
CEAI, Vol.15, No. 3, pp. 21-29, 2013 Printed in Romania

Acceleration of Dynamic Process
Simulation with Hierarchical Control by

Steady State Leap ?

Shaowen Lu ∗

∗ State Key Laboratory of Synthetical Automation for Process
Industries, Northeastern University, Shenyang, 110819, China, (FAX:

+862423895647; e-mail: lusw@mail.neu.edu.cn)

Abstract: The dynamic simulation of process manufacturing system with hierarchical control
of multiple time scales may have the problem of scale gap, which presents a major bottleneck to
the global simulation speed. This paper presents a novel approach of steady state leap (SSL) to
accelerate the system simulation of such kind. The SSL technique detects the state of the system
at the beginning of each simulation cycle. If the system is at a steady state, the simulator will
calculate the system state using its steady state model instead of the dynamic model. Otherwise
the dynamic solver routine will be applied. SSL can also be applied in parallel to achieve further
acceleration. The proposed approach is capable of speeding up the simulation to a magnitude
in reverse ratio of the frequency of disturbance occurrence. The performance of SSL is validated
by the experiment study on a grinding manufacturing process. The issue associated with the
parallel application of SSL is also discussed.

Keywords: multi-scale simulation methods; dynamic process simulation; simulation
acceleration; hierarchical control; integrated control; real-time process simulation.

1. INTRODUCTION

The process industries are referred as those productions
which physically or chemically transform raw materials
by mixing, separating, forming or chemical reactions. Spe-
cific examples of the process industries include biochem-
ical enterprises, cement, chemical, minerals and metals,
petrochemical/refining, pharmaceuticals, power genera-
tion, pulp and paper, and water systems (Craig (2011)).
In the process industries, dynamic simulations are widely
used by control engineers. In contrast to steady state
simulation, dynamic simulation has the ability to simu-
late the time varying behavior of the processing system.
This is particularly useful for control engineers as it can
assist them in the analysis and testing of different control
strategies which result in faster commissioning and less
rework (Cox et al. (2006)). Typically, dynamic simula-
tions are used in control strategy validation, controller
pre-tuning, emergency control testing, operators training
and operation optimization. Today’s process control sys-
tem is getting more and more complex to cope with the
more tightly integrated plants. In those plants, the term
”process control” has become more than loop control.
The advanced control technologies, such as MPC (model
predictive control) (Qin and Badgwell (2003)), RTO (real-
time optimization) (Darby et al. (2011)), and plant-wide
control (Larsson and Skogestad (2000), have already been
widely applied. Such type of control systems can deal with

? This work is supported by the Natural Science Foundation of
China under Grant 61240012, the Chinese National Fundamental
Research Program under Grant 2009CB320604 and the Fundamental
Research Funds for the Central Universities under grant N120408003.

both the control and optimization of the whole produc-
tion process. Decomposition strategies are often applied
because of the complexity of the problem. This leads to
a hierarchical structure of the control system which can
exploit the hierarchical nature of the process system and
the model structure of the individual units.

It is extremely inefficient to simulate a complex process-
ing system with hierarchical control structure using the
traditional time-stepped, sequential simulation approach.
This inefficiency stems primarily from the multi-time scale
nature of the hierarchical control approach. For the local
regulatory controllers, the controlled plant is the process
production system which is typically modeled as a con-
tinuous system, e.g. a set of differential equations which
describes how the system state changes as a function of
simulation time. The evolution of the system state over
time is calculated by solving the model through integra-
tion. Since the system state changes continuously over
time, the regulatory controller of the plant also operates
continuously 1 . Consequently, the simulation of this layer
(local regulatory control layer) is mostly executed in a
strictly time-stepped, sequential manner, and the length
of the time-step must be sufficiently small, e.g. in millisec-
onds or seconds, to preserve the process dynamics. Yet,
for an advanced control system, such as MPC or RTO
system, it is cascadingly connected to the lower layer con-
trollers, and therefore the controlled plant of the advanced
controller can be viewed as the combination of the lower
layer controllers and the corresponding controlled plant of

1 Strictly speaking, controller operates discretely with very small
sampling intervals, which can be considered as continuous.



22 Control Engineering and Applied Informatics

Process

Model

Control

Layer 1

Control

Layer 2

Control

Layer k
……

……

Fig. 1. Process model with cascadingly connected control
layers. The inner control loop operates in the finest
time scale, and outer layers cascadingly connect to
inner layer.

it. With this arrangement, the advanced control system
often operates in an event-driven mode on much larger
time scales, e.g. hours or even days, than that of the local
regulatory controllers. If the performances of the advanced
control system are to be evaluated through simulation, the
total simulation length must be long enough to match the
time scale of the advanced control so as to make the eval-
uation meaningful. As a result, it will lead to impractical
long simulation length if the simulation is still being run
on the single uniform time scale conforming to that of the
local regulatory controllers.

In view of the above problem, the objective of this work
is to develop a solution of simulation acceleration. We
will present an approach of steady state leap to reduce
the unnecessary dynamic computation during simulation.
In the following, section 2 gives the background of this
topic. In section 3, the problem of simulation acceleration
is specified in detail. Section 4 introduces the technique
of steady state leap, and the results of experiment study
are presented and discussed in section 5. Finally, section 6
concludes this work.

