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Abstract: In view of the fact that real networked control systems (NCSs) with uncertain events and 
traffic are subject to violation of the nominal conditions used in the design and analysis of their behavior, 
it is essential to consider (somehow) the probability of these conditions being (or not) fully satisfied. This 
paper focuses on practical issues and discusses the effect of the distributions of delays on the 
determination of the most likely stability regions to be considered in the design of a NCS. An alternative 
methodology for the analysis of NCSs is proposed here for implementation in real cases. The 
methodology is based on the Monte Carlo method coupled with a sorting algorithm and a gradient search 
using the analysis of time responses. The proposed method is compared with a traditional technique 
based on the polytopic overapproximation method to provide the maximum possible delays. The obtained 
results yielded less conservative stability limits, aligned with the tendency to use adaptive control 
techniques appropriate for practical NCS applications. Experimental results show that the upper bound of 
the delays that preserves the stability may be higher than the corresponding bound for the constant delay. 
Case studies presented in the paper show that the most likely region of stability of the considered NCSs is 
heavily dependent on the time-delays distributions. The obtained reduction of conservativeness warrants 
further investigation on method reliability in other cases. 

Keywords: Monte Carlo method, Networked Control Systems, NCS stability, NCS modeling, probability 
distribution, variable delays. 


1. INTRODUCTION 

In networked control systems, NCSs, the field elements 
(sensors and actuators) are connected to the controllers by 
means of a data communication network. As shown in Fig. 1, 
an NCS can present, besides the dead-time of the plant (τp), 
delays in the sensor data acquisition (τs), in the execution of 
the control algorithm (τc), in the actuation (τa) and in the 
message transmissions between the sensor and the controller 
(τsc) and between the controller and the actuator (τca). A 
control loop closed over a data communication network has 
to cope with time-delays, delay variations, sampling 
irregularities, corrupted data and packet losses. In NCSs, 
there is, also, the difficulty in establishing a time reference 
due to synchronization problems between the clocks of each 
network element. 

Further, in a real NCS, the delays vary over a very wide 
range, appearing in both control signal and feedback 
measurement links, i.e., in the input and output of the plant. 
Being a time-dependent function it is of paramount 
importance the evaluation of how the dynamic variation of 
the delays interferes in the behaviour of the closed-loop. 
Depending on the traffic conditions, the NCS delays can 
exhibit large variations with very different statistical 
characteristics. The delays can present different distributions 
with time-varying parameters, e.g., presenting time-

dependent mean and variance. The occurrence of variable 
delays causes uncertainties in the representation of the loop 
dynamic. These uncertainties increase the complexity of the 
analysis and synthesis of the controllers, as well as the 
difficulty in simulating the real conditions by means of 
computational algorithms. 

 
Fig. 1. NCS Architecture. 

An important issue in NCS is the way that the delays and the 
corresponding dynamic behaviours are modelled. The great 
difficulty is to establish a realistic model with an integrated 
incorporation of the delay dynamic behaviours and all the 
phenomena present in a real NCS. 

The model should be feasible for purposes of controller 
synthesis and also analyzable by the available stability 
methods. Some modelling of NCS has been performed 
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elsewhere based on continuous time (Gao et al., 2008), 
discrete time (Heemels et al., 2010; Stefan et al., 2011) or 
hybrid models (Chen and Zheng, 2011). 

Recently, the implementations of control strategies more 
appropriate for NCSs are calling an increasing attention of 
many researchers. Among the most frequently mentioned 
control strategies, the following groupings could be 
highlighted: (i) classical techniques, such as PID and its 
derivations (P, PI, PD) (Khan et al., 2008) coupled or not 
with Smith predictors with some sort of adaptive feature (Du 
and Du, 2009) (ii) advanced strategies such as 
predictive/adaptive control laws (Jota, 1987; Pin and Parisini, 
2011; Caruntu and Lazar, 2011; Tejado et al., 2010; Tian et 
al., 2012), robust H2 and H∞ (Wu et al., 2010; Gao et al., 
2008), with explicit compensation of the control signal 
(Martins and Jota, 2009), event-based control (Wang and 
Lemmon, 2011), using switched systems theory (Donkers et 
al., 2011; Ma et al., 2009), Youla parameterization (Goodwin 
et al., 2008), (iii) artificial intelligence schemes using neural 
networks theory (Zhang and Wang, 2010), controllers based 
on fuzzy logic (Hanchevici et al., 2012) or genetic algorithms 
to tune the PID parameters (Hanchevici and I. Dumitrache, 
2012), (iv) stochastic control using optimal stochastic control 
(Nilson, 1998), hybrid Kalman filter (Stoica, 2012), to cite a 
few. Under realistic conditions, to guarantee satisfactory 
performance, it is imperative to consider the adoption of 
advanced control strategies (with some sort of adaptive 
mechanism, compensation techniques for the delays effects 
and mitigation of packet losses, or even a proper switching 
control scheme). Nevertheless, these sophistications add 
more complexity to the representation and stability analysis. 

