
CEAI, Vol.17, No. 1, pp. 70-80, 2015 Printed in Romania

Novel Tuning Expressions for Fractional
Order ([PD]β and [PI]α) Controllers Using a

Generalized Plant Structure

Ameya Anil Kesarkar and N. Selvaganesan∗

Department of Avionics, Indian Institute of Space Science and
Technology (IIST), Thiruvananthapuram, India-695547.

(e-mail: n selvag@iist.ac.in∗)

Abstract: The available tuning expressions in the literature for three-parameter [PI]α and
[PD]β controllers are specific to a given class of plant transfer function. If one intends to design
such controllers for a new plant, then the tuning expressions meeting required specifications
need to be derived accordingly. This is a tedious and work intensive process. Instead, this paper
presents novel tuning expressions of such controllers, which can be readily used for any class of
integer or fractional order LTI plants. The usefulness of such expressions is further demonstrated
by considering several plant examples belonging to different classes including a real time case of
precision modular servo experimental set-up available at our Control System Lab. The results
confirm correctness of the proposed framework.
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1. INTRODUCTION

The mathematical topic of fractional calculus Oldham
(1974) has recently found applications in the control engi-
neering resulting in an area popularly known as ‘Fractional
Order Control’ Podlubny I. (1999), Xue et al (2007). Frac-
tional order control deals with designing of the controllers
which are governed by fractional order differential equa-
tions Chen et al. (2009). The compact form expressions
of such controllers possess easily tunable characteristics,
which help in meeting stringent loop performance Padula
(2011), Monje et al (2004).

The popularly used three-parameter-fractional-controllers
are PIα, [PI]α, PDβ , and [PD]β . Tuning of these con-
trollers for a specific class of integer order plant, such
as position and velocity servo system Li et al (2010), Li
(2008), Luo (2009), Wang et al. (2009a), FOPDT (First
Order Plus Dead Time) Wang et al. (2009b) is found in the
literature. Similar work in the context of fractional order
plants has also been covered in the literature Luo et al.
(2010).

The designed controllers in the above works meet the
required gain crossover frequency, phase margin, and
isodamping conditions (We refer them as Wang et al.
(2009b) specifications hereafter). However, these specifica-
tions don’t guarantee the closed loop stability in general.
Hence, closed loop stability check is essential after the
controller design.

One can further see that in these works a particular Linear
Time Invariant (LTI) plant is considered and the corre-
sponding analytical expressions for the controller parame-
ters are derived. For example, the motion control plant is
considered in Li et al (2010), Li (2008), Luo (2009), and

Wang et al. (2009a) to derive the expressions for PIα,
[PI]α, PDβ , and [PD]β . Similarly, such corresponding
derivations are made for FOPDT plant and fractional
order velocity servo system in Wang et al. (2009b) and
Luo et al. (2010) respectively.

Instead of deriving for each class of plants accordingly,
if the controller expressions meeting Wang et al. (2009b)
specifications and applicable to all class of plants are made
available, it will considerably save the control engineer’s
time and efforts. Such unification was first attempted
in our previous work Kesarkar (2011a). However, the
plant structure considered therein doesn’t handle integer
order plants with complex poles and/or zeros and also the
fractional order plants.

This issue was resolved in our subsequent work Kesarkar
(2011b) where we defined a generalized plant structure
which can accommodate any integer or fractional order
plant transfer function and consequently derived the ex-
pressions for PIα and PDβ controllers.

In the current paper, this work is extended further
to derive the expressions for [PI]α and [PD]β con-
trollers thereby completing such unification for all three-
parameter-fractional-controllers. The contribution of this
paper is as follows:

(1) The novel unified tuning expressions are derived for
[PI]α and [PD]β controllers to meet Wang et al.
(2009b) specifications.

(2) Several examples are considered of the plants belong-
ing to different classes and the correctness of our
proposed unified expressions is demonstrated.
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Overview of the paper: Section 2 presents introduction to
fractional calculus and fractional order control. In section
3, our generalized plant structure in Kesarkar (2011b) is
explained and the novel expressions for [PI]α and [PD]β

are derived. In section 4, the illustration of our derivations
is made by considering plants such as fractional thermal
process, DC motor position servo system, precision modu-
lar servo system, fractional horsepower dynamometer, and
DC motor velocity servo system. Section 5 presents the
concluding remarks.

