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Abstract: The receding horizon strategy can successfully manage controlling an 
industrial positioning system demanding high-performances. The most important 
difficulties rise when handling constraints imposed by the physical limitations or 
stability requirements. In the present paper, the feasibility analysis for the optimal 
control sequence will be used as a tuning procedure for the predictive strategy. 
Further the time-consuming on-line constrained optimization is avoided by means of 
an off-line computed linear law, whose limitations are adapted on-line. The linear 
dependence of the limitations on the context parameters is detailed and the linear 
expression of the adaptation mechanism is found.  
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1. INTRODUCTION  
 
The positioning systems control problems 
represent a wide domain of applications. The 
development of  fast processors opens up the 
possibilities to further apply advanced 
techniques for the control of the electrical 
drives. Usually the PID controllers are used with 
success but their tuning turns to be error-prone 
when constraints have to be considered. The 
control laws based on the receding horizon 
principle can improve and optimize the 
performances of the control scheme due to their 
prediction capabilities and most important, can 
handle constraints due to their time-domain 
formulation. 

Generalized predictive control (GPC) is such a 
technique with success in the industrial 
applications. Besides its qualities, the GPC 
provided in the unconstrained case linear laws 
easy to implement in their polynomial 
formulation (Clarke, et al., 1987) and can further 
be reinforced by adding equality constraints at 
the end of the prediction horizon (Clarke, and 
Scatollini, 1991) for stability reasons. The 
application to fast processes with constraints 
was delayed as the optimal control action was 
provided by an on-line optimization procedure, 
generally a time consuming process. Different 
techniques where proposed, from the active-set 
methods to LMI (Maciejowski, 2002). Lately, 
the idea of moving a part of the computational 
effort off-line emerged and alternative 
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techniques (Bemporad, et al.,2002; Seron, et al., 
2002) exist based on look-up tables of linear 
affine controllers for regions of the state -space. 
 
Our approach is situated somewhere between the 
two mentioned possibilities by exploiting the 
special geometrical design characteristics of the 
constrained GPC (CGPC) law. There is no look-
up table just because the search space is 
designed to be one-dimensional but there are 
multiple linear RST laws defined in order to 
adapt on-line the saturation limits of the control 
signal. This is possible due to the opportunity to 
define the constrained control interval by means 
of parameterized polyhedra. Thus, the real-time 
computational needs are not significantly 
augmented and the constraints are handled in an 
intelligent manner, not by a blind saturation. 
 
 
2. THE INDUCTION MOTOR 

BENCHMARK 
 
The considered plant is an experimental setup of 
a squirrel cage induction motor, a benchmark 
system for the positioning control laws of 
asynchronous machines (Mendes, and Barbot, 
2002). Details regarding the general theory of 
electric machines and induction motors could be 
found in the literature (Leonhard, 2001). The 
machine considered is a three phase (squirrel) 
cage asynchronous motor with two pairs of 
poles in star connection, of power 1.1 KW, 
nominal torque 7Nm, inertia of 0.038 Kgm2, 
viscous friction coefficient of srad Nm 01.0 -1  and 
300V alimentation, delivering 10A maximum 
per phase allowing a maximum machine torque 
of 21 Nm. The position sensor allows 14400 
points per rotation. The motor load is a powder 
brake. 
 
The internal torque/speed control follows the 
standard approach of an induction motor, a 
Direct Field Oriented Control (Leonhard, 2001) 
at a sample rate of 76.6µs (13.05 kHz). In the 
external loop the field weakening assures that 
the flux reference decreases when the nominal 
speed of the motor has been exceeded. The 
position controller has to provide the position 
tracking performance as in Fig. 1. 
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Fig. 1.  Structure of the direct field-oriented control 

(DFOC) with a position loop controller 
 
The pulse width modulation (PWM) control of 
the inverter is implemented in a PC with RT-
Linux operating system and the experimental 
results presented in this paper have been 
obtained with such a control system build in a C 
environment. A nonlinear simulator is available 
also and its files could be further used with the 
real-time system. 
 
