corresponds
to the globally optimal estimate while the blue lines
correspond to some system parameters in the confidence
set.

7. CONCLUSIONS

The execution time of the presented algorithm increases
with the system order due to a number reasons. One
of them is that covering a high dimensional set with
boxes require larger number of boxes. Also this presented
simple nonderivative version of the algorithm uses to many
evaluations of the objective function. This issue can be
handled by using more advanced versions of Algorithm 1.

The paper presented the interval analytic framework for
global optimization. The notion of confidence sets was
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Fig. 5. The center of each remaining box in the confidence
set and the global optimum.

Fig. 6. Simulated outputs of the systems within the confi-
dence set.

defined for system parameters in a way that it allowed to
decide whether a given system parameter is significantly
different from the possibly yet unknown globally optimal
one or not. This allowed the modification of the previously

presented global optimization algorithm in a way to con-
struct the p-level confidence sets of the identification. The
method was illustrated on a simple first order system while
showing the inner progress of the algorithm as well.
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