Another challenge in NCS is how to obtain more realistic 
stability regions, due to the conservatism and the limitations 
of the analysis tools for real applications. It is important that 
the analysis tool be flexible concerning the adopted controller 
structure and feasibility (in terms of execution time and 
numerical conditioning), especially, when the number of 
uncertainties (inherent to real NCSs) increases. 

Several stability analysis studies of NCSs published in the 
literature (Heemels et al., 2010; Dritsas and Tzes, 2010; Gao 
et al., 2008 and internal references) are based on Lyapunov 
theory. The major limitations of this approach for application 
in real NCS (besides the difficulty in finding the candidate 
function) are the inherent conservatism. Especially if the 
candidate functions do not consider the specific 
characteristics of the delay dynamic behaviour and the 
probability of uncertain events (present in real NCSs, such as, 
varying delays, packet loss, unpredicted disconnections, etc) 
occurring or not. In the traditional Lyapunov-based analysis 
of systems with uncertain and bounded time-varying delays, 
stability cannot be guaranteed for delays with the upper 
bound greater than the analytical maximum constant delay 
(Liu and Fridman, 2009). However, in many particular 
systems (e.g. NCS with varying delays) the upper bound that 
preserves the stability may be higher than the corresponding 
bound for the constant delay (Liu and Fridman, 2009) (see 
discussions on quenching phenomena in (Louissel, 2001; 
Papachristodoulou et al., 2007 and internal references). 

Probabilistic approaches for the analysis of NCS stability was 
proposed in (Peng et al., 2009; Yue et al., 2009). In (Peng et 
al., 2009) a criterion based on a robust formulation was 
derived considering the probability that the delays occur in 
different time scales. Also in (Peng et al., 2009), the 
synthesis condition was derived and gains in order to 10-6 
were obtained. The small gains may allow an increase in the 
maximum delay as the expense of a significant performance 
restriction especially in real applications. Another problem is 
how to represent a real NCS with a relatively large number of 
uncertainties, switching structures and other advanced control 
structures (with, e.g., adaptive compensation technique), in a 
viable manner to implement these methods. 

Generally, in the analysis and synthesis methods presented so 
far in the literature, stability has been formally guaranteed for 
relatively limited delay variations and packet losses. 
However, in practical applications of NCS, with uncertain 
events and traffic conditions, it is not possible to have an 
absolute guarantee that the delays and packet losses are, at all 
times, within the a priori established maximum and minimum 
limits. Thus there is always a probability that the real system 
will become unstable. In practice, NCSs are subject to 
possible violations of the nominal conditions used in the 
design. Thus, for a realistic analysis, it should be considered 
(somehow) that these conditions may (or may not) be fully 
met. 

This paper intends to shed some light on the aforementioned 
issues by providing an alternative approach for the analysis of 
networked control systems for applications in practical cases. 
The proposed methodology is based on the well known 
Monte Carlo method (Metropolis and Ulam, 1949) and, under 
those conditions, provides the most likely stability regions. 
The intended task of this work is to evidence the importance 
of considering the probability distribution function of the 
delays in the NCS design. In this paper the effect of the 
variable delays (on the determination of the stability regions 
used for design of the NCS) is considered. The proposed 
method has great flexibility for the analysis of the effects, 
such as fluctuations in the sampling period and packet losses, 
as well as the control strategy adopted. This method has 
additional advantages for the operation of the real process, 
since higher delay limits (compared to those obtained by 
traditional methods based on polytopic approaches) can be 
applied without destabilizing the system, depending on the 
form in which delays occur. 