The predictive control law will be designed 
starting from a system similar with the one 
depicted in Fig. 2. It represents the mechanical 
and electrical part together with the zero order 
holder and the sampler. The electrical part is 
represented by a first order transfer from the 
torque setpoint to the effective torque. The eτ  
constant representing the current loop, the 
DFOC and the inverter dynamics will be 
neglected as its influence is insignificant, 
compared with the mechanical time constant. 
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Fig. 2.  Model for the MPC design 
 
The mechanical part linked to the motor is 
characterized by the motor inertia J, the friction 
coefficient f and Γ the load torque. The discrete 
time transfer function between the electro-
mechanical torque and the angular displacement 
for a sampling time of ms0724,16.7614 =×=eT  is 
given by: 
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3. GENERALIZED PREDICTIVE  
CONTROL 
 
Generalized predictive control (GPC) is part of 
the model based predictive control (MPC) 
family. All these strategies are based on the fact 
that the system evolution can be predicted over a 
horizon taking into account the former control 
inputs, past plant outputs and future control 
sequence. The unconstrained GPC states the 
optimal control sequence in a polynomial form 
derived through analytical minimization of a 
cost function. The result is a control law under 
the RST form, an important implementation 
advantage. 
 
The GPC algorithm major characteristics, 
delimita-ting it in the predictive control family 
are: 
• The use of a CARIMA plant model: 
 

)()()1()()()( 111 −−− +−= qttuqBtyqA ∆ξ           (2) 
 
where u, y are the system input and output 
respectively, )(tξ  is a centred Gaussian white 
noise, 11 1)( −− −=∆ qq  is the difference operator, 
A and B are polynomials in the backward shift 
operator 1−q of respective degree an , bn . 
• The cost function is quadratic in the tracking 
error and control effort over the receding 
horizon: 
•  
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with )(ˆ jty +  the output prediction, uN  the 
control horizon, 21 , NN  the minimum and 
maximum costing horizons, λ  the weighting 
factor and w the setpoint. 
 
Based on the model previously mentioned (2), 
an optimal j-step ahead predictor can be 
constructed: 
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where the jjj HGF ,,  polynomials are solutions 
of the Diophantine equations: 
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Replacing )(ˆ jty +  in (3) and solving: 
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leads to the optimal control sequence. Only the 
first control action is effectively applied to the 
plant input. The procedure is restarted at the 
next sampling period leading to a linear RST 
law (Fig. 3a) with improved performances and 
stable behaviour. 
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Fig. 3a.  Control law under RST form 

 
GPC can be implemented by a low-complexity 
controller due to the possibility of an analytical 
expression of the minimum in (3). 
In order to validate different controllers and 
their capabilities, a position benchmark cycle is 
used [10], where the speed reference increases to 
the nominal speed and descends to zero with 
different profiles. Fig. 3b presents the position 
and motor load trajectories, while the rotor flux 
is constant. This cycle enables to test the 
position loop behavior at very slow and zeros 
speeds (Fig. 4) with load variations, at nominal 
speed and during parabolic position tracking. 
This last part is useful as the PID control laws 
are characterized generally by a non-zero steady 
state error. 

 
Fig. 3 b.  Position trajectory and motor load 
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Fig. 4.  Benchmark related speed trajectory 
 
3.1 Inequality Constraints 
  
Generally, by considering inequality constraints, 
the search domain can be restricted to an 
intersection of half planes (3). The resulting 
domain is a convex polyhedron and by the fact 
that the cost function is quadratic in the 
predicted error and the control effort, we are still 
dealing with a convex optimization problem. For 
the unconstrained case the search domain is 
represented by the universe polyhedron. 
 
i) Constraints on the input update can be given 
by the actuator’s limitation. The mathematic 
form is: 
 

uNkuktuktuu ≤≤≤−+−+≤ 1,)1()( ∆∆             (7) 

 
and the matrix representation: 

 

uIku u ∆∆ 11 ≤≤                                                (8) 

 
with [ ]TNu u

uuk ∆∆= ,,1 L a vector of future control 
updates, I a Nu-dimensional eye matrix, uu ∆∆ ,  
the upper and lower bounds, and 1 an 12 NN −  
vector whose entries are one. 
  
ii) Other performance constraints. Such 
constraints are related to the application area, for 
example in robotics: the position trajectory can 
be prohibited in some zones. These limitations 
are generally translated by challenging 
performances related to the overshoot of the 
response and could be prescribed as: 

 

21),()( NkNktwpkty ≤≤+⋅≤+                       (9) 

 
where p is the percentage corresponding to the 
desired overshoot (e.g. 1%for  01.1=p ) or 
simpler: 

 

