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Abstract: At the beginning of a new millenium scientists are closer than ever to the human 
cognitive model and, as a consequence, to the deeper understanding of life mechanisms. We can 
speak now, with a sufficient scientific reason, of a new generation of robots whose essential 
characteristic is the capacity of interaction with the intelligent beings. Communication, algorithm 
configuration, learning and decision are possible through a two layer organization of the control 
system.  
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1. INTRODUCTION 

The integration of advanced environment 
perception and communication devices into 
mechatronic structures facilitates the 
development of strongly associative information 
systems. Consequently, by the modal fusion at 
the different presentation and multisensor 
processing levels, object and event recognition 
and classification in open environments could 
ensure the robustness of the perception function. 
Another important function that can be 
implemented in these robots is the environment 
adaptability by means of perception, 
representation, reasoning and action (Fig. 1). 

The recent explosion in computing power has 
enabled the implementation of highly 
sophisticated control architectures and 
algorithms for mobile robots.  

 
Fig. 1 The organization of adaptation and 

communication functions in a mobile robot control 
system 

The principles of animal intelligence are 
extremely important to roboticists. 
Conceptualizing these different aspects of 
intelligence by exploring biological and 
cognitive sciences for insights in intelligence, 
one intelligent mobile robot could be defined as 
an artificial system which integrates the main 
attributes of the intelligence – perception, 
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learning, planning, reasoning and 
communication.  Under this definition, an 
intelligent mobile robot can be an agent 
(Dumitrache, 1996). An agent is self-contained 
and independent, it has its own "brain" and can 
interact with the world to make changes or to 
sense what is happening (Murphy, 2000).  

If the learning function is also integrated, one 
can speak about the humanoid robot, capable of 
communication and efficient adaptation in a 
priori undefined environments. In this context 
groups of autonomous mini-robots could be 
defined that can ensure a collective intelligent 
behavior by communication. 

This type of organization of the adaptation and 
communication functions in a mobile robot 
control system assures the fact that the robot is 
able to: 

• communicate in an intelligent way with the 
environment and with the other robots; 

• react in hostile environments and to adapt to 
a variable evolution context by learning and 
behavior generation; 

• communicate by means of natural language, 
being flexible in the process of decision 
making; 

• integrate the informatic system with 
multiple facilities that are specific to the 
intelligent agents and to communicate in an 
intelligent way with the mechatronic 
structure; 

• assure the hardware and software 
reconfiguration capacity, that means a 
complete fault detection ability. 

Under the above description, one can speak 
about a cognitive robot.  

Therefore, a new era is opened in the field of 
intelligent communication systems by the 
cooperation between cognitive robots, as 
intelligent agents, and, respectively, between 
robots and human operators.  

The integration of heterogeneous members into 
an intelligent behavior entity with specific 
abilities as adaptation, self-organization, 
cooperation and evolution towards the 
accomplishment of some global objectives 
becomes possible as long as attributes as robust 
perception, learning, interaction and evaluation 

could be associated with a new generation of 
mobile robots, capable of interactions with 
intelligent beings. 

The purpose of this paper is to present state-of-
the-art in mobile robot control and to present 
results of using artificial intelligence techniques 
like fuzzy logic and artificial neural networks in 
certain areas of mobile robot control.  The   
validity and performance of such an approach on 
a real world control problem is demonstrated by 
examples at hand.  

The paper is organized as follows. Section 2 
presents state-of-art in the control problem of 
mobile robots. Section 3 describes recent 
advances in neurophysiology, ethology and 
cognitive psychology that raise issues in 
transferring animal models of behavior to 
robots, helping to formalize aspects of behavior. 
The following sections introduces the reader to 
some real world examples of mobile robot 
control. Section 6 gives some conclusions and 
directions of further research. 

2. STATE-OF-ART IN MOBILE ROBOT 
CONTROL 

Mobile robotic systems benefits of an 
impressive repertoire of kinds of learned 
behavior, navigation and map building. They are 
interesting not only from the point of view of 
robotic applications but also for their 
comparison with similar performance in 
animals. 

Mobile robots are considered situated agents, i.e. 
mobile devices with tight coupling between 
perception and action. In real world, perception 
and action are tightly coupled in the living 
beings.  

When an agent acts, it interacts with its 
environment (Fig. 2) because it is situated in that 
environment (as an integral part of the 
environment). By taking action, the agent 
changes things in the environment or changes 
the way it perceives the environment (e.g. move 
to a new viewpoint, etc). Therefore the agent's 
perception of the world is modified. This new 
perception is then used for a variety of 
functions, including both cognitive activities 
like planning for what to do next as well as 
reacting.  



CONTROL ENGINEERING AND APPLIED INFORMATICS  
 
 

13

The evolution of the mobile robot is defined by 
its behavior in the specified environment, taking 
into consideration the task it has to fulfill.  

An agent is completely defined by a 
simultaneous description of the agent (mobile 
robot), of the task and of the environment. One 
can speak about the the agent - task - 
environment triangle (Fig. 2).    
 

 
Fig. 2 The mobile robot – task – environment 

triangle 

The “intelligence” is the property of a system 
that emerges when procedures of focusing 
attention, combinatorial search and 
generalization are applied to the input 
information so as to receive the output results 
(Dumitrache, 2000).  

When referring to mobile robotics, these 
concepts transforms into mechanisms of 
perception, processing and behavior generation 
(see Fig. 2).  

Today, autonomous mobile robots are the 
closest approximation yet of intelligent agents, 
the age-old dream. For centuries people have 
been interested in building machines that mimic 
living beings. From mechanical animals, using 
clockwork, to the software and physical agents 
of artificial life – the question regarding a 
complete definition of life and the understanding 
of life mechanisms always motivated research.  

An “intelligent” mobile robot – a situated agent 
– is a mechanical structure that can operate 
autonomously (Murphy, 2000), i.e. it is able: 

a) to move in its environment; 

b) to adapt to the changes in the environment; 

c) to learn from experience; 

d) to modify its behavior (its way of acting);  

e) to build internal representations of the 
surrounding world that may be used for the 
decision making process (for example, for 
navigation).    

 

Categories of Mobile Robots 

A robot's function, operation and building 
requirements are defined by the robot's own 
behavior within a specific environment, taking 
into account a specific task.. 

While a mobile robot needs locomotion 
mechanisms that enable it to move unbounded 
throughout its environment with a desired 
degree of autonomy, a large variety of possible 
ways to move are available today. Among these, 
in the laboratory there are research robots that 
can walk, jump, run, slide, skate, swim, fly, and 
roll.  

Taking into consideration that biological 
systems succeed in moving through a wide 
variety of harsh environments, most of these 
mechanical locomotion mechanisms have been 
inspired by their biological counterparts.    

Generally, mobile robots locomote either using 
wheeled mechanisms (a human technology for 
vehicles), or using a small number of articulated 
legs (the simplest of the biological approaches to 
locomotion).    

Wheeled locomotion requires less degrees of 
freedom and therefore less mechanical 
complexity than legged locomotion. Mobile 
robots on wheels concentrate on traction and 
stability, maneuverability, and control. There 
are different types of wheels that mobile robots 
can use (Campion, 1996):  

• standard wheels, with two degrees of 
freedom (rotation around the – motorized 
– wheel axle and the contact point; 

• castor wheels, with two degrees of 
freedom (rotation around an offset 
steering joint); 

• Swedish wheels, with three degrees of 
freedom (rotation around the – motorized 
– wheel axle, around the rollers, and 
around the contact point); 

• ball or spherical wheels, with a difficult 
technical realization.   
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These wheels differ on their kinematics, 
therefore the wheel type has a large impact on 
the overall kinematics of the mobile robot.  