2. BACKGROUND

Fig. 1 shows an abstracted simulation object of the process
plant and the hierarchical control. The computational bot-
tleneck of the simulation of such a system with hierarchical
control lies on the effort of solving the continuous process-
ing plant model with fine temporal granularity. That is to
say, the existence of scale gap slows down the simulation.
This is because solving a high resolution entity is often
considerably slower than that of the low resolution entity.
Thus to maintain the consistency of the simulation, the
low resolution simulation has to wait for the finish of high
resolution simulation. Since each control layer operates
on a different time scale, such a simulation object forms
a typical multi-time scale system, which poses particular
challenges to the traditional modeling and simulation tech-
niques. There have not been universal approaches to the
simulation of such kind of system, but there are attempts
to tackle the issue from different aspects, and some of them
are tailored to particular applications.

One of the solutions is the multi-resolution/multi-scale
modeling and simulation (MRMS) technique. Fig. 2 il-
lustrates the idea of MRMS. It includes multiple models
and each of them is developed in a resolution/scale which
matches that of the corresponding object layer. And then,
these models are integrated (often by a coordinator) to
form the global simulation object so that the simulation as
a whole appears to have multiple resolution levels. MRMS
can find its roots of concept in military applications (Davis

Model 1

Control

Layer 1

Control

Layer 2

Model 2

Control

Layer k

Model k

……

Coordinator

Fig. 2. Multi-resolution/multi-scale modeling approach.
With this approach each control loop has its own
model of the controlled plant for simulation.

(2005)) and in material (Ingram and Cameron (2004)) and
chemical engineering (Maroudas (2000)) as well. But this
approach may suffer the inconsistency problems (Reynolds
et al. (1997)), i.e. the same entity presents inconsistently
different properties at different levels caused by inade-
quately linking the model attributes at multiple levels.

Another approach is the use of parallel and distributed
simulation (PDS) techniques (Fujimoto (2000)). However,
the application of PDS is not common in continuous in-
dustrial process (Boer and Verbraeck (2006)). The reasons
are multifold. First, there are no ready-to-use tools to
help quickly building parallel and distributed simulation of
industrial processes. Ad hoc solutions have been reported
but very rare. For example a distributed simulator for
training operators of a sugar plant is developed based on
DCOM (Distributed Component Object Model) (Santos
et al. (2008)). Second, PDS can speed up simulation when
the computation load is properly decomposed and dis-
tributed onto multiple workstations running in parallel.
Whereas continuous industrial processing plants are tra-
ditionally solved using the sequential modular approach
(Hillestad and Hertzberg (1986)). This solving method is
intrinsically sequential as the process model is decomposed
into unit models which are sequentially solved in an order
according to flowsheet topology. Parallelism depends very
much on the topology of the flowsheet. It is not always
possible to partition process flowsheet into sub-entities
which can be solved in parallel.

In process modeling technology, quasi steady state approx-
imation (QSSA) (Turanyi et al. (1993)) is commonly used
for model reduction of the systems exhibiting dynamics
of different time scales. This approach assumes the fast
dynamics to be in quasi steady state and obtain the slow
dynamics according to the corresponding quasi steady
state constraints (Vora and Daoutidis (2001)) and the
applicability of QSSA has been typically restricted for
certain regions of initial and operating conditions. QSSA is
not suitable for our problem because it is nontrivial for the
analysis of higher layer controller on the model where fast
dynamics corresponding to regulatory control is reduced
by quasi steady state approximations.

To accelerate the simulation speed, we proposed an ap-
proach based on the following simple consideration: We
define steady state as which process variables are constant
over a particular period of simulation time, and define
transient state otherwise. In a time-stepped simulation,
system state is calculated by dynamic solver routine at
the beginning of each time-step regardless of the state of
the process. However, if the process is in a steady state, it



Control Engineering and Applied Informatics 23

Optimizer

Controller

Process

Fig. 3. Structure of the system to be simulated.

actually does not need to solve the dynamic model until
the next disturbance or control input change the model
state. This indicates that simulation speedup is achieved
by avoiding unnecessary solving simulation model with
dynamic solver during steady state. This principle will be
presented in detail in the following.

3. DESCRIPTION OF PROBLEM

3.1 System Structure

In this paper, we consider that the system to be simulated
includes a processing system and two layers of control. The
structure of the system is illustrated in Fig. 3. To simplify
the following discussion, we will call them process, con-
troller and optimizer for the processing system, the lower
layer control and the higher layer control respectively.

Let d represent the disturbances to process. Vector x
is the state of the process. Optimizer receives r∗, the
optimization targets, and sends out a set of set-points y∗

to controller, which implements y∗ by controlling variables
u. Vectors y and r are the measured process variables
reporting to controller and optimizer respectively. The
optimizer layer and the controller layer together form
a hierarchical control structure where the control loops
y∗ � y and r∗ � r are cascadingly connected through
variables y∗ and r.

Note that the controller layer actually includes a set
of regulatory controllers. Also, for simplicity, we assume
that the controller layer includes actuators and sensors
so that the conversion between discrete control symbols
u to piecewise continuous variables v, and the conversion
between process state variables x to sampled variables y
will be omitted in this representation.