NkNykty ≤≤≤+ 1,)(ˆ                               (10) 

 
iii) The predictor. All the constraints on 
variables linked to the system dynamics use as 
key element the output predictor with its two 
parts: one related to the future control actions 
and the other dependent on the context  of the 
system. In a matrix form: 
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The elements kg representing the step response 
coefficients are in fact the jG  polynomials 
coeffi-cients at each prediction time and 
compose the matrix uNNN ×+−ℜ∈ )1( 12G : 
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3.2 End-point Constraints 
 
Another important class of limitations is 
imposed by stability purposes (Clarke, and 
Scatollini, 1991) in terms of constraints at the 
end of the prediction horizon. The idea is to 
force the evolution of the system to a close 
neighbourhood of the setpoint. For infinite 
prediction horizons this is expressed as:  
 

22 ,)()()(ˆ NketNtwkty k >∀⋅≤+−+ −δβ        (14)  

for a given function )(tβ  and a fix δ . 

 
In the case of GPC and a finite horizon, the 
frame-work changes and one can impose: 
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where m is the number of end-point constraints. 
Despite the theoretical developments, the 
terminal constraints could be expressed by 
equalities at the end of the prediction horizon: 
 

mNkNNtwkty +≤<+=+ 222),()(ˆ              (16) 

 
For the induction motor benchmark, the use of 
this approach may not be the best choice for the 
position setpoint in Fig. 3. The equality 
constraints at the end of the prediction horizon 
(16) could raise problems due to their inability 
of handling higher degree set-points which is the 
case of our application. For a set-point of order 
k, zero steady state error is obtained if: 
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Obviously, in the general case, this relation is 
impossible to fulfill for 1>k  if the system 
doesn’t include integrators. In the induction 
motor case, the controller can be designed to 
lead to convenient results in the unconstrained 
case. If terminal constraints as in (16) are 
considered, the steady state error is non-zero 
even if not very important. 
In the following a simpler and direct approach 
which verifies the necessary conditions of zero 
steady error for the ramp part of the trajectory 
will be used: 
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4. OPTIMAL CONTROL SEQUENCE 
 
4.1 Unconstrained case 
 
For a GPC law, the cost index (3) can be written 
as: 
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where [ ]T21 )()( NtwNtw ++= Lw . The opti-
mum of J could be found analytically by making 
the gradient equal to zero leading to 

fQk 1−−=u . Further these results allow the 
representation of the GPC law by a RST 
formulation. 
 

4.2 Terminal constraints 
 
With the cost function (29) and adding the end-
point constraints one has to find the optimal 
sequence for: 
 

ccuc

uuu

wlGts

J

−=

+=

k

kfkQk
uk

..

5.0min TT

                           (31) 

 
Appling the Lagrange multipliers: 
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which is linearly dependent on the past inputs, 
past outputs and the setpoint and can easily be 
translated in an RST formulation. 
 
 
4.3 Non-parameterized inequality constraints 
 
If inequality constraints are defined on the future 
control updates, the search domain is intersected 
by half-planes and the unconstrained optimal 
may be retrieved outside the allowed polyhedron 
Fig. 5.  

 
Fig. 5.  Global optimum outside the feasible domain 

 
One choice is to saturate the values lying outside 
the bounds. The performances are poor as 
generally the saturated values are far from the 
constrained optimal combination. In order to 
overcome this difficulty, a transformation of the 
search space is performed: 
 

uu kQk 2/1* =                                                (30) 

 
The isocost ellipses are changed into circles, 
Fig. 6.  
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Fig. 6.  Regions with the same RST linear law 

 
Thus a delimitation of the search space is made 
and a different linear RST law can be defined 
for each part. The control laws are memorized in 
a look up table and at each sample time a search 
procedure retrieves the RST for the context of  
the system. There are two disadvantages, first 
related to the number of laws which is growing 
with the dimension and the complexity of the 
feasible domain. The second is that constraints 
may depend on the context parameters and thus 
the search space cutting might not be fixed. In 
this case the search in the look-up table becomes 
even more time-consuming. These aspects have 
to be considered when designing the constrained 
GPC law. 
 
 
4.4 Mixed constraints - Parameterized 

polyhedra 
 
The equality constraints offer the advantage of 
decreasing the degrees of freedom for the 
optimization problem. The unconstrained case 
supposes a uN  dimensional polyhedron. Using 
m equality constraints the dimension of the 
domain is mNu − . Solving on-line an 
optimization with mix constraints employs 
active-set or interior point methods. 
For the induction motor, a GPC law having 

2=uN  and 1=m , the inequality constraints 
with terminal constraints restrain the search to a 
segment Fig. 7a. 
The support of the line given by the equality 
constraints has a variable offset dependent on 
the current setpoint and on the system history 
(Fig 7b). This fact may lead to infeasibility if the 
line does not intersect the domain of available 
input updates. Such cases are to be avoided and 
have to pass an infeasibility analysis. 
 