The minimum number of wheels required for 
static stability is two (see Khepera mobile robot 
as an example). For a complete discussion about 
wheel arrangements see (Siegwart, 2004).  

The omnidirectional mobile robots can move at 
any time in any direction in (x, y) plane 
regardless of the robot's orientation around its 
vertical axis. This type of robots usually uses 
powered Swedish or spherical wheels that can 
move in more than just one direction. Examples 
are the robot Uranus, from Carnegie Mellon, 
Tribolo designed by EPFL – Swiss Federal 
Institute of Technology, and Nomad XR4000 
form Nomadic Technologies. Limited 
maneuverability can be achieved for the mobile 
robots with standard wheels (Campion, 1996).  

For wheeled mobile robots with conventional 
standard wheels, the limitation of the contact 
forces between the wheel and the ground 
translates to kinematic constraints.   

Legged locomotion is characterized by a series 
of point contacts between the robot and the 
ground. They could be easily used in rough 
terrain because their facile adaptability and 
maneuverability. The main disadvantage of 
legged locomotion refers to the power and 
mechanical complexity. High maneuverability 
will only be achieved if the legs have sufficient 
number of freedom to impart forces in a number 
of different directions.  

In the case of legged mobile robots, a minimum 
of two degrees of freedom is generally required 
to move a leg forward by lifting the leg and 
swinging it forward. Three degrees of freedom 
are sufficient for more complex movements. The 
most complex leg configuration can be found in 
the case of the human leg, with more than seven 
major degrees of freedom, combined with 
further actuation at the toes.  

Mobile robots with legged locomotion can have 
one leg (the Raibert hopper, by LegLab, the 2D 
single bow leg hopper, by Carnegie Mellon 
University), two legs – biped mobile robots (the 
Sony Dream Robot SDR-4X II, by Sony 
Corporation, the P2 humanoid robot, from 
Honda Motor Corporation, the WABIAN-RIII 
humanoid robot, at Waseda University, ASIMO 

from Honda), four legs – quadruped (the 
artificial dog AIBO, from Sony, the Titan VIII, 
from Tokyo Institute of Technology), six legs – 
hexapod (Lauron II, from University of 
Karlsruhe).   

In general, supplementary degrees of freedom 
for a robot leg has an impact over the design 
complexity, as well as for the maneuverability 
and the controllability of the implementation.     

Sensing Abilities of Mobile Robots 

Robot, task and environment are tightly linked. 
The overall behavior of a robot is the result of 
the interaction of these three components. 
Therefore mobile robotics would benefit from a 
large range of sensors in order to detect 
environment characteristics.  

All sensors are designed to sense or to measure a 
particular physical property, which usually has a 
meaningful relationship with a property of the 
environment. Mobile robotics needs to (Everett, 
1995): 

• detect physical contact with an object. 
Tactile sensors that can be used are 
microswitches (bumper sensors), and strain 
gauges or piezoelectric transducers; 

• detect obstacles. Non-contact sensors that 
can detect obstacles are the infrared sensors 
(IR)  that operate by emitting an infrared 
light, and detecting any reflections off 
surfaces in front of the robot;    

• measure distance. A sonar range finder 
measures the time it takes for a sonar pulse 
to be heard again by a receiver placed next 
to the transmitter. Using the time for the 
pulse to travel to the object in front of the 
sensor and back, given the speed of sound, 
the distance to the object can be computed; 

• measure the distance, velocity and 
acceleration of perceived object. Laser 
range finders measure distance by emitting a 
short pulse of light; 

• measure direction. Compass sensors are 
very important for navigation applications 
and they measure the horizontal component 
of earth's natural magnetic field; 

• measure rotation. Shaft encoders are used to 
measure rotation, for example the rotation of 
the rotor's axles to perform path integration. 
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Path integration or dead reckoning is the 
simples form of odometry, and, with the 
required corrections, can be used to measure 
the movement of the motor's sensors, 
therefore the movement of the robot on a 
certain trajectory; 

• interpret the environment through images. 
Vision sensors or CCD cameras use Charge 
Coupled Devices to generate matrices of 
numbers that correspond to the grey-level 
distribution in an image. CCD cameras are 
available for grey-level and color image 
acquisition, with a range of image resolution 
and frame rates. 

Because mobile robotics can benefit from a 
large range of sensors with different 
characteristics, different strengths and different 
weaknesses, some form of sensor fusion is 
needed.    

Applications Families for Mobile Robots  

The available applications of mobile robots are 
influenced by their ability to move around 
autonomously in their environment. Specific 
task for mobile robotic applications include 
transportation, exploration, surveillance, 
guidance, inspection, etc.   

Particular applications of mobile robots ate 
those applications dedicated for environments 
that are inaccessible or hostile to human beings. 
Underwater robots (i.e. UUV – Unmanned 
Undersea Vehicles), planetary rovers (i.e. UGV 
– Unmanned Ground Vehicles) or robots 
operating in contaminated environments or at 
high altitudes (i.e. UAV – Unmanned Aerial 
Vehicles) are such examples.     

As already mentioned before, a collective 
intelligent behavior can be obtained in groups of 
autonomous mini-robots, the so-called multi-
agent systems. Today, multi agent teams are 
organized as test-beds that describes artificial 
societies in which societal rules can be analyzed. 
Example of tasks in multi-agent teams are  robot 
foraging, robotic soccer, and  robot formation. 

In multi-agent systems the concurrent but 
independent actions of each robot leads to an 
emergent social behavior. The group behavior 
can be different from the individual behavior, 
emulating a certain group dynamics. 

Different applications of multi-agent systems 
can be found today. With a strong biological 
basis, foraging robots (see section 5) may find 
potential use in mining operations, explosive 
ordnance disposal and waste of specimen 
collection in hazardous environments (for 
example, the Mars Pathfinder rover).  

Robotic soccer (see section 5) is a particular 
good task for multi-agent research because it 
includes cooperation between teammates, 
competition versus an opponent and 
unpredictable dynamic play (Balch, 1998).   

Where sensor assets are limited, formation 
habits (i.e. the combination of sensing abilities 
of animals in groups in order to maximize the 
chance of detecting predators or to more 
efficiently forage for food) are important in 
mobile multi-agent applications. Formation 
allow individual team members to concentrate 
their sensors across a portion of the 
environment, while their partners cover the rest.     

3. MOBILE ROBOTICS IN CONNECTION 
WITH BIOLOGICAL SYSTEMS  

Recent results imposed by neurophysiology, 
ethology and cognitive  psychology displayed 
new methodologies to transfer animal behavior 
models towards intelligent robots, therefore 
helping to formalize certain aspects of biologic 
behavior.  

By analyzing the way in which living creatures 
fulfill specific actions (analyzing the "inputs" 
and the "outputs" of their behavior) modalities 
of organizing intelligence can be defined. 

Perception, action, adaptivity, learning as well 
as decision making are possible by integrating 
specific intelligent control techniques like 
artificial neural networks, fuzzy logic, genetic 
algorithms or synergetic combinations of them.  
Today AI roboticists often turn to biological 
sciences being that animals can provide 
existence proofs of different aspects of 
intelligence.  