2. BASICS OF FRACTIONAL CALCULUS AND
FRACTIONAL ORDER CONTROL

2.1 Fractional Calculus

Conventional calculus deals with integer order differentia-
tion and integration. Generalization of conventional calcu-
lus so as to consider differentiation and integration of any
order (not necessarily integer) leads to fractional calculus
Oldham (1974).

In fractional Calculus, the fundamental differ-integration
operator aD

α
t (where a and t are the limits of the opera-

tion) is defined as Chen et al. (2009):

aD
α
t =



dα

dtα
α > 0

1 α = 0
t∫
a

(dτ)−α α < 0

Where α is the order of the operation, generally α ∈ R but
α could also be a complex number.

Out of many definitions of fractional differ-integration in
FC, the popular ones are Xue et al (2007):

• Grunwald-Letnikov (G-L) Definition:

aD
α
t f(t) = lim

h→0

1

hα

[ t−ah ]∑
j=0

(−1)j
(
α
j

)
f(t− jh)

• Riemann-Liouville (R-L) Definition:

aD
α
t f(t) =

1

Γ(n− α)

(
d

dt

)n t∫
a

f(τ)

(t− τ)α−n+1
dτ

(n − 1) ≤ α < n where n is integer and a is real
number.[
t−a
h

]
→ integer

• Caputo Definition:

aD
α
t f(t) =

1

Γ(n− α)

t∫
a

f (n)(τ)

(t− τ)α−n+1
dτ

Fractional Order Transfer Function Model Laplace trans-
form of the defined fractional-order operator is Xue et al
(2007):

L(aD
α
t f(t)) = sαF (s) (with zero initial conditions.)

LTI fractional order system with input u, and output y
has following model Xue et al (2007):

anD
αny(t) + an−1D

αn−1y(t) + ...+ a0D
α0y(t) =

bmD
βmu(t) + bm−1D

βm−1u(t) + ...+ b0D
β0u(t)

where, ai, αi (i = 0, 1, . . . , n), bk, βk (k = 0, 1, . . . ,m) are
real constants. n and m are positive integers.

Therefore, Laplace transform on both sides (assuming
zero initial conditions) results into the following transfer
function:

Y (s)

U(s)
=
bms

βm + bm−1s
βm−1 + ...+ b0s

β0

ansαn + an−1sαn−1 + ...+ a0sα0

2.2 Fractional Order Controllers

In control engineering, the application of fractional calcu-
lus can be either in system modelling or controller design.
The typical fractional order controllers (C(s)) are as fol-
lows:

• Fractional order proportional-integral controller, which
is of two types Wang et al. (2009b):
· PIα

C(s) = Kp

(
1 +

Ki

sα

)
(1)

· [PI]α

C(s) = Kp

(
1 +

Ki

s

)α
(2)

(Integer PI has the form: C(s) = Kp

(
1 + Ki

s

)
)

• Fractional order proportional-derivative controller,
which is of two types Luo (2009):
· PDβ

C(s) = Kp

(
1 +Kds

β
)

(3)

· [PD]β

C(s) = Kp (1 +Kds)
β

(4)

(Integer PD has the form: C(s) = Kp (1 +Kds))
• Fractional order proportional-integral-derivative con-

troller Podlubny I. (1999):
· PIαDβ

C(s) = Kp

(
1 +

Ki

sα
+Kds

β

)
(Integer PID has the form: C(s) = Kp

(
1 + Ki

s +Kds
)
)

In this paper, for the tuning purpose only three-parameter-
fractional-controllers (i.e. PIα, [PI]α, PDβ , and [PD]β )
are taken into consideration. Since PIαDβ has 5 parame-
ters, it is not selected.

3. PROBLEM FORMULATION

In our previous work Kesarkar (2011b), we defined the fol-
lowing generalized plant structure that can accommodate
any class of fractional and integer order LTI plants:

P (s) =K
(a0s

α0 + a1s
α1 + · · ·+ ams

αm)

(b0sβ0 + b1sβ1 + · · ·+ bnsβn)
e−Ls

=K

m∑
i=0

(ais
αi)

n∑
k=0

(bksβk)
e−Ls (5)

In general, K, ai, αi (i = 0, 1, 2, . . . ,m), bk, βk (k =
0, 1, 2, . . . , n), L are real constants. m and n are integers. L
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denotes time delay or dead time of the plant. K is positive
without loss of generality.