3.2 Objective of Simulation

Assume that the objective of simulation is to test the
performance of optimizer. To be more specific, given the
targets of optimizer r∗ and process disturbances d, the
objective of the experiment is to run simulation for a
length of L , and finally obtain a simulation trace which
is a real valued time sequences r(t) ∈ R with t ∈ [0, L].
Then, the simulation resulting sequences r(t) are evaluated
by a function ε : R → P , which maps r(t) to a set of
performance indices p ∈ P .

3.3 Problem of Scale Gap

For convenience in the following discussion, define the
time scale of a continuous system as the sampling interval
corresponding to its Nyquist frequency, and define the
time scale of a discrete system as the characteristic time
between jumps. Each entity of the system shown in Fig. 3
has its corresponding time scale. Now, let hi the time scale
of the ith layer entity. In the present case, h1 represents
the time scale for the process model, h2 for controller and
h3 for optimization. As mentioned early, for a temporal
decomposed hierarchical control system the time scales of
different layers are often drastically different. Therefore
we assume h3 � h2. For a regulatory controller in the
controller layer, since its objective is to stabilize the
controlled local process variable and also to track given
set-point, the time scale of a regulatory controller must
match its controlled plant. So we let h1 w h2 which means
that the two time scales are not distinguishable.

Moreover, define ki as the magnitude of scale difference
between hi+1 and hi, and ki = hi+1/hi. Define Ni as
the least number of simulation cycles which is required
by the performance evaluation of layer i entity. Because
the least necessary length of a whole simulation run, L, is
determined by the time scale of the entity of the highest
layer. If the hierarchical control has m layers, L can be
estimated by:

L = Nmhm = NmKh1 (1)

where K =
∏m−1

i=1 ki.

If the averaged wall-clock time for one simulation cycle
of time scale hi is ti, then the total wall-clock time of
simulation T is therefore:

T = Nmtm = NmKt1 (2)

It can be seen from equation (2) that if there are significant
differences in the time scales of different layers, K will
become dominant to determine the total wall-clock time
of simulation. The problem of scale gap is that, in a
simulation where the time scales of entities cross a large
order of magnitude, the required time to perform such
simulation may be impractically long if the lower layer
model is not scalable. Our goal is to accelerate simulation.
In equation (2), this is equivalent to shorten either the
scale difference K or the unit time of model solving t1. The
former approach corresponds to the multi-scale modeling
techniques. In this work, we focus on the latter approach,
i.e. we will shorten t1. This will be achieved by a method
called Steady State Leaping (SSL).

4. STEADY STATE LEAP

4.1 Model Representation

In practice, a process simulation often adopts a modu-
lar based model building approach. Each unit operation
model is encapsulated by a unified information structure.
Fig. 4 shows the input/output interface of a unit operation
model. The input/output streams represent the character-
istics of the material streams, such as temperature, density,
flow rate, pressure, etc. And the dashed line represents
the control input signal and it connects the plant model



24 Control Engineering and Applied Informatics

Unit Operation

Model

Input streams Output streams

Disturbances

Controller

Actuator 

Model

Sensor

Model

Regulatory Control System

Fig. 4. Input and output of a unit operation model.

with controller. There are also boundary conditions of the
model including variables related to the operation equip-
ment, such as height, width, diameter, rotation speed, etc.

The whole plant model is assembled by connecting unit
operation models, i.e. they are connected by the material
streams according to the process flowsheet. There are two
primary kinds of model representation: steady state model
and dynamic model, corresponding to the unit operating
at steady state and transient state respectively.

The dynamic model of a processing plant can be repre-
sented in the form:{

F(ẋ,x,d,u, t) = 0
H(x,y) = 0
G(y) ≥ 0

(3)

where F is a set of dynamic functions defining the state of
unit operation model x to the vector of disturbance signals
d and control signals u. Vector y is the output of the
model. H is a set of auxiliary algebraic equations derived
from physical principles, and G is a set of inequalities that
must be satisfied (Barton (1997)). If the dynamic behavior
is not considered, model (3) will be reduced to its steady
state form: {

F(0,x,d,u, t) = 0
H(x,y) = 0
G(y) ≥ 0

(4)

where functions F, H and G are similarly defined as
before.

4.2 Algorithms

The proposed algorithms are applied under the framework
of sequential modular approach (SMA), where the whole
plant model that is obtained by connecting unit modules
is solved using the sequential modular approach (SMA)
(Hillestad and Hertzberg (1988)). The use of SMA in
dynamic real-time simulation of process systems has been
reported in Schopfer et al. (2004); Wang et al. (2009).
This strategy successively executes the process unit models
according to the connectivity of process units. The sequen-
tial modular solver first finds out if there exits recycle
streams in the flowsheet, i.e. an output material stream
is fed back to one of its upstream units. If no recycle is
found in the process, the solver will successively execute
each module and propagate the calculated results among
the modules according to the connection relations. When
there are recycle streams, the coordinator of the solver will
tear each recycle stream to make it acyclic. A predicted
feedback stream will be inserted to replace the torn stream.

a1 a2 a3 a4 a5 a6 a7 a8 a9

SP
PV

Transient

Steady

a10 a11 a12 a13

Fig. 5. Illustration of steady and transient state switching.

The error introduced by the prediction is controlled by a
fix-point iterative algorithm.