The paper shows that the most likely region of stability 
strongly relies on the time-delay distributions and 
consequently on time-delay statistical parameters. Depending 
on the type of the delay distributions (Gaussian, exponential, 
uniform, etc.) and their corresponding statistical parameters 
(mean, variance standard deviation, etc.), different regions of 
stability are achieved. In this paper, the maximum delay, that 
the NCS can cope with, has been used as a metric to evaluate 
the region of stability because the delay is one of the most 
critical variables in control loop closed over a network. The 
delays are considered uncertain and time varying (as 
observed in real NCSs). 
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2. PROPOSED METHOD 

The goal of the proposed method is to systematically evaluate 
the possible behaviours of the closed-loop system subject to 
uncertainties by analyzing its time response. This will permit 
evaluating the applicability of the various control techniques 
for solving the problems commonly encountered in NCS. The 
methodology, based on the Monte Carlo method coupled 
with a sorting algorithm (Sedgewick, 1978) and a gradient 
search (Yuan, 2008), intends to provide less conservative 
limits of stability or, equivalently, the most likely ones. As 
the accuracy of Monte Carlo algorithms depends on 
representativeness of random samplings, the best results are 
achieved by increasing the number of samples. The most 
likely stability regions can be probabilistically guaranteed 
with a finite (relatively large) number of samples. 

In this proposed method, one of the uncertain (or variables) 
parameters present in a NCS is represented as varying 
randomly (with possible abrupt changes) and the others vary 
with relatively slow variations within predefined ranges. All 
combinations of the parameters with slow variations (within 
the predefined ranges) are considered. The uncertain 
parameter, with possible abrupt changes, randomly generated, 
is applied in the model of interest (for all combinations of the 
other uncertain or variable parameters with slow variations) 
and the corresponding time response of the closed loop 
system is analyzed. The analyses of the time responses start 
by searching the first two peaks of the time response of the 
closed-loop system. However, it should be similarly 
expanded, whenever necessary, to three, four or more periods 
so as to improve the accuracy of the obtained value. 

Fig. 2 shows a flowchart of the core of the proposed method, 
for a given combination of the uncertain (or variables) 
parameters with slow variations. In this flowchart, each 
element of the uncertain parameter vector θ represents one of 
the possible uncertainties (or variables parameters) present in 
the NCS (θj, with j=1,..., m), θ1(l) is the value of the random 
uncertain parameter evaluated in the l-th sample (l=1,…, n), 

(i)θ1  represents the maximum achieved value of θ1 in the i-th 

iteration (i=1,…, imax), θ1f(i) is the filtered value of (i)θ1 and 

α1 is the chosen resolution. At each i-th iteration, n samples 
(l=1,…, n) of the closed loop time response subject to the 
uncertainties is evaluated. In the case studied in this paper, 
the time delay is considered a random uncertain parameter 
with abrupt variations and the controller gains are considered 
adjustable (adaptive) parameters with slow variations. The 
uncertain parameter ( 1θ ) is randomly generated with a given 

distribution (such that θ1min < θ1(l) < θ1max) and the other 
parameters (θ2,…,θm) are swept, with slow variations, in the 
considered ranges, for all allowable combinations. The initial 

value of (1)θ1  is also randomly generated. The value of 

(i)θ1 is incremented or decremented in order to converge 

towards the limits of stability, first, using a sorting 
(Quicksort) algorithm (Sedgewick, 1978) and, later, a 
gradient search (Yuan, 2008). Initially, the Quicksort 
algorithm is used to quickly come close to the stability border 
region; then an algorithm based on the gradient method 

(Yuan, 2008), is used to achieve better accuracy. The 

Quicksort algorithm ends when the value of (i)θ1  returns 

stable and unstable responses sequentially for four 
consecutive iterations, indicating that the stability border has 
been found. Subsequently, an algorithm based on the gradient 
method is applied to obtain the necessary convergence. In the 
algorithm based on the gradient method, it is considered that 

the derivative of the function of variation of (i)θ1  is constant 

and is scaled by a predefined factor, δ. 

 

Fig. 2. Flowchart of the proposed algorithm core (starting 
with a given combination values of the slow varying 
parameters). 