By focusing on the way living creatures "do" 
something roboticists can gain insights into how 
to organize "intelligence".  

By now no artificial control systems have been 
designed that works as flexibly and robustly as a 
biological control system.  



                                                                                          CONTROL ENGINEERING AND APPLIED INFORMATICS 
 
 

16

In particular, neuroscience has benefited from 
techniques for imaging the brain (via monitoring 
of blood flow or metabolic processes) during 
performance of cognitive, perceptual or motor 
tasks. Brain imaging methods (Simion, 2002) 
include computerized tomography (CT or CAT), 
and functional magnetic resonance imaging 
(MRI or fMRI) and positron emission 
tomography (PET).  

As was recently suggested (Levine, 2000), the 
cerebellum and basal ganglia are both involved 
in different aspects of motor control and it was 
traditionally believed that their functions were 
limited only to motor control. But for voluntary, 
adaptive movements, other centers are 
necessary, including cerebellum, basal ganglia 
and motor cortex. Growing evidence suggests 
that they are involved in non-motor, cognitive 
functions, too. 

Thus, a new theory was postulated that the 
cerebellum, the basal ganglia and the cerebral 
cortex have evolved to implement different 
kinds of learning algorithms: the cerebellum for 
supervised learning, the basal ganglia for 
reinforcement learning, and the cerebral cortex 
for unsupervised learning (Doya, 1999), (Doya, 
2000). 

These recent results in neurophysiology should 
be correlated with the strong evidence that exist 
in biology that animals build internal 
representations of their environments while 
performing navigational tasks.  

The agent space in biological systems is not an 
absolute universe in which both the agent and its 
environment are described. The agent space in 
biology seems to consist of two parts: one to 
represent places, and the other to represent head 
directions. These two representations are 
established on the basis of some inborn neuronal 
learning mechanisms and adapted with the 
experience of an agent in navigation.    

At present, specific results exist about the 
existence of a biological place mapping system 
and of a biological head direction system. The 
locations in a brain where a place mapping 
representation is formal are believed to be in the 
hippocampus (O'Keefe, 1978) and its 
neighboring regions. Abundant evidence that 
supports this belief can be found in 
neurophysiological studies. By using functional 
neuroimaging of brain activity while human 

subjects were performing navigational tasks in a 
complex virtual reality, activation of the right 
hippocampus was found to be strongly 
correlated with knowing accurately were places 
were located and with navigating accurately 
between them (Maguire, 1998).  

It was also found that the right hippocampus is 
involved in storing, over a long or short time 
course, the large scale topographical layout of a 
spatially extending environment.  

Closely related to the place coding in the 
hippocampus is the head direction system 
(Taube, 1990) in postsubiculum, anterior 
thalamic nucleus and some other brain regions, 
which was found to be responsible for spatial 
orientation function (Chen, 1994). Similar to 
place cells in hippocampus, both path 
integration and landmarks in the environment 
affect the firing properties of the head direction 
cells, regardless of the location in the 
environment and the position of the head 
relative to the body (Blair, 1995). 

Mobile robotic systems benefits of an extremely 
range of biologically - inspired techniques, 
including artificial neural networks. Often, 
artificial neural networks can be used to 
generalize representation of landmarks. Among 
these are neural networks of the multilayer 
perceptron type, especially used as a pattern 
associator, and also of the self-organizing 
feature map (SOFM) due to Kohonen. There are 
also applications of the Adaptive Resonance 
Theory Networks (ART) associated with the 
pioneer of neuromodelling, Stephen Grossberg.  

The results provided by cellular 
neurophysiology and cognitive neuroscience 
(Gazzaniga, 1995) formed the foundations of 
transferring natural intelligence into machines. 
While the behavior is considered to be the  
building block of natural intelligence, it was 
used as a concept integrated in a special type of 
organization of the control system of the mobile 
robot.   

Therefore, a second broad area of applications 
of mobile robotics is in the fields of artificial 
intelligence, cognitive science and psychology. 
Autonomous mobile robots offer an excellent 
means of testing hypothesis about intelligent 
behavior, perception and cognition.  
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Control Paradigms for Mobile Robots 

Intelligent control techniques with biological 
insights, as artificial neural networks, fuzzy 
control, genetic algorithms or synergetic 
combination of them can be used successfully in 
building control systems for autonomous 
operation of mobile robots.     

Therefore, following the biological traces, inside 
the control system of a mobile robot intelligence 
can be organized in a deliberative, reactive or 
hybrid deliberative / reactive way: 

• the deliberative paradigm refers to a control 
strategy with global planning based on a 
world model. This strategy intends to 
implement the ability of reasoning and 
planning of every movement of the robot. 
This kind of navigation structure should 
build elaborate world models and to make 
decisions in order to fulfill the tasks. As a 
general strategy, it implies four steps: 
perception of the surrounding world, 
building an internal world model, planning 
actions according to the associated tasks and 
the execution of these tasks using the control 
module. Therefore, the control architecture 
for autonomous navigation is organized in 
functional tasks (perception, world model, 
planning and execution). It was also called 
the “geometric world approach” (Li, 1999) 
because the environment is seen like a 
geometric layout of static objects and the 
aim is to build the internal representation of 
the agent space as a replica of this layout. 
This approach with pure planning based on a 
world model is very sophisticated and it was 
difficult to be implemented on real systems; 

• in the reactive control paradigm, the control 
system is build based on a set of independent 
modules operating in parallel. Each module 
is responsible for a behavior, that is a pair 
sensorial information - system answer. Each 
behavior is responsible for a certain task like 
“follow the line of the wall”, “avoid the 
obstacle on the left side”, and so on.  Each 
module of this type has the ability to process 
its own senzorial information and to 
generate the corresponding commands. 
Examples of reactive implementations are 
the subsumption architecture (Brooks, 1986) 
and the potential field architectures based on 
motor schemas (Arbib, 1981). Because they 

are commonly built with behaviors, the 
reactive control architectures are called 
behavior-based systems;  

• in the in combined deliberative / reactive 
paradigm, the control strategy intends to 
integrate together the two control strategies 
above mentioned in order to improve the 
overall performance of the system. 
Basically, a combined control system should 
be able to support a supervizory module for 
the reactive level. This high level planning 
implemented in the supervision module 
should be able to allow a much more 
complex navigation ability. At this level it is 
also possible to define a clear sequence of 
the behaviors (tasks) that should be fulfilled 
for navigation. These behaviors may be 
activated or deactivated in order to fulfill 
global objectives with a high degree of 
abstractization. Examples of hybrid 
architectures are the managerial 
architectures (AuRA – Autonomous Robot 
Architecture, SFX – Sensor Fusion Effects), 
the state-hierarchy architectures (3T – 3 
Tiered), and the model-oriented 
architectures (Saphira, TCA – task Control 
Architecture).  

4. BEHAVIOR-BASED SYSTEMS FOR 
MOBILE ROBOT CONTROL 

Both fuzzy logic and artificial neural networks 
could be integrated in one way or another into a 
general behavior-based organization of the 
execution layer.  

While fuzzy logic can be suitable for the 
implementation of collision avoidance 
behaviors, artificial neural networks may be 
used for sensory information categorisation and 
classification (for collision avoidance or 
localization), or stimulus - response mapping 
(for reactive behavior), as further depicted.   

Another immediate use of neural network 
techniques are in the field of adaptive control of 
mobile robots (Constantin, 1999), (Dragoicea, 
2000), (Dumitrache, 2001). 