With the sequential modular approach, the simulation
engine calls the solver routine to sequentially calculate the
unit operation models and update the state of process. In
a dynamic simulation, the model is solved and the state
is updated in each simulation cycle because the input,
control and disturbance of the model are time-varying and
the model state needs to be updated timely to keep the
dynamic behavior of the system. In general, solving the
model of (3) requires much more computational effort than
that of (4). The idea of steady state leap is that: If it can
detect that the simulation has reached a steady-state, the
dynamic model should be substituted with its steady-state
form to save computation effort.

To illustrate the idea, an example is presented in Fig. 5,
where the density of a slurry sump is controlled by an addi-
tional water feed. As stated early, the recorded simulation
trace is actually the time sequences of process variables
(PVs). The figure plots a segment of one of the PVs, where
X-axis represents simulation time and Y-axis represents
the simulated value of the PV (short dash line), which in
this case is the density of the slurry in the sump, tracking
the set point (SP) given by the regulatory controller.

In Fig. 5, we can observe that the value of PV is either
constant or fluctuating. Now, let’s say that the simulation
is at a steady state if all the PVs of the process model are
constant over the time period of interest, and the simu-
lation is at a transient state otherwise. In reality, steady
state indicates the mass/energy equilibrium of the pro-
cessing system. Such an equilibrium state will be broken
and followed by a transient period if there are disturbances
that occurred or the SPs given by controller have changed.
In the former case, regulatory controller will stabilize the
process when disturbances cause that PV deviates SP.
The latter situation happens when a new control objec-
tive, which is derived by optimizer for instance, is to be
implemented by the regulatory controllers to move the
system to a different operating point. Fig. 5 illustrates
the switching between steady and transient states. In the
figure, transient and steady state are marked by the dark
grey area and the light grey area respectively. For example,
during the period a2, the process experiences a transient
period after the SP changes from 46.1% to 51.0%. It is then
stabilized back to steady state for a period a3 and enters
a new transient period a5 caused by a series of adjustment
of SP.

During a simulation, once the process enters a steady state,
the output of model will be constant until a disturbance
or new control input forces the process into a transient
state. Therefore, it is actually not necessary to solve the



Control Engineering and Applied Informatics 25

dynamic model at a steady state considering and it only
needs to be resumed when an event indicating disturbance
or a change of control input has occurred. For the problem
of simulation acceleration, it is natural to consider letting
the dynamic solver skipping steady state periods in expect
that the total computation time can be shortened. To be
more specific, if the simulation of a certain operation unit
is at a steady state at time t, and it is also known that there
will be no disturbance and control inputs in the horizon
from t to t + h, where h is the length of time step, the
simulator will solve model in its steady-state form of (4)
instead of its dynamic form of (3). This substitution will
not change final system state at the end of current time
step y(t + h) because we know that the process is at a
steady state, and ẋ, d and c are all zero, there is no need
to solve the differential equation F(ẋ,x,d,u, t) = 0 during
t to t+ h.

The implementation of steady state leap requires that
simulator can detect the change of state. The following
algorithm has been used to detect state change. Indeed,
the change from steady state to transient state at some
simulation cycle i can only be the result of disturbance
or new control input which breaks the equilibrium state.
The algorithm will identify the state as steady only if the
differences between all the output data at current and the
last cycle are no greater than predefined calculation error
threshold. This ensures that noise 2 , whose magnitude
should be below the threshold, will not have effects on
state identification.

Algorithm 1 Simulation engine

1: procedure SimulationSSL . simulation engine of
SSL

2: T ← 0 . T : simulation time variable
3: Init(o) . o: reference to simulation object
4: while T ≤ tmax AND o.endF lag 6= TRUE do
5: o.state.current← StateIdentification(o)
6: if o.state.current =STEADY then
7: SolverS(o) . call steady state solver
8: else . current state is TRANSIENT
9: SolverD(o) . call dynamic solver

10: end if
11: Update(o.state) . update simulation state
12: T ← T + h
13: end while
14: end procedure

The main algorithms associated with SSL are illus-
trated in Algorithm 1 and Algorithm 2. At the be-
ginning of each simulation cycle, the simulation en-
gine will first check the process state by calling func-
tion StateIdentification. If the process is previously
at steady state, the StateIdentification will return
TRANSIENT only when it finds out the event list (el.current)
for the current simulation cycle is not empty indicating
that there will be disturbance or control signal in this cycle
which must be calculated by dynamic solver SolverD,
which could be any solving routine which is appropriate to
the equation. If the process is previously at transient state,
the process will return STEADY only when the even list is

2 In this paper only the deterministic part of the process model is
considered.

Algorithm 2 State identification

1: function StateIdentification(o) . o: reference to
simulation object

2: cs←IsEmpty(o.el.current) . cs: current state;
el: event list

3: err ←MaxDiff(o.d.last, o.d.last.last) . o.d:
output data vector

4: if o.state.last =STEADY then . last cycle=STEADY
5: if cs =FALSE then . event list is not empty
6: StateIdentification←TRANSIENT
7: else
8: StateIdentification←STEADY
9: end if

10: else . last cycle=TRANSIENT
11: if cs =TRUE AND err ≤ERROR THRESHOLD then
12: StateIdentification←STEADY
13: else
14: StateIdentification←TRANSIENT
15: end if
16: end if
17: end function

empty and the difference of each element in the output
vector between the last two simulation cycles is below the
predefined calculation error threshold (ERROR THRESHOLD).
Note that StateIdentification is called at the beginning
of each simulation cycle and the current data have not been
calculated. It has to use the outputs of last two cycles to
identify a switch of process state.