The amplitudes of the first and second peaks are initially 
considered in the analysis of the time response of the closed 
loop. If the amplitude of the second peak is higher than that 
of the first one (indicating a possible unstable response), the 

value of the upper limit random uncertain parameter (i)θ1  is 

decreased in the next iteration ( (i)θ(i)-δθ1)(iθ 1111  ). If the 

analysis of the first peak indicates a damped response, the 
upper bound of the random uncertain parameter (i)θ1  is 

incremented in the next iteration ( (i)θδ(i)θ1)(iθ 1111  ). It 

is expected that, at least asymptotically, the simulations tend 
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to indicate the threshold of the random uncertain parameters 
that will lead to stable responses (for all possible 
combinations of the other uncertain or variable parameters 
with slow variations in the considered ranges). The proposed 
algorithm introduces a forgetting factor with an appropriately 
chosen time-window (in this paper, it is considered 10% of 
the maximum number of iterations). Thus, whenever the 
maximum achieved value, (i)θ1 , exceeds the “filtered value”, 

θ1f(i), the filter is restarted with θ1f(i)= (i)θ1 ; otherwise 

θ1f(i)=β*θ1f(i-1)+(1-β)* (i)θ1 . 

The stopping criterion is established based on the difference 
between the maximum achieved filtered value up to the 
current iteration, θ1f(i), and the one calculated at the previous 
iteration θ1f(i-1). If, after a certain number of iterations 
(according to the chosen time-window), the difference θ1f(i)–
θ1f(i-1) is not greater than the chosen resolution α1 then the 
algorithm is terminated. It is important that the value of α1 be 

compatible with the magnitude of 1θ . Resolution α1 is chosen 
proportional to the sampling period, since this is a good 
metric to relate the magnitude of the delay. At the exit, the 
upper limit of the maximum uncertainties for the most likely 
stability region of the NCS in question is determined. The 
criterion allows a systematic analysis of possible behaviours 
of the NCS subject to uncertainties. Thus, it is expected that 
it be more suited for controller design in practical 
applications. 

Since delay is the most important uncertain parameter in an 
NCS, a numerical example with randomly generated 
uncertain delays will be presented in Section 3. A comparison 
is made with other methods available in the literature. 

3. CASE STUDIES 

3.1. Simulated case study 

In the next analysis, the model extracted from (Heemels et 
al., 2010) is used. This model is a well-known benchmark 
example frequently used in the NCS literature. It has been 
chosen to give a basis for comparison with other methods. 
The plant is represented by: 
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The loop is closed through a state feedback controller as in 
(2). 

)(][)( 21 tKKt xu  ,                                                   (2) 

K1 and K2 beings the gains of state feedback. In this case 
study, the uncertain parameter vector θ=[τ, K1, K2]

T, where τ 
is a random uncertain parameter, K1 and K2 are adjustable 
parameters. K2 is varied in the range of 1 < K2 < 20 and K1 is 
fixed at 3.75 (as in Heemels et al., 2010). The variable delays 
τ are randomly generated with gaussian and uniform 
distributions (such that τmin < τ(i) < τmax). The resolution used 
was α1=0.005 and the value of the factor δ1=0.5%. 

An NCS architecture, as depicted in Fig.1, is considered to 
analyze the effects of the delay statistics and to determine 
stability regions. In this architecture it is assumed that the 
network lies between the controller and the actuator (that is, 
τca=τ and τsc=0). 

In order to emulate the (variable) delay, an oversampled 
discrete-time model (with the main sample period h=1s and 
the secondary sample h2=h/200) has been used to generate 
the random delays at each time instant of intersampling, 
t=k*h2 (h2<<h), considering the delays as integer multiples 
of h2. The equivalent discrete model (with h2) used in the 
simulations is given by:  
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where the delays τ(k)   [0, τmax]. The discretization has been 
accomplished using a zero-order hold (ZOH) and the initial 
condition of the state vector used in the simulations was x0 

=[1 0]T. 

Fig. 3 shows the values of maximum variable delays as a 
function of speed gain, K2, obtained using the proposed 
method subject to delays with gaussian and uniform 
distributions. The results are compared to those given by a 
method called “Gridding Method” presented in (Heemels et 
al., 2010) which is based on polytopic overapproximation 
using the gridding idea with bounded norm. For 
completeness, the outcomes of the Nyquist method are also 
superimposed in Fig. 3. 