Generally speaking, a behavior may not just 
consist of a stimulus - response pair (i.e. 
situation – action), see Fig. 3.  
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Typically, the sensory situations to which a 
behavior can react are limited. Only a portion of 
the information supplied by all sensors triggers a 
behavior, and all the behaviors that are triggered 
may react differently. The reactions of all 
behaviors together contribute to the action 
finally executed in the actuators.  

A mechanism is needed to mediate all reactions 
suggested by behaviors that respond to the 
current sensory input and to formulate one 
action to the actuators. Distributed execution of 
behaviors leads to fast decisions making, so the 
agent can react to sensory input quickly. Each 
behavior fully implements a control policy for 
one specific sub-task, like following a path, 
avoiding sensed obstacles, or crossing a door.  

 
Fig. 3 Behavior-based organization; {si} is the set of 

sensory situations, {ai} is the set of reactions 

 

The arbitration strategy decides which 
behaviors should be activated depending on the 
current goal and on the environmental aspects.  

As shown in Fig. 3, a behavior may have several 
sensory situations, a set of actions and a 

mapping between the two sets (Dragoicea, 
2003).  

Several behaviors may be concurrently 
activated: in these cases, some form of 
command fusion (or a combinator) is needed to 
combine the results from these behaviors into 
one effector command (Dragoicea, 2003).  
Many proposals in the autonomous robotics 
literature adhere to this scheme, but differ in the 
emphasis put on each part. 

The behavior-based approach for reactive 
control reduces the cost of building and 
maintaining internal representations of the 
environment. The agent is considered as an 
inseparable part of its environment; and there is 
a relationship between the agent and the 
environment that governs the behavior of the 
agent.  

The agent can retain its relationship to the 
environment by using a set of behaviors each of 
which maintains a mapping from sensory 
information to some control parameters for 
actuators.  

As shown in Fig. 3, the minimum representation 
required in this approach consists of two parts: 
sensory situations representing stimuli, and 
situation to reaction mapping.  

The action executed in the actuators may contain 
the overall, or a part of the, effect of the actions 
resulting from behavior programs. By using the 
exteroceptive sensors, the agent acquires a 
model of the workspace as it is at the moment 
when the task must be performed. 

Behavior-based robotic systems would start with 
crisp sensor readings (e.g. numeric values from 
proximity sensors). Artificial neural networks, 
fuzzy control or genetic algorithms could be 
further used in order to interpret the data and 
control the vehicle in an autonomous way, as 
further depicted.  

5. INTELLIGENT BEHAVIORS IN 
REACTIVE CONTROL 

The entire mobile robot control problem is based 
on presenting different methodologies for 
developing complex techniques of providing a 
desired degree of autonomy in navigation. They 
should take into consideration the fact that the 
only information available is the subjective 
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(egocentric) perspective of the autonomous 
robot, constructed from a sequence of 
measurements, considered as their observable 
dynamics.  

This presentation can be oriented towards  some 
specific directions, listed under the following 
categories: 

• the derivation, following the results 
obtained in (Dragoicea, 2000), of some 
new aspects of process control using 
neural networks; 

• neuro-fuzzy integration for collision 
avoidance and navigation. 

 

A1. Adaptive neural network strategy for mobile 
robot control  

Autonomy requires some abilities like learning 
in presence of unknown “situations”. Here we 
define a “situation” as being either a special 
feature of the environment for which the mobile 
agent was not engineered in advance (e.g. 
unknown static or moving obstacles in the 
environment) or some special operating 
condition of the mobile platform itself (here one 
intends to take into account inherent parametric 
uncertainties that obviously interfere in the 
process of mobile structure modeling).  

Considering the second case, it seems attractive 
to initiate an adaptive control for parameter 
uncertainties (e.g., unknown mass, wheel-radius, 
friction effects, unknown inertia parameters, etc) 
at the lowest level (the execution level). 

Different neural network architectures and 
algorithms were used since the early days of 
mobile robotics. The mobile robot OBELIX 
(Mahadevan, 1991) uses reinforcement learning 
(Q-learning) to acquire a box-pushing skill.  The 
walking robot GENGHIS (Maes, 1990) learns 
also by Q-learning to co-ordinate its leg 
movements so that a walking behavior is 
achieved.  

Perceptrons and multilayer perceptrons can be 
used for simple obstacle avoidance (Nehmzow, 
2000). Typical applications of the Self-
Organising and Feature Map (SOFM) networks 
(Kohonen, 1988) are for clustering an input 
space to obtain a more meaningful, abstracted 
representation of that input space.  

There are also applications of the Adaptive 
Resonance Theory (ART) that has been 
advanced as a theory of perception and 
classification in biological systems and this is a 
valuable exploration of its practical application.   

Frequent uses of this neuro-model is made to the 
construction of cognitive map in the 
hippocampus of the animal nervous system (Li, 
1999).  

In (Dragoicea, 2000) neural networks of 
multilayer perceptron type were used in order to 
implement an adaptive control strategy able to 
cope with parameter uncertainties at the 
execution layer.  

The trajectory controller implemented following 
(Kanayama, 1990) proved to be able to tune the 
velocity references for the velocity controller 
(the feed-forward neural network controller) so 
good results were obtained solving trajectory-
tracking problems with different initial 
conditions.  This work was further continued in 
(Dragoicea, 2001).   

A2. Neural Networks for Reactive Navigation 

The behavior-based approach consists of several 
layers, each of which may be composed of a set 
of functional units, namely modules. All layers 
work in parallel and have access to all sensory 
inputs. Each layer takes parts of the sensory 
information as input and generates an output of 
that layer. This layered architecture operates on 
the basis of a behavior-based hierarchical task 
decomposition: lower level layers deal with 
more primitive behaviors (e.g., the reactive 
behavior in the collision avoidance module), 
while higher level layers undertake more 
advanced functionality (e.g. path-planning or 
sub-goal following modules).  

Therefore, one may use gating techniques to 
regulate the information flow between layers so 
that system level behavior can emerge from 
interactions among various layers and modules 
(Pasquier, 1998), (Li, 1996).    

Different mappings that involve learning tasks 
could enrich the level of autonomy for a mobile 
robot. A mapping from the sensory information 
categories to the place representation is required 
for localization (Dragoicea, 2000) while a 
mapping from the sensory information 
categories to the motor action representation is 



                                                                                          CONTROL ENGINEERING AND APPLIED INFORMATICS 
 
 

20

essential for implementing the function of 
collision avoidance.  

Supervised or unsupervised learning 
mechanisms could be used as well for each of 
these tasks.  

A3. Neural mechanisms of learning and control 
in mobile robotics 

Often, artificial neural networks can be used to 
generalize representation of landmarks. Among 
these are neural networks of the multilayer 
perceptron type, especially used as a pattern 
associator, and also of the self-organizing 
feature map (SOFM) due to Kohonen.  

Nehmzow (Nehmzow, 2000) proposed a 
formalization of mobile robot landmark-based 
navigation by using artificial neural networks of 
self-organizing type. 

As mentioned before, there are also applications 
of the Adaptive Resonance Theory Networks 
(ART) associated with the pioneer of 
neuromodelling, Stephen Grossberg.  

A landmark can be defined as being a set of raw 
sensory patterns, based on which a motor 
decision is made. In this way, each place (or 
pattern) in the environment is defined by a 
specific set of sensory patterns. The main 
advantage of this approach is that the 
representation is dynamic in order to allow 
structure expansion for the incorporation of 
newly identified places.  