In reality, a processing production system operates at a
steady state in most time except starting-up and shutting-
down. During a steady state, all state variables of the pro-
cess are constant in spite of ongoing processes that strive
to change them. However for the simulation, it entering
a steady state requires that all the process variables are
constant. From Fig. 5 we can see that if there are a large
number of process variables in the model, the total length
of being at steady states may be reduced, because the state
of whole process is now the superposition of the state of
each process variable. In other words, the more sparsely
the transient state occurs, the more time can be saved by
SSL.

Moreover, in some process, we can identify that some of
the model variables are only dependent on the local unit
model and the variables of unit models are only connected
if the two models are connected by material streams. This
means that, even if the whole plant model is large in its
number of process variables, it may be partitioned into
several sub-systems and apply the SSL technique in a
distributed way. A typical algorithm of the parallel time
stepped simulation engine for the execution of each local
processor is illustrated in Algorithm 3. Executing SSL in
parallel requires the decoupling of the model calculations
for multi-processor environment. However, those topics are
beyond the foci of this paper. The relevant research on
parallelizing process flowsheet simulation can be found
on Chimowitz and Bielinis (1987) and the SPEEDUP
technology of Aspen Tech Paloschi and Zitney (1999).



26 Control Engineering and Applied Informatics

Algorithm 3 Simulation engine of local virtual processor

1: procedure SimulationSSL LV . local simulation
engine

2: lvT ← 0 . T : local simulation time
3: Init(lo) . lo: reference to local simulation object
4: while lvT ≤ tmax AND lo.endF lag 6= TRUE do
5: Recv( ) . receive messages from connected

processors
6: o.state.current← StateIdentification(o)
7: if lo.state.current =STEADY then
8: SolverS(lo)
9: else

10: SolverD(lo)
11: end if
12: Update(lo.state)
13: lvT ← lvT + h
14: Send( ) . send out local model state to

connected processors
15: end while
16: end procedure

5. ACCELERATION PERFORMANCE

5.1 Case Study: An Ore Milling Process

In this section, an example of two-stage grinding process
system is introduced for the sake of performance evalua-
tion. Grinding is the fine phase of comminution after coarse
step of size reduction such as crushing. Its goal is to reduce
the particle size of ore so that the economically valuable
substance in the ore can be more efficiently separated
by the subsequent process, such as flotation or magnetic
separation.

In this case, the flowsheet arrangement consists of two
grinding circuits. The first circuit is formed by 4 ball mills
of φ3200 × 3100mm and 8 hydrocyclones of φ500mm,
and the second circuit includes 4 ball mills of φ3200 ×
3500mm and 24 hydrocyclone of φ350mm. First, fresh ore
is being continuously fed through a vibratory feeder onto
a conveyer belt, and along with mill water, it is fed to ball
mill I for grinding. The ball mill I slurry is mixed with
dilution water and discharged to hydrocyclone, where the
coarser particles in the discharged slurry are fed back to
ball mill I for re-grinding. The finer particles go to a set
of 11 high frequency vibrating sieves. The coarse particles
are flushed to sump, and the stream of fine particles are
joined with the final product. Water is added to lower pulp
density. Then, the diluted slurry is pumped into the second
set of hydrocyclones by a constant pressure. Hydrocyclones
separate the finer particles to form the product stream
(overflow) from an underflow stream in which the coarser
particles are sent to ball mill II for a second stage of
grinding. Finally, the discharged slurry of ball mill II flows
into sump.

The grinding process is controlled by a two layered con-
trol system. On top of the regulatory control layer, an
optimizer called optimal setting control (OSC) is deployed.
The ultimate goal of OSC is, by giving optimal setpoints of
the regulatory controls, so as to improve product quality.
For a ball mill grinding circuit, its product quality is
measured by particle size. This is the most concerned qual-
ity index for process engineers and comminution experts.

Sieve analysis can give the distribution of particle size
against mesh size. But in practice, it is common to use
a scalar, P200, which is defined as the weight fraction of
solids in the product stream passing a 200 mesh Tyler
series sieve (particle size≤ 74µm).

The requirement for product particle size is often ex-
pressed as a range: [Pmin

200 , P
max
200 ] and OSC wants to let the

product particle size be in the required range, and also be
close to Pmin

200 as much as possible. To realize this objective,
the optimal setting controller needs to: (i) identify and
choose a set of process variables which are closely related
to the optimization goal and can also be controlled by the
local controller; (ii) to auto-adjust the set-points of the
chosen process variables and let the local controllers track
the set-points so as to drive the product indices into the
required ranges. The details of the OSC algorithms can be
referenced in Zhou et al. (2009).

5.2 Simulation Goal: Testing the Optimal Setting Control
System

The goal of simulation is to verify the optimal setting
control software, and simulation is used at the stage when
the coding of OSC software has finished. More specifically,
we want to check by simulation if the constraints of OSC
on product quality and quantity, which are measured by
the particle size and density of the product stream, are not
violated during the simulation experiments.