It is worth noting that the maximum delay to which this NCS 
can probabilistically be submitted is greater than the 
maximum fixed delays. This seemingly surprising result can 
be explained by the “compensation” effect caused by the 
variations of the delay at each sample (a positive delay 
variation can be followed by a negative one, and so on). Due 
to variations of the delays, the duration of the effective 
control signal applied to the plant is, in fact, variable (and, on 
average, much shorter than the maximum one). As a 
consequence, when designing networked controllers for real 
applications, if only fixed (maximum) delays are taken as 
actual conditions, the results will be far more conservative 
than necessary. This implies a significant reduction of the 
performance or may even indicate the non-existence of a 
feasible controller for the (nominal) considered conditions. 

Fig. 3 also highlights, comparatively, the delay values 
obtained by each of the aforementioned methods. The run 
times of the methods were: Nyquist 0.3s, Gridding 952s, 
proposed method with uniform delays 691s and with gaussian 
delays 699s. These tests confirm the viability of the proposed 
method in terms of runtime. As shown in Fig 3, the 
maximum limits obtained by the proposed method with 
gaussian distribution delays were higher than those obtained 
with uniform distribution delays. This reflects the importance 
of analyzing the effects of delay distribution in the closed 
loop response of the system for an appropriate design. 
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Fig. 3. Comparison among the most likely stability regions: 
Gridding (dashed line), proposed method with gaussian 
variable delays (stars), proposed method with uniform 
variable delays (dots) and Nyquist with constant delays 
(continuous line). 

To analyze the effects of the delay statistics in the closed loop 
behaviour and so to demonstrate one of the possible 
application of the proposed method, system (3) was used, 
with the state feedback controller (2), as in Heemels et al. 
(2010). Two extreme values of one of the uncertain (variable) 
parameters were chosen, namely θ=[τ, 3.75, 1]T and θ=[τ, 
3.75, 8]. 

Fig. 4 illustrates the simulated results for θ=[τ, 3.75, 1]T with 
200 samples where the maximum delay obtained is 
τmax=0.075s. Fig. 4 (a) presents the profile of the simulated 
delays with uniform distribution as a function of the sample 
number. Fig. 4 (b) shows the histogram with the number of 
occurrences of delays between 0 and 0.075s. Fig. 4 (c) 
illustrates a typical time response of the closed-loop system 
simulated with the delays depicted in Fig. 4 (a). The 
(critically damped) oscillatory response indicates that the 
system is operating at the stability threshold as predicted by 
the algorithm. By using the Nyquist criterion (with a given 
fixed delay), for one of these conditions, i.e., θ=[τ, 3.75, 1]T), 
the maximum achieved value, τmax , is equal to 0.033s. 

Fig. 5 shows the simulated results for θ=[τ, 3.75, 8]T with 
gaussian distribution. Although the value of the maximum 
delay returned (τmax=1.655s) was greater than that obtained 
from the Nyquist criterion (τmax=0.865s) and from the 
Gridding method with variable delays (τmax=0.803s), the 
result of Fig 5 is also conservative, since the response is well 
damped in this condition. To obtain a less conservative result 
it is important to expand the evaluation beyond the second 
peak in the time response, since all responses with increasing 
initial oscillation are classified by the method as unstable 
(even if the convergence occurs afterwards). 

Table 1 highlights the values of maximum delay, average 
delay, variance of the delays and the time spent repeating the 
same algorithm 10 times for θ=[τ, 3.75, 8]T (runs #1 to #10) 
with uniformly distributed random delays. Table 2 presents 
the same parameters for delays with gaussian distribution. 
Note that, in all tests, the obtained average delay is shorter 

than the maximum delay obtained by the Nyquist criterion 
(τmax=0.865s). 
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Fig. 4. Stability threshold to (3) with controller (2) (θ=[τ, 
3.75, 1]T): (a) delays applied with uniform distribution (b) 
number of occurrences of delays and τmax=0.075s (c) time 
response of the closed-loop. 
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Fig. 5. Stability threshold to (3) with controller (2) (θ=[τ, 
3.75, 1]T): (a) delays applied with gaussian distribution (b) 
number of occurrences of delays and τmax=1.655s (c) time 
response of the closed-loop. 