Given a description of mobile robot's sensing 
abilities, its task and environment, a set of 
behaviors will be further defined using schemas 
to accomplish the task. A behavior could be 
composed of two schemas, a perceptual schema 
and a motor schema (Arbib, 1991).  

In (Dragoicea, 2003b) a navigation strategy 
based on landmarks recognition for autonomous 
navigation of the mobile robots was proposed. 
An ART2 neural network is used in order to 

implement the perceptual part of a behavior in 
the framework of schema theory (Arbib, 1991).  

Using artificial neural networks for the 
clustering of the environment and for the 
generalization of landmarks representation 
naturally allows the integration of a learning 
dimension into the navigation ability of the 
mobile robot. 

The navigation by landmark recognition phase 
implies activities by which the robot will 
attempt to recognize distinct places of its 
perceptual space that were previously identified 
and learned..  

This requires that some generalization regarding 
the internal representation within the navigation 
mechanisms is possible. By learning raw 
sensory perceptions of certain landmarks the 
robot might learn to recognize landmarks on 
subsequent visits.  

The ART2 neural network learns to classify the 
sensory patterns that the eight proximity sensors 
produced during the reactive exploration stage 
(Fig. 4).  

The motivation for choosing self-organization is 
that clustering the robot's perceptions 
autonomously using a self-organising classifier 
helps to avoid the problem of matching 
individual environmental features against an 
internal world model. There is no attempt to 
recognize specific objects in the robot's 
environment, rather the raw sensor readings are 
grouped according to their similarity.  

This means that the robot's perceptual groupings 
(ART classifications) may bear no direct 
translation to obvious human categorisations of 
the environmental features (e.g. "corner", 
"wall", "box", etc.). 

In each of the conducted studies the mobile 
robot showed useful learning in an impressively 
small number of trials (Fig. 5).  
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Fig. 4 Neural controller based on perceptual 

clustering by an ART2 neural network 

The evolution of the robot was tested on a 
number of simulated worlds as well as on the 
real Khepera mobile robot.  

 
a) 

 
b) 

 
c) 

 
d) 

Fig. 5 Mobile robot evolution, a) and b) with 
supervision (ART2 controller), c) and d) with a 

Braitenberg controller 

A4. Fuzzy Reactive Behaviors 

Fuzzy logic controllers incorporate heuristic 
control knowledge in the form of IF-THEN 
rules, and are a convenient choice when a 
precise linear model of the system to be 
controlled cannot be easily obtained.  

The first and the most common application of 
fuzzy logic techniques in the domain of 
autonomous robotics is the use of fuzzy logic 
control to implement individual behavior units. 
Some authors used fuzzy control to implement 
complex behaviors that take multiple objectives 
into account (e.g. following a given path while 
avoiding unforeseen obstacles in real-time).  

Fuzzy controllers are typically designed to 
consider one single goal. There are two options 
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if someone wants to consider two (or several) 
interacting goals.  

• first of all, we can write a set of complex 
rules whose antecedents consider both goals 
simultaneously. This approach was used for 
navigating to a target while avoiding 
obstacles (Skubic, 1993). (Skubic, 1993) 
used a miniature infrared-based robot, while 
(Li, 1994) used a simulated sonar-based 
robot. (Altrok, 1992) used it for a car 
following a wall-bounded race track while 
compensating for the skidding and sliding 
due to the high speed;   

• second, we can write two sets of simple 
rules, one specific to each goal, and 
combine their outputs in some way. This 
approach was used by (Yen, 1995) and 
(Baxter, 1993) for integrating path tracking 
and obstacle avoidance, and by (Maeda, 
1995) for integrating vision-based wall 
following and obstacle avoidance on a Hero 
2000 robot.  

Layer integration, i.e the problem of how to link 
the different levels of representation and 
reasoning that must be present in an autonomous 
agent, is a very important aspect of today’s 
mobile robotic research.  

However, while fuzzy logic gives us a valuable 
tool for writing co-ordination strategies, it does 
not give a solution to the general problem of 
behavior co-ordination. For example, we still 
don’t know how to discriminate a situation 
where different commands proposed by different 
behaviors should be averaged, from one where 
they should be regarded as a conflict to be 
resolved in some way.  

These problems are inherent to any form of local 
combination, and can be seen as instances of the 
general problem of relating local computation 
(or action) to global results (or goals, as 
specified by the path-planning and sub-goal 
following modules). These problems can only be 
solved by a careful integration between local 
and global reasoning.    

Section A2 introduced methods in which neural 
network controllers proved to be a suitable 
choice for realizing reactive behaviors as a 
mapping from input to output. Behaviors could 
be formulated as well using fuzzy “perception-
action” rules, which are then applied 

periodically to control the vehicle. Systematic 
exploration strategies can be devised, defining 
different behaviors such as wall following 
behavior, obstacle avoidance behavior, steering 
and tracking behavior.  

(Pasquier, 1998) proposed a fuzzy inference 
engine that processes all these fuzzy control 
rules aggregated within a single rule base. In 
(Dragoicea, 2003), (Dumitrache, 2002) and 
(Dragoicea, 2004) a method to implement a 
hierarchical version of the system, where each 
behavior could be realized as a separate FLC is 
proposed.  

Reactive behaviors should be guided using 
intermediate sub-goals (from the sub-goal 
following module, see Fig. 3). As was described 
in Fig. 3, a combinator will mediate the drive 
coming from the collision avoidance module 
and the sub-goal following module and will 
generate velocity and orientation references to 
the execution layer (Dragoicea, 2000).  

This approach will endow the mobile robot with 
a set of skills implemented as reactive behaviors 
and complemented with global exploration 
strategies.  

The multiple outputs would be supervised by a 
supervisory module. In this way the arbitration 
mechanism could be under user control, in order 
to modulate the importance that is given to each 
behavior accordingly to the given evolution 
context (Dragoicea, 2003), (Dragoicea, 2004).    

A fuzzy control system for behavior-based 
robotic systems would start with crisp sensor 
readings (e.g. numeric values from proximity 
sensors), translate them into linguistic classes in 
the fuzzifier, fire the appropriate rules in the 
fuzzy inference engine, generating a fuzzy 
output value, then translate these into a crisp 
values representing actuator control signals (see 
Fig. 6). 

Fuzzy logic allows a certain type of discrete 
encoding of the (situation, reaction) pairs by 
using rule-based systems.  

The collection of IF - THEN rules that take the 
general form: 

IF antecedent THEN consequent 

where the antecedent consists of a list of 
preconditions that must be satisfied in order for 
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the rule to be applicable and the consequent 
contains the motor response.  

The discrete set of possible responses 
corresponds to the set of rules in the system. 
More than one rule may be applicable for any 
given situation.  

The strategy used to deal with conflict resolution 
typically selects one of the potentially many 
rules to use based on some evaluation function.  

Fig. 6 presents a fuzzy logic control system 
architecture for elementary behavior 
implementation that consists of the following 
parts: 
• fuzzifier: it maps a set of crisp sensor 

readings onto a collection of fuzzy input 
sets; 

• fuzzy rule base: it contains a collection of IF 
- THEN rules; 

• fuzzy inference engine: it maps fuzzy sets 
onto other fuzzy sets according to the rule 
base and membership functions; 

• defuzzifier: it maps a set of fuzzy output sets 
onto a set of crisp actuator commands. 