Since we are using simulation to verify the optimal set-
ting controller, it is necessary to configure the length of
each simulation run so that the simulation can cover at
least a whole cycle of the processing operation. Though
the grinding process operates continuously, there are two
periodic cycles which can be identified. First, because of
the existence of stream circuits, some parts of ground ore
will circulate several times in the process until its particle
size is small enough to be separated by hydrocyclones
or sieve. In the two-stage grinding process, it estimates
that it takes about 30 minutes for more than 95% of
a certain fed ore being discharged. Second, the balls in
ball mills are replenished every 4 four hours. This will
cause a rather sharp change in the working condition of
the grinding process, and it corresponds to a new initial
condition for simulation. In summary, the minimal length
of each simulation run is set to 4 hours so that both cycles
can be covered.

5.3 Setup of Simulation Experiment

The simulations are performed on NEUSimMill Lu and
Chai (2013), a dynamic process simulator for the test and
verification of grinding process control. The objective is
to evaluate the OSC algorithm and its system implemen-
tation on NEUSimMill. The simulation platform uses a
hardware-in-the-loop simulation (HILS) architecture, i.e.
the control system hardware is connected to process mod-
els to establish a counterpart of the real control system
used in industrial processing plant. With the ability of
connecting to real control systems, the control programs
are therefore directly validated in a running environment
of actual hardware setup in real time. Fig. 7 shows the
connection scheme of the HILS hardware-in-the-loop simu-
lation architecture which is configured for this experiment.



Control Engineering and Applied Informatics 27

Ball Mill I ×4

Φ3200×3100

Cyclone ×8

Φ500

Sieve ×11

Sump

2.5×2×2 m
3

Ball Mill II ×4

Φ3200×3500

Cyclone ×24

Φ350

Pump ×4

50 HP

Product

Join with the 

product stream

Fine

Coarse Fine

Coarse

Coarse

Fine

From under sieve

Fresh ore

Fig. 6. Flowsheet of a two-phase ball milling process.

Supervisory Control 

(Console)

Plant Model 

 Grinding Circuit

(Workstation)

Plant Model 

 Grinding Circuit

(Workstation)

Regulatory Controllers

(PLC)

Regulatory Controllers

(PLC)

HILS Interface Device HILS Interface Device

Optimal Setting Control 

(Workstation)

LAN

HILS Platform

OSC to be tested

…

Fig. 7. The Hardware-In-the-Loop Simulation architecture
of the simulation platform.

The OSC system to be tested is connected to the plat-
form by Ethernet. The regulatory controllers are Rockwell
Logix5561 PLC (Programmable Logic Controller), and the
plant model workstations are Dell Precision T5500.

NEUSimMill adopts a modular based modeling approach
to calculate the dynamics of the whole process. Each mod-
ular formulates the dynamic responses of a unit operation
model (mills and classifiers etc.) to control or disturbances,
i.e. the hardness, density and particle-size distribution of
the fresh ore feed. And each module is independently
implemented, and individually integrated over a common
time interval; and they are only connected according to the
interconnection variables of the flowsheet which represent
material streams. Such a strategy allows the integration of
various types of individual modules which include differ-
ential equations, and also those based on empirical input-
output correlations and discrete rules etc. Unit operation
models in NEUSimMill are developed based on the mass
balance principle and the hybrid intelligent modeling ap-
proach. The former sets up the master structure of the
model equation. And the latter approach employs heuristic
inference tools such as fuzzy logic and artificial neural
network in the estimation of important model parameters
which often depend on working condition of the plant. is
a unit operation model (mills and classifiers etc.) Due to
limitation of space, the process model will not be elabo-
rated here. Those details can be found in our work Tie
et al. (2007).

5.4 Experiments and Discussion of Results

In this case, the control system is hierarchical structured
with two layers: an optimal setting control layer and a

Table 1. The operation conditions and require-
ments of product quality in terms of particle

size

Variables Stage I Stage II

Ore feed rate (t/h) 74 N/A
Ball mill concentration (%) 78.2 N/A
cyclone feed Pressure (kPa) N/A 110
stage I & II PSD requirements ≥60 ≥70

regulatory control layer. There is scale gap between the
OSC and regulatory control as the OSC typically operates
on a time scale of minute and the regulatory control on
second. Moreover, the optimal setting controller depends
on the local regulatory control loops to realize its goal, and
one OSC manages multiply sets of regulatory controllers
of different series of grinding circuits. The simulation load
is heavy because it needs to simulate all the 4 series (see
Fig. 6) and their regulatory controllers in parallel.

Since OSC only starts to act when it detects that the
process has been derailed from optimal operation state by
disturbances, we need to add into the system artificial dis-
turbances to activate OSC operation. In the experiment,
a random disturbance in the hardness 3 of the raw ore
is considered. The ore hardness of input raw ore will in
general degrade the grinding efficiency, which will trigger
OSC to compensate such effect by changing the setpoints
of regulatory controllers. Because the effect of changing
ore hardness on the process is global, which means that
it will propagate throughout each of the process units, by
varying ore hardness we are expecting to have a series of
regulatory control adjustments.

A random disturbance in the hardness of the raw ore is
configured as a Gaussian distribution of mean µ = 12 and
variance σ2 = 0.05. The change in hardness is assumed
to happen discretely and the length of interval between
changes is configured as exponential with a mean which
will vary for each experiment run. The other operation
conditions are listed in Table 1.