Fig. 6 presents a surface plot of the region of stability 
obtained for the simulated example with three uncertain 
(variable) parameters θ=[τ, K1, K2]

T, where τ represents the 
random uncertain parameter (with uniform distribution) and 
K1 and K2 the variable (adjustable) gains (in the range of 1 to 
20). The surface shows the limits of the variable delays such 
that the system remains stable as a function of the parameters 
K1 e K2 (which can be adjusted, for example, according to the 
delay variations to ensure stability or performance conditions 
using an adaptive controller). The maximum value obtained 
for the random delays with uniform distribution was 1.775s 
for the parameters K1=1 and K2=5. This surface can be useful, 
for instance, as a metric in adaptive control strategies. 
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Table 1. Numerical simulation results with θ=[τ, 3.75, 8]T 
and uniform distribution. 

Run 
# 
 

Run 
time 
(s) 

Initial 

1θ  
Average 
Delay 

Variance 
 max  

1 27.676 6.649 0.623 0.132 1.300 
2 19.092 5.266 0.641 0.135 1.290
3 18.068 1.302 0.663 0.132 1.265 
4 42.885 2.492 0.697 0.130 1.270 
5 21.033 2.826 0.689 0.146 1.370 
6 40.927 4.798 0.685 0.137 1.305 
7 30.456 7.401 0.659 0.149 1.325 
8 27.110 1.666 0.633 0.133 1.300 
9 23.391 5.953 0.640 0.147 1.305 
10 43.960 2.599 0.644 0.149 1.320 

Ave_ 
rage 29.460 4.095 0.657 0.139 1.305 

Table 2. Numerical simulation results with θ=[τ, 3.75, 8]T 
and Gaussian distribution. 
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Fig. 6. Stability region with θ=[τ, K1, K2]
T, being the τ 

random uncertain parameter, K1 and K2 being varied in the 
range of 1 to 20. 

3.2. Real case study 

The proposed method has been applied in a real case study 
using an NCS implemented with a control and monitoring 
platform called NCS-CMUF (Jota et al., 2011). Typical 
characteristics of NCS, such as maximum delays and the 
number of packet droupts, can impose severe limitations on 
performance of the control loops (Peserchini and Jota, 2013; 
Baillieul and Antsaklis, 2007). When a real time system is 
implemented, it is essential that the hard time constraints, 
where the computer system must react within specific time 
bounds (Baillieul and Antsaklis, 2007), be evaluated and 
properly tackled. In the proposed platform the algorithms are 
capable of dealing well with the time constraints and 
guarantee the performance of the closed loop control for 
systems sampled in order of tenths of seconds. 

A first order plant (with time constant equal to 32 seconds) 
was controlled using a PI Controller (h=5s, Ti=5.1s and 
Kc=1). It is considered that the sensor is time-driven and the 
controller and the actuator are event-driven. In this platform, 
the messages have timestamps and the control loop is closed 
with four levels of the networks: CAN (Controller Area 
Networked) network; RS-232 serial and two levels of 
Internet, as shown in Fig. 7. Table 3 presents the values 
returned for the proposed method repeating the same 
algorithm 10 times (with exponential distributed random 
delays, this distribution is most similar to the measured real 
delays (Batista, 2011). 

 

Fig. 7. CMUF architecture. 

Fig. 8 shows the actual measured data (at an interval of more 
than 100 hours and controlling in real time) of the plant 
output and input, the time delays and histogram with number 
of occurrences of the delays. The time delays were measured 
between sensor and actuator messages (τ= timestamp3 – 
timestamp1 = τsc+ τc+ τca+τa). The values of the maximum 
delay (equal to 236ms) and the medium delay (equal to 
14.23ms) are very smaller than the delays listed in Table 3 
for the stability limit. As an alternative to obtain longer 
delays (in the order of seconds, as listed in Table 3), an extra 
lag has been introduced. A delay buffer has been used in the 

Run # 
 

Run 
time 
(s) 

Initial 

1θ  
Average 
Delay 

Variance 
 max  

1 31.023 8.607 0.807 0.087 1.655 
2 25.884 3.908 0.782 0.104 1.675
3 33.152 9.270 0.783 0.096 1.665 
4 45.409 1.538 0.755 0.091 1.625 
5 36.140 5.104 0.781 0.086 1.570 
6 32.866 9.564 0.817 0.095 1.700 
7 46.016 6.499 0.815 0.088 1.650 
8 42.087 5.595 0.723 0.093 1.565
9 36.975 5.512 0.779 0.106 1.505 

10 30.834 8.688 0.773 0.090 1.660 
Ave_ 
rage 36.039 6.429 0.782 0.094 1.627 
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controller to hold the messages before they are sent to the 
actuator, thus generating a longer delay (τBuffer). 
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Fig. 8. Real case study: (a) plant output (b) control signal (c) 
time delays (d) histogram with number of occurrences of the 
delays.  