 

Fig. 6 Fuzzy logic control system architecture for 
behavior implementation 

The main advantage of the proposed reactive 
multi-control strategy based on elementary 
behaviors (Dragoicea, 2003) is that the 
arbitration mechanism (i.e. a function of type 
PLAN) is under user’s control, that means it is 
possible to give more importance to a specific 
behavior or even rule according to the context in 

which the robot evolves (i.e. task to be fulfilled 
and environment conditions). In this approach 
fuzzy rules of the general form are used: 

IF path_cond THEN command1 
IF obstacle_cond THEN command2 

As an example, table 1 shows practical rules that 
implement a wall following behavior on our 
robot test-bed, the mobile robot Khepera: 
Table 1 Fuzzy rules for a wall following behavior 
 
IF (dist_front_OK ∧ dist_left_far) THEN  
            turn_medium_left 
IF (dist_front_OK ∧ dist_left_OK) THEN  
           turn_smooth_left 
IF (dist_front_small ∧ dist_left_medium) THEN 
           turn_smooth_right 

 
Fig. 7 A schematic diagram of the wall following 
fuzzy hierarchic controller for a Khepera mobile 

robot 
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A wall following behavior is a tracking control 
mechanism able to follow any continuous 
surface at some fixed distance from contact, a 
feature that is most useful when mapping an 
unknown environment.  

The fuzzy controller that implements this 
behavior may consist of two controllers, one for 
right wall following, the second one for left wall 
following (Fig. 7).  

Therefore, the mobile robot will also be able to 
enter a corridor and to execute a movement 
between two walls. 
 

 

 
Fig. 8 A fuzzy mediator for the wall following 

behavior 

The inputs for the two fuzzy controllers, as well 
as for the mediator, is the information received 
from the distance sensors of the robot 
(Dumitrache, 2002). The two outputs of the left / 

right wall following fuzzy controllers are the 
two wheels velocities, Vleft and Vright. 

The mediator for the wall following behavior 
(see Fig. 8) realizes a weighting action of the 
control signal generated by the two fuzzy 
controllers (for left and right wall following). 

The weighting strategy will influence one of 
these two controllers, according to the context in 
which the robot evolves (i.e sensors 
measurements). The inputs to the fuzzy mediator 
are the values of the left, right and front sensors, 
and its outputs are the weights for the two fuzzy 
controllers for left and right wall following. For 
more details, notations, and results, see 
(Dragoicea, 2003) and Fig. 9.  

 

 

 

 

Fig. 9. Complex behaviors with fuzzy 
implementation 
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Therefore, following a more general deliberative 
/ reactive approach, the robot has the possibility 
to plan (in a deliberative way) the most suitable 
way to split its global task into subtasks, i.e. to 
make a mission plan. Then it can determine the 
suitable behaviors in order to fulfill the sub-
tasks. These behaviors are to be executed in a 
reactive way, as it was previously mentioned. 
Based on this strategy, more complex behaviors 
could be accomplished, like position tracking 
and position tracking with collision avoidance 
behaviors (Dumitrache, 2002).   

A5. Neuro-fuzzy Approaches for Multi-Agent 
Team Design 

Multi-robot team design is challenging because 
performance depends significantly on issues that 
arise solely from interaction between agents. 
These interactions complicate development 
since they aren’t obvious in the hardware or 
software design but only emerge in an operating 
team. Co-operation robot-robot, interference and 
communication, for instance, are not 
considerations for a single robot, but are crucial 
in multi-robot systems.  

To date, some researchers started to investigate 
learning in multi-robot systems (Mataric, 1992), 
(Mataric, 1994), (Parker, 1994).  Parker 
developed the ALLIANCE architecture for 
controlling teams of physically heterogenous 
robots. The system was built on the behaviour-
based subsumption architecture (Brooke, 1986). 
At Georgia Tech, Arkin and Balch have 
investigated several homogenous strategies for 
robot foraging (Arkin, 1993), (Balch, 1995).  
Recent interest has sparked more research in 
robot soccer. Kitano and Asada (Kitano, 1997) 
promote the Robot World Cup as a vehicle for 
multi-agent research.  

Researches carried out in the last years started to 
investigate specific tasks for collective robot 
teams, like robot foraging, robot soccer and 
formation maintenance. Behavior-based 
approaches are currently studied in correlation 
with these tasks. 

Up to now, many existing behavior-based 
robotic systems are comprised of hand-coded 
behaviors. For dynamic environments, learning 
is necessary, as mentioned before (Dragoicea, 
2000). (Balch, 1998) was the first to concentrate 

his research on reinforcement learning in 
behavior-based multi-agent robot teams.  

When a behavior-based approach is applied, the 
behaviors that are used to fulfill each tasks are to 
be accomplished in at least two steps:  

• a perceptual process (determines the 
robot’s proper position in formation 
based on current environmental data), 
and  

• the motor process (generates motor 
commands to direct the robot toward the 
correct location). Several motor 
schemas (e.g. move-to-goal, avoid-
static-obstacle, avoid-robot, maintain-
formation) will implement the overall 
behavior for a robot to move to a goal 
location while avoiding obstacles, 
collisions with other robots and 
remaining in formation. 

The above mentioned strategies based on fuzzy 
and neural approaches could be easily integrated 
in a multi-agent design methodology in order to 
implement individual – elementary – behaviors. 

Nevertheless, further mechanisms for 
supervision and proper sequencing of individual 
behaviors are needed. In (Dragoicea, 2005) and 
(Dragoicea, 2005b) strategies for task 
coordination in multi-agent systems are 
proposed, based on finite state machines.  

The experiments specifically describe a 
framework of defining behavior-based strategies 
for multi-robot tasks, specifically for robot 
soccer and robot foraging. The research focuses 
specifically on motor schema-based multi-robot 
systems, which are an important example of 
behavior-based control. Individual motor 
schemas, or primitive behaviors, express 
separate goals or constraints for a task. Motor 
schemas may be grouped to form more complex, 
emergent behaviors. Groups of behaviors are 
referred to as behavioral assemblages. 

Solving complex tasks for mobile robot control 
implies than developing an assemblage for each 
sub-task. This the assemblage will be further 
executed in an appropriate sequence, by 
temporal sequencing (Balch, 1998). Therefore a 
resulting task solving strategy can be 
represented as Finite State Machine.  
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Fig. 10 Behavioral assemblage for homogenous 
foraging based on finite state machines 

Fig. 10 displays an example of behavioral 
assemblage for a homogenous foraging task 
(Balch, 1998), that means all the robots collect 
all the different types of attractor and deliver 
them to the corresponding color-coded delivery 
areas. All agents are programmed with the same 
sequence of behaviors (Dragoicea, 2005).    

The behavior assemblage for homogenous 
foraging can be represented as an abstract model 
as follows (McGee, 2003):  
 
HOM_FOR            = OFF, 
OFF                        = (on->WANDER), 
WANDER              = (red_visible->ACQUIRE_RED 
                                    |blue_visible->ACQUIRE_BLUE 
                                    |off->OFF), 
ACQUIRE_RED    = (red_in_gripper->DELIVER_RED 
                                    |not_red_visible->WANDER), 
DELIVER_RED    = (close_to_red_bin->WANDER), 
ACQUIRE_BLUE = (blue_in_gripper->DELIVER_BLUE 

                                    |not_blue_visible->WANDER), 
DELIVER_BLUE = (close_to_blue_bin->WANDER). 
 