The performance evaluation of SSL is accomplished by
two different groups of experiments: (i) the whole plant
model runs serially on a single workstation. (ii) The plant
model is distributed on two workstations in parallel. In the
latter case, the whole plant model of two-phase ball milling
process is decomposed into models of grinding circuit I
and grinding circuit II. And note that each workstation

3 Ore hardness is measured by Bond Work Index (BWI).



28 Control Engineering and Applied Informatics

Table 2. Comparison of the required wall-clock
simulation time of different setups.

1/λ
(min)a

Group (i) (sec)b Group (ii) (sec)c

Without SSL With SSL Without SSL With SSL

30 12757 8047 7831 4776
60 12346 5305 7817 3042
90 12325 4225 7793 2585
120 12403 3802 7840 2341
150 12377 3677 7798 2291

a The averaged interval of disturbance in ore hardness.
b The first group refers to experiments where the plant model runs

on a single workstation.
c The second group refers to those where the plant model is decom-

posed into two parts running on two workstations in parallel.

1 . 5 9

2 . 3 3

2 . 9 2
3 . 2 6 3 . 3 7

1 . 6 4

2 . 5 7

3 . 0 1
3 . 3 5 3 . 4 0

3 0 6 0 9 0 1 2 0 1 5 00 . 0

0 . 5

1 . 0

1 . 5

2 . 0

2 . 5

3 . 0

3 . 5

4 . 0

4 . 5

Sp
eed

up 
Ma

gni
tud

e

1 / λ  ( m i n )

 S p e e d u p  M a g n i t u d e  ( s e r i a l )
 S p e e d u p  M a g n i t u d e  ( p a r a l l e l )

Fig. 8. Comparison of speedup magnitudes achieved by
SSL in serial and parallel simulation.

corresponds to all series of the grinding circuit which are
operating in parallel.

We expect that SSL can speedup simulation by reduc-
ing unnecessary computation during steady period. The
experiments are design to vary the averaged interval of
disturbance in ore hardness of each simulation run, and
the wall-clock simulation time is recorded to check the
acceleration performance of SSL under different condi-
tions. Let 1/λ be the averaged interval of disturbance in
ore hardness. We vary 1/λ because we cannot directly
control that the simulation will be at a steady state; and
by adjusting the frequency of disturbance occurrence, the
total length of transient period can be indirectly adjusted.

The experimental results are listed in Table 2, which are
obtained by varying the occurrence rate of the disturbance
in the hardness of raw ore from 30 minutes to 90 minutes.
Each simulation run will terminate when it reaches a
predefined length representing 6 hours (360 minutes) of
actual operation of the production system, and the wall-
clock time the simulation run is recorded. Considering that
OCS is designed to operate in minutes and the disturbance
happens at most in 90 minutes, a simulation length of
6 hours is long enough to ensure multiple cycles of OCS
operations.

We observe in Table 2 that varying the averaged interval
of disturbance in ore hardness does not have a notable
impact on the wall-cock time of simulation without SSL.
This is because the simulator engine will have to solve the
model in each time-step regardless the state. To evaluate

the scale of speedup achieved by applying SSL, we define
speedup magnitude as the ratio of wall-clock time of sim-
ulation without and with SSL. The speedup magnitude is
calculated and compared in Fig. 8. We can clearly observe
a direct ratio relationship between speedup magnitude and
disturbance interval. This is in accordance with intuition:
the less frequent the disturbance occurs, the more simu-
lation time can be saved by SSL. Also, the relationship
between speedup magnitude and disturbance interval is
not linear. In fact, the speedup magnitude has not grown
linearly with the slowing down of disturbance occurrence
and the speedup magnitude appears to approach a satura-
tion level. Clearly, this represents that the simulation will
eventually degrade to a steady-state simulation if all the
control and disturbance are zeroed.

It can also be noticed in Fig. 8 that the speedup magnitude
of the parallel case is slightly greater than that of the serial
case in general. Remember that the condition of applying
SSL is that the whole plant model has reached a steady
state because there is a single global solver to handle the
whole model. In the case of parallel simulation, each local
model, which is a part of the whole model, runs on a
workstation and it is handled by a local solver. Considering
that there is no global solver, it only needs that the local
model has been at a steady state to apply SSL. In general,
a local model is more likely to reach steady state because
it has fewer units than the whole plant model. In the
parallel example of grinding process simulation, the whole
plant model has been decomposed into two local models:
grinding circuit I model and grinding circuit II model. Note
that the sump is the first unit operation of the grinding
circuit II model. In this flowsheet, the output rate of
sump is solely determined by the pump. The sump can
be considered as a stream buffer, which has the effects of
neutralizing the variation of flow rates of its input streams.
This also makes it more likely that the grinding circuit II
model is at a steady state. Since the speedup magnitude of
SSL is in direct ratio to the total period of being at steady
state of the model, the SSL applied to parallel simulation
achieves a slightly better speedup performance.