Fig. 9 shows the measured real data of the plant output and 
input, the time delays (with buffer of delays generated with 
exponential distribution) and histogram with number of 
occurrences of the delays. The values of the maximum delay 
(equal to 22.580s) and the medium delay (equal to 4.419s) 
are similar to the medium values returned by the method 
proposed. The maximum delay (22.580s) applied in the real 
NCS is greater than the obtained by the Nyquist criterion 
with a given fixed delay (7.160s in this case) and the 
measured plant output confirms the stable response. 
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Fig. 9. Real case study with buffer to increase the delays: (a) 
plant output (b) control signal (c) time delays (d) histogram 
with number of occurrences of the delays. The time delays 
were also measured between sensor and actuator messages 
(τ= timestamp3 – timestamp1 = τsc+ τc+ τBuffer+ τca+τa). 

The proposed method results in values closer to the 
instability limit (e.g., θ=[τ, 3.75, 1]T, Fig. 4), and in some 
conditions (e.g., with higher gain θ=[τ, 3.75, 8]T, Fig. 5) it 
can present a degree of conservatism. However, even with its 
inherent conservatism, the proposed method provides a 
stability region (Fig. 3) greater than the current methods and 

hence may be more suitable for applications in which 
adaptive control techniques are employed. Furthermore, it 
allows showing the impact of the delay statistics (Tables 1 
and 2) in the determination of the stability regions. The 
consideration of the statistics of the delays has not yet 
received due attention in the literature and how this 
information could be effectively used in the analysis and 
synthesis of NCSs is an open problem. These issues were 
recently addressed in (Peng et al., 2009). In future work, it is 
intended to validate the proposed methodology in a real case 
using an NCS-CMUF platform (Jota et al., 2011), which is 
being installed in the Blood Center of Belo Horizonte for 
monitoring and control of blood component refrigerators. 

Table 3. Numerical simulation results with exponential 
distribution for the real case study. 

 

4. CONCLUSION 

From the results presented in the paper, it can be concluded 
that broader stability regions of NCSs can be obtained when 
compared to those obtained from the currently most used 
methods. The proposed methodology provides some insight 
towards the determination of more realistic limits of stability 
for practical applications. It is expected that it could be useful 
in the evaluation of the applicability of the various control 
techniques for solving NCS problems. Using the proposed 
method, it is possible to analyze the behaviour of NCSs 
subject to different uncertain (or variable) parameters in an 
integrated way. It also provides information to evaluate the 
effects of uncertain parameter statistics on the determination 
of the most likely regions of stability, with an increase, under 
certain conditions, of more than 100% in the maximum delay. 
The use of numerical simulations, based on a Monte Carlo 
scheme, appears to be an interesting alternative and deserves 
to be explored for application in NCSs, since the practical 
limits obtained can be used as a metric in the design of the 
networked control. Larger sample number and longer time 
simulations should be used for more precise and reliable 
results. 

The study presented in the paper has made it clear that the 
stability limits of NCSs depend on the way in which delays 
occur. In the case of variables delays, values beyond the 

Run 
# 
 

Run 
time 
(s) 

Initial 

1θ  
Average 
Delay 

Variance 
 max  

1 17.216 82.150 3.968 12.252 22.575 
2 12.931 33.300 4.126 12.061 21.150 
3 19.620 67.900 3.777 10.757 19.475
4 9.304 112.350 3.797 12.411 23.575
5 12.480 15.225 3.667 12.245 22.100 
6 8.251 44.725 4.054 12.986 21.575 
7 6.925 108.575 4.097 13.189 22.650 
8 10.604 27.700 3.846 11.155 24.000 
9 7.437 27.850 4.136 14.499 21.600
10 14.124 41.300 4.325 15.566 25.750

Ave_ 
rage 11.889 56.108 3.979 12.712 22.445 
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limits obtained for fixed delays can be supported by NCSs 
without destabilizing the system. The knowledge of the delay 
statistical parameters is of paramount importance, since they 
affect significantly the behaviour of the closed loop response. 
The delay statistics should, then, be evaluated in real-time 
and can be used even in adaptive strategies to obtain a better 
compensation strategy. 
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