Therefore, the Finite State Machine (FSM) that 
describes the homogenous foraging task is an 
extension of the behavioral table: 

M: (K, Σ, δ, s, F) 
where 

K = {off, WANDER, ACQUIRE_RED, 
ACQUIRE_BLUE, DELIVER_RED, 

DELIVER_BLUE} 
 
are the states the robot should be in (the finite 
number of discrete states for homogenous 
foraging is 6). 
 
 
 

Σ = {on, red_visible, blue_visible, off, 
red_in_gripper, not_red_visible, 

close_to_red_bin, blue_in_gripper, 
not_blue_visible, close_to_blue_bin} 

is the set of behavioral releasers (that means the 
inputs of the FSA, also called the alphabet). 
δ is the transition function that specifies what 
state the robot is in after it encounters an input 
stimulus from Σ. 

s = OFF    
is the Start State, and the robot should always 
start there. 

F = OFF 
is the final state that the robot can reach that 
terminates the task. Here the final state is OFF, 
that means the robot runs the sequence of 
behaviors until it is turned off manually. 

The same procedure based on finite state 
machines for behavior assemblage definition 
could be used for robot soccer (Dragoicea, 
2005b). For implementation details, see 
(Dragoicea, 2005) and (Dragoicea, 2005b).  

Fig. 11 presents the behavioral assemblages for 
team members evolution – player and goal 
keeper in one team. 
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Fig. 11a) Behavioral assemblage for robotic soccer - 

player (forward) 

Fig. 11b) Behavioral assemblage for robotic soccer - 
goal keeper 

 
 

Each robot selects from a set of behavioral 
assemblages to complete the task. The behaviors 
are sequenced to form a complete strategy. In 
this case, the possible transitions are between 
the following states (Dragoicea, 2005): 

• for the forward player: state 0 = OFF, state 
1 = GO_TO_BALL, state 2 = 
BEHIND_BALL, state 3 = WANDER; 

• for the goal-keeper: state 0 = OFF, state 1 
= GO_TO_BALL, state 2 = DEFEND, 
state 3 = WANDER. 

 

Therefore, for sequential real-time system a 
Finite State Machine (FSM) representation was 
used, which represent the different states of the 
robot. Behaviors composing a behavioral 
assemblage represented by a FSM, as well as 
releasers, can be further designed using Object 
Oriented Principles - OOP.  

6. CONCLUSIONS 

This survey paper tries to do a short presentation 
of the research state-of-the-art for the mobile 
robot control systems with some results 
applications of our team.  

We consider that the cognitive and intelligent 
techniques could be applied with real success to 
develop a new generation of mobile robots as an 
intelligent information system highly adapted at 
the variable and uncertain environments.  

The parallel view between mobile robots and 
biological systems gives us the opportunity to 
identify the limitations of the actual advanced 
control systems for robots to realize a complex 
behavior into uncertain and variable 
environment taking into account the hybrid 
paradigm deliberative-reactive.  

Some applications of the neural networks, fuzzy 
logic and knowledge based procedures are 
presented that implement the main attributes of 
the intelligent systems in robotic applications. 

This paper is only a short synthesis of the 
research in this very dynamic field of mobile 
robot control systems.  

 

 

on

cl
os

e_
to

_b
al

l

cl
os

e_
to

_b
al

l

hi
t_

ba
ll

ba
ll_

vi
si

bl
e

of
f

hi
t_

ba
ll

ba
ll_

cl
os

e
ba

ll_
vi

si
bl

e

ba
ll_

cl
os

e



                                                                                          CONTROL ENGINEERING AND APPLIED INFORMATICS 
 
 

28

REFERENCES 

[1] von Altrok, C, Krause, B., Zimmermann, 
H.J., 1992, Advanced fuzzy logic control of a 
model car in extreme situations, Fuzzy Sets and 
Systems 48, pp:41-52 

[2] Arbib, M., 1991, Schema Theory. The 
handbook of brain theory and neural 
networks, MIT Press 

[3] Arkin, R.C., Balch, T., Nitz, E., 1993, 
Communication of behavioural state in multi-
agent retrieval tasks, Proc. 1993 IEEE 
Conference on Robotics and Automation, 
Atlanta, GA 

[4] Balch, T., Boone, G., Collins, T., Forbes, H., 
Mackenzie, D., Santamaria, J., 1995, Io, 
Ganymede and Callisto – a multiagent robot 
trash-collecting team, AI magazine 16(2) 

[5] Balch, T., 1998, Behavioral Diversity in 
Learning Robot Teams, Ph.D. Thesis, Georgia 
Institute of Technology 

[6] Baxter, J.W., Bumby, J.R., 1993, Fuzzy logic 
guidance and obstacle avoidance algorithms for 
autonomous vehicle control, Proc. of the Int. 
Workshop on Intell. Autonomous Vehicles, 
Southampton, UK 

[7] Blair, H.T., Sharp, P., 1995, Anticipatory 
head direction signals in anterior thalamic: 
evidence for a thalamocortical circuit that 
integrates angular head motion to compute head 
direction, J. Neuroscience (15), 6260-6270 

[8] Brooks, R. A., 1986, A robust layered 
control system for a mobile robot, IEEE Journal 
of Robotics and Automation, RA-2(1):14-23 

[9] Campion, G., Bastin, G., 1996, Structural 
properties and classification of kinematic and 
dynamic models of wheeled mobile robots, IEEE 
Trans. on Robotics and Automation, vol.12, no.1 

[10] Carpenter, G.A., Grossberg, S., 1987, A 
massively parallel architecture for a self-
organizing neural pattern recognition machine, 
Computer Vision, Graphics, and Image 
Processing, 37 

[11] Chen, L.L., Lin, L., et. al., 1994, Head-
direction cells in the rat posterior cortex: II. 
Contributions of visual and ideothetic 
information to the directional firing, Exp Brain 
Res (101), 23-34 

[12] Constantin, N., Dragoicea, M., 1999, 
Neural Adaptive Control for Non-linear 
Processes, 7th Int. Workshop on Computer 
Aided Systems Theory and Technology 
EUROCAST’99, Vienna, Austria 

[13] Doya, K., 1999, What are the computations 
of the cerebellum, the basal ganglia and the 
cerebral cortex, Neural Networks, Vol. 12, 961-
977 

[14] Doya, K., 2000, Complementary roles of 
basal ganglia and cerebellum in learning and 
motor control, Current Opinion in 
Neurobiology, Vol. 10, 732-739 

[15] Dragoicea, M., 2000, Contribution to the 
design of adaptive control systems using neural 
networks, PhD Thesis, University Politehnica 
Bucharest 

[16] Dragoicea, M., Dumitrache, I., Constantin, 
N., 2001, Adaptive Neural Control for Mobile 
Robots Autonomous Navigation, Proc. of the 7th 
Int. Symposium on Automatic Control and 
Computer Science SACCS 2001, October 26-27, 
Iasi, Romania 

[17] Dragoicea, M., Dumitrache, I., Cuculescu, 
D.S., 2003, Multi-behavioral model based 
autonomous navigation of the mobile robots, 
International Journal Automation Austria, Vol. 
11, Nr.1, pp:1-20, ISSN 1562-2703 