    
Fig. 7  Domains resulting from mixed constraints 

 

If the infeasibility possibility is obviate, one can 
still distinguish specific cases for the first 
control action Fig 7b,c. This first increment is a 
very important variable as it is the one 
effectively applied at the plant input and in the 
same time is the only effective degree of 
freedom because Nu-m=1. 
 

 
Fig. 8.  ? u1 variation – a parameterized polyhedron 

 
The limits of the interval are dependent on the 
stated bounds (7), uuu ∆≤∆≤∆ 1  but depend also 
on the intersection of the line with the limits on 
the control increment at the second sampling 
time. As a result, this interval can be represented 
as a parameterized polyhedra on the parameter 

cc lw − , Fig. 8. 
 
 
4.5 Implementation 
 
The linear control law in the RST form could be 
found when terminal constraints are considered. 
For the induction motor, the GPC law in (29) 
will provide at each sampling time a control 
sequence: 
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The first input increment *

1u∆  is applied to the 
plant. This update must be done only after a 
check is made to verify if this value is included 
in the allowed interval of variation at the current 
sampling time (the limits of the interval must be 
available). These limits correspond to the 
equations: 
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If the matrix cA  is not full rank, we are dealing 
with degeneracy and the values au1∆  and bu1∆  
should be set to infinity as the line will not touch 
the limits on the second input update.  
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The procedure is the same for control laws with 
1>m  and 1+= mNu . The difference is that for 

each inequality constraint such a limit value will 
exist. However, the number of inequalities is 
definitely lower than the number of regions 
computed by other methods. 
 
For the study case followed along this paper, we 
note 
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the equation A and B are solved and the 
solutions are: 
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Remark : The linear dependence of au1∆  and 

bu1∆  on the past input, past outputs and future 
setpoint is not exactly a RST form as it includes 
an affine part depending on u∆  and u∆ . Its 
implementation is the same as for the classic 
RST one. 

 

Finally in order to be validated, the optimal 
control increment *

1u∆  has to satisfy: 
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otherwise is replaced by the violated bound. 
 
 
5. EXPERIMENTS 
 
For the induction motor presented in section II, 
the selected constrained GPC law was 
implemented. During the experiments we 
proceeded from simulations in a Matlab 
environment allowing the feasibility analysis to 
real-time experiments. More than that, for the 
GPC law with terminal constraints, the direct 
implementation of the RST without the 
limitation mechanism performed well, without 
passing the upper and lower bound {2; -2},   
Fig. 9. 

 

 
 

Fig. 9.  The position response, the error and speed 
 
The opportune choice of the end-point type of 
constraints proves to provide a zero steady error 
for the ramp part of the trajectory. The results 
verified the tuning statements. Some 
experiments were affected by the measurement 
noise and thus a robustification procedure was 
employed, (Rodriguez, and Dumur, 2002). 
 
A closer look on the alchemy of the GPC law 
proves that the optimal sequences without the 
limitation mechanism are violating the 
constraints on the part of the commands which is 
not effectively applied to the plant input Fig 10. 
 

 
 

Fig. 10.  The distribution of control actions 
 
If the mechanism of limitation is taken into 
conside-ration the slight violations will be 
overcome, Fig 11. 

 
 

Fig. 11.  The distribution of control actions 
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Fig. 12.  The position response for the CGPC law 
 
The real-time software used for the control 
procedure does not support affine expression of 
a linear control law. In order to prove the 
qualities of the control laws the nonlinear 
simulator of the induction motor was used, 
confirming the theoretical results, Fig. 12. 
 
 
6. CONCLUSIONS 
 
The paper presented an application of the 
constrained predictive control to an induction 
motor plant. The contributions where made 
towards the real-time implementation of the 
constrained optimal sequence by avoiding the 
on-line optimization. In counterpart, three linear 
laws where memorized, one linear RST for the 
unconstrained part of the evolution and two 
linear affine RST descriptions for the on-line 
adaptation of the saturation limits. The 
procedure proved to be appropriate for all the 
cases where the geometrical representation of 
the search space is represented by a 
parameterized interval. If this domain is of 
higher dimension, look-up tables with affine 
control laws for each critical region of the 
context parameters can be used. 
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