6. CONCLUSIONS

This paper has introduced steady state leap, an approach
fitting the tasks of simulating industrial process control
system with hierarchical structure, which may present the
problem of scale gap. The technique calculates the system
state using its steady state model instead of the dynamic
model only in a simulation cycle where the system has
reached a steady state and no events will move the system
out of the current state. The analysis has concluded that
the successful application of SSL technique depends on two
conditions: (i) Disturbances are known by the simulator
at the beginning of each simulation cycle. (ii) The state of
the model, i.e. whether it is at a steady state or transient
state, can be identified by the simulation engine. The first
condition is ensured by the fact that the disturbance is
actually a pre-generated sequence of disturbance event,
which is ”known” in advance by the simulator. The second
condition is handled by the process state identification
algorithm. Experiments on the simulation of the optimal
setting control system of a two-phase grinding process
have validated the performance of SSL. First, SSL can



Control Engineering and Applied Informatics 29

accelerate the whole simulation to a magnitude which
depends on the occurrence frequency of disturbance. In
general, the less frequently the disturbance happens, the
more speedup can be achieved. Second, SSL can be applied
in combinition with parallel and distributed simulation to
further accelerate the simulation speed.

REFERENCES

Barton, P.I. (1997). Industrial experience with dynamic
simulation. Technical report, Department of Chemical
Engineering, Massachusetts Institute of Technology.

Boer, C. A., d.B.A. and Verbraeck, A. (2006). Distributed
simulation in industry - a survey part 2 - experts
on distributed simulation. In Proceedings of the 2006
Winter Simulation Conference, 1061–1068.

Chimowitz, E.H. and Bielinis, R.Z. (1987). Analysis of
parallelism in modular flowsheet calculations. AIChE
Journal, 33(6), 976–986.

Cox, R.K., Smith, J.F., and Dimitratos, Y. (2006). Can
simulation technology enable a paradigm shift in process
control?: Modeling for the rest of us. Computers &
Chemical Engineering, 30(10-12), 1542–1552.

Craig, I. (2011). Control in the process industries. Tech-
nical report, IEEE Control System Society.

Darby, M.L., Nikolaou, M., Jones, J., and Nicholson, D.
(2011). Rto: An overview and assessment of current
practice. Journal of Process Control, 21(6), 874 – 884.

Davis, P.K. (2005). Introduction to multiresolution, multi-
perspective modeling (mrmpm) and exploratory analy-
sis. Technical report, RAND National Defence Research
Institute.

Fujimoto, R.M. (2000). Parallel and Distributed Simula-
tion Systems. John Wiley & Sons.

Hillestad, M. and Hertzberg, T. (1988). Convergence and
stability of the sequential modular approach to dynamic
process simulation. Computers & Chemical Engineering,
12(5), 407–414.

Hillestad, M. and Hertzberg, T. (1986). Dynamic simula-
tion of chemical engineering systems by the sequential
modular approach. Modeling, Identification and Con-
trol, 7(3), 107–127.

Ingram, G.D. and Cameron, I. (2004). Challenges in
multiscale modelling and its application to granulation
systems. Developments in Chemical Engineering and
Mineral Processing, 12(3-4), 293–308.

Larsson, T. and Skogestad, S. (2000). Plantwide control
- a review and a new design procedure. Modeling,
Identification and Control, 21(4), 209–240.

Lu, S. and Chai, T. (2013). The development of a
hardware-in-the-loop simulation system for the control
of ball mill grinding process. IEEE Transactions on
Automation Science and Engineering (submitted).

Maroudas, D. (2000). Multiscale modeling of hard materi-
als: Challenges and opportunities for chemical engineer-
ing. AIChE Journal, 46(5), 878–882.

Paloschi, J.R. and Zitney, S.E. (1999). Parallel dy-
namic simulation of industrial chemical processes on
distributed-memory computers. Computers & Chemical
Engineering, 23, Supplement(0), S395 – S398.

Qin, S. and Badgwell, T.A. (2003). A survey of industrial
model predictive control technology. Control Engineer-
ing Practice, 11(7), 733 – 764.

Reynolds, Jr., P.F., Natrajan, A., and Srinivasan, S.
(1997). Consistency maintenance in multiresolution
simulation. ACM Trans. Model. Comput. Simul., 7, 368–
392.

Santos, R.A., Normey-Rico, J.E., Gómez, A.M., Arconada,
L.F.A., and Moraga, C.d.P. (2008). Distributed con-
tinuous process simulation: An industrial case study.
Computers & Chemical Engineering, 32(6), 1195–1205.

Schopfer, G., Yang, A., von Wedel, L., and Marquardt, W.
(2004). Cheops: A tool-integration platform for chemical
process modelling and simulation. International Journal
on Software Tools for Technology Transfer (STTT),
6(3), 186–202.

Tie, M., Bi, J., and Fan, Y. (2007). Hybrid intelligent
modeling approach for the ball mill grinding process. In
Advances in Neural Networks - ISNN 2007, 609–617.

Turanyi, T., Tomlin, A.S., and Pilling, M.J. (1993). On
the error of the quasi-steady-state approximation. The
Journal of Physical Chemistry, 97(1), 163–172.

Vora, N. and Daoutidis, P. (2001). Nonlinear model
reduction of chemical reaction systems. AIChE J.,
47(10), 2320–2332.

Wang, Y., Li, L., Gui, W., and Yang, C. (2009). Real-
ization and application of mineral processing simulator
using sequential modular approach. Computer Engi-
neering & Application, 45(7), 224–226.

Zhou, P., Chai, T., and Wang, H. (2009). Intelligent
optimal-setting control for grinding circuits of mineral
processing process. Automation Science and Engineer-
ing, IEEE Transactions on, 6(4), 730–743. 1545-5955.