[18] Dragoicea, M., Dumitrache, I., 2003b, 
Neural Mechanisms of Learning and Control in 
Mobile Robotic Systems, Buletinul Stiintific al 
Universitatii Politehnica Timisoara, Seria 
AUTOMATICA si CALCULATOARE, 
Periodica Politehnica, Transactions on 
AUTOMATIC CONTROL and COMPUTER 
SCIENCE, vol. 48(62), ISSN 1224-600X, pag. 
62-69 

[19] Dragoicea, M., Constantin, N., 2004, 
Windows Application for Intelligent Mobile 
Robot Control, Studies in Informatics and 
Control, Vol. 13, No.1, March 2004, pag. 23-33 

[20] Dragoicea, M., 2005, Diversity and 
Intelligence in Multi-robot Teams, Proceedings 
of CSCS15 - 15th Int. Conference on Control 
Systems and Computer Science, Bucharest, 
Romania 

[21] Dragoicea, M., Serban, T., 2005b, 
Behavioural Diversity in Cooperative Multi-
robot Tasks,  Proceedings RAAD’05, 14th 



CONTROL ENGINEERING AND APPLIED INFORMATICS  
 
 

29

International Workshop on Robotics in Alpe-
Adria-Danube Region, Bucharest, Romania 

[22] Dumitrache, I., Intelligent control of 
industrial robots, Mediamira Press, Cluj, 1996 

[23] Dumitrache, I., 2000, Intelligent 
Autonomous Systems, Revue Roumaine des 
Sciences Techniques -  Electrotechique et 
Energetique, vol. 45, No. 3, pp. 439-453, 
Bucarest  

[24] Dumitrache, I., Dragoicea, M., 2001, 
Mobile Robots Adaptive Control Using Neural 
Networks, Proc. of the 13th Int. Conference on 
Control Systems and Computer Science 
CSCS13, Bucharest, Romania 

[25] Dumitrache, I., Dragoicea, M., 2002, Fuzzy 
reactive behaviors in autonomous mobile 
robotics, ARA Journal, Vol. 2000-2002, Nr. 25-
27, pag. 114-120, ISBN 3-00-011583-8 

[26] Everett, H.R., 1995, Sensors for Mobile 
Robots, A.K. Peters, Ltd. 

[27] Fagg, A.H., Lotspeith, D., Bekey, G.A., 
1994, A reinforcement-learning approach to 
reactive control policy design for autonomous 
robots, Proc. of IEEE Int. Conf. On Robotics 
and Automation, vol. 1, pp: 39-44 

[28] Fritzke, B., 1994, Growing cell structures – 
a self-organizing network for unsupervised and 
supervised learning, Neural Network 7(9) 

[29] Gazzaniga, M., 1995, (Editor-in-Chief) The 
Cognitive Neurosciences, Cambrige, MA: MIT 
Press, pp:597-609 

[30] Levine, D. S., 2000, Introduction to Neural 
and Cognitive Modelling, Lawrence Erlbaum 
Associates, London 

[31] Li, W., 1994, Fuzzy logic-based 
‘perception-action’ behaviour control of a 
mobile robot in uncertain environments, Proc. of 
the IEEE Int. Conf. On Fuzzy Systems, 
pp:1626-1631, Orlando, FL, USA 

[32] Li, G., Svensson, B., 1996, A multiple 
neural network based approach for reactive 
robot navigation, Proc. of the 5th European 
Workshop on Learning Robot, pp: 53-62, Bari, 
Italy 

[33] Li, G., 1999, Towards on-line Learning 
Agent for Autonomous Navigation,  PhD 
Thesis, Chalmers University of Technology, 
Goeteborg 

[34] Kanayama, Y., Kimura, Y., Miyazaki, F., 
1990, A stable tracking control method for an 
autonomous mobile robot, in Proc. IEEE Int. 
Conf. Robot. Automat., pp. 384-389 

[35] Kitano, K., Asada, M., Kuniyoushi, Y., 
Noda, I., Osawa, E., 1997, Robocup: The robot 
world cup initiative, Proc. Autonomous Agents 
97, Marina del Rey, California 

[36] Kohonen, T., 1988, Self Organisation and 
Associative Memory, Springer Verlag, Berlin 

[37] Maeda, M., Shimakawa, M., Murakami, S., 
1995, Predictive fuzzy control of an autonomous 
mobile robot with forecast learning function, 
Fuzzy Sets and Systems 72, pp:51-60 

[38] Maes. P., Brooks, R., 1990, Learning to 
Co-ordinate Behaviours, Proc. AAAI 1990, 
Morgan Kaufman, San Mateo CA 

[39] Mahadevan, S., Connell, J., 1991, 
Automatic Programming of Behaviour-Based 
Robots Using Reinforcement Learning, Proc. 9th  
National Conference on Artificial Intelligence, 
AAAI 1991, Morgan Kaufman, San Mateo CA 

[40] Magee, J., Kramer, J., 2003, Concurrency. 
State Models & Java Programs, John Wiley & 
Sons 

[41] Maguire, E.A., Burges, N., et.al., 1998, 
Knowing where and getting there: A human 
navigation network, Science(280), 921-924 

[42] Mataric, M., 1992, Designing emergent 
behaviours: from local interactions to collective 
intelligence, Proc. of the Int. Conference on 
Simulation of Adaptive Behaviour: From 
Animals to Animats 2 

[43] Mataric, M., 1994, Learning to behave 
socially, Proc. of the Int. Conference on 
Simulation of Adaptive Behaviour: From 
Animals to Animats 3 

[44] Meng, M., Kak, A.C., 1993, Mobile robot 
navigation using neural networks and 
nonmetrical environment models, IEEE Control 
System, pp:30-39 

[45] Murphy, R. R., 2000, Introduction to AI 
Robotics, MIT Press 

[46] Nehmzow, U., 2000, Mobile Robotics: A 
Practical Introduction, Springer, London 



                                                                                          CONTROL ENGINEERING AND APPLIED INFORMATICS 
 
 

30

[47] O'Keefe, J., Nadel, L., 1978, The 
hippocampus as a cognitive map, Oxford 
University Press, Oxford 

[48] Parker, L., 1994, Heterogenous Multi-
Robot Cooperation, PhD Thesis, MIT 

[49] Pasquier, M., Lim, Li-Hwa, 1998, Fuzzy 
world – reactive behaviours and environment 
exploration strategies, The 5th Int. Conference 
on Control, Automation, Robotics and Vision 
ICARCV’98, Singapore 

[50] Skubic, M., Graves, S., Mollenhauer, J., 
1993, Design of  a two-level fuzzy controller for 
a reactive miniature robot, Proc. of the 3rd Int. 
Conf. On Industrial Fuzzy Control and Int. 
Systems, Houston, TX, USA 

[51] Siegwart, R., Nourbakhsh, I. R., 2004, 
Introduction to Autonomous Mobile Robots, 
MIT Press 

[52] Simion, G., Dragoicea, M., Parvu, L., 2002, 
Medical image processing with neural networks 
algorithms, Journal of “Control Engineering and 
Applied Informatics”, No. 4, Vol. 2, pp:29-36, 
ISSN 1454-8658 

[53] Taube, J.S., Muller, R.U., et.al., 1990, 
Head-direction cells recorded from the 
postsubiculum in freely moving rats. I. 
Description and quantitative analysis, J. 
Neuroscience (10), 420-435 

[54] Yen, J., Pfluger, N., 1995, A fuzzy logic 
based extension to Payton and Rosenblatt’s 
command fusion method for mobile robot 
navigation, IEEE Trans. on Systems, Man, and 
Cybernetics, 25(6) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 