When αi, βk assume integer values, (5) represents integer
order plant. Since αi (i = 0, 1, 2, . . . ,m) and βk (k =
0, 1, 2, . . . , n) are not necessarily integers, the transfer
function given by (5) can accomodate any integer or
fractional order plant. For instance,

• m = 0, a0 = 1, α0, n = 1, b0 = T , β0 = 1, b1 = 1,
β1 = 0 leads to FOPDT plant stucture,

P (s) =
K

Ts+ 1
e−Ls

• m = 0, a0 = 1, α0, n = 2, b0 = T1 · T2, β0 = 2,
b1 = (T1+T2), β1 = 1, b2 = 1, β2 = 0 leads to SOPDT
(Second Order Plus Dead Time) plant stucture,

P (s) =
K

(T1s+ 1)(T2s+ 1)
e−Ls

• For Position Servo plant as shown below, the gener-
alized structure parameters are: m = 0, a0 = 1, α0,
n = 1, b0 = a, β0 = 2, b1 = 1, β1 = 1, L = 0.

P (s) =
K

s(as+ 1)

An example of this plant class will be considered later
in Section 4 for illustration.
• m = 0, a0 = 1, α0, n = 1, b0 = a, β0 = 0.5, b1 = 1,
β1 = 0, L = 0 leads to Half-order Fractional Velocity
Servo structure,

P (s) =
K

as0.5 + 1

The fractional horsepower dynamometer example
Luo et al. (2010) to be considered later in Section 4
belongs to such plant class.

3.1 Control Loop and Set of Specifications

The unity feedback control loop is shown in Fig. 1.
R(s), E(s), U(s), and Y (s) denote laplace transform of
reference input, error, controller output, and plant output
respectively.

Fig. 1. Unity feedback control Loop

To derive the tuning expressions for all three-parameter-
fractional-controllers (i.e. PIα, [PI]α, PDβ , and [PD]β),
the following Wang et al. (2009b) specifications are con-
sidered:

• Phase margin (φm)

∠[C(jωc)P (jωc)] = −π + φm (6)

• Gain crossover frequency (ωc)

|C(jωc)P (jωc)| = 1 (7)

• Robustness to gain variation (Isodamping)(
d(∠[C(jω)P (jω)])

dω

)
ω=ωc

= 0 (8)

The isodamping condition Chen (2005) ensures
constant phase margin irrespective of plant gain (K)
variations. The effect of such robustness can be seen
in closed loop step response as the constant maximum
peak overshoot in spite of gain variations.

Remark 1. This paper focusses on the generalized tuning
expressions with respect to Wang et al. (2009b) specifi-
cations. However, one can adopt the same approach to
develop corresponding unified expressions for any other
set of three specifications.

3.2 Expressions for Three-Parameter-Fractional Controllers

In our previous work Kesarkar (2011b), we presented
the generalized tuning expressions for PIα and PDβ

controllers as follows:

PIα and PDβ Controllers The case of PIα and PDβ

is handled together by considering the following general
controller form:

C(s) = K1 (1 +K2s
γ) (9)

There are two cases:

(1) γ > 0: PDβ controller of the form (3) with, Kp = K1,
Kd = K2, and β = γ.

(2) γ < 0: PIα controller of the form (1) with, Kp = K1,
Ki = K2, and α = −γ.

Substitution of P(s) and C(s) expressions (as given in
(5) and (9), respectively) in (6)-(8) yields the following
expressions for controller parameters K1, K2, and γ:

K2 =
−Mω−γc

M cos
(
π
2 γ
)
− sin

(
π
2 γ
) (10)

K2 =
−H ±

√
H2 − 4N2ω2γ

c

2Nω2γ
c

(11)

K1 = 1
K

√√√√ (
p2
2
+q2

2

)(
p2
1
+q2

1

)([
1+K2ω

γ
c cos

(
π
2
γ

)]2
+

[
K2ω

γ
c sin

(
π
2
γ

)]2) (12)

where,

M = tan

(
−tan−1

(
q1
p1

)
+ tan−1

(
q2
p2

)
+ Lωc − π + φm

)

p1 =

m∑
i=0

(
aiω

αi
c cos

(π
2
αi

))
, q1 =

m∑
i=0

(
aiω

αi
c sin

(π
2
αi

))
p2 =

n∑
k=0

(
bkω

βk
c cos

(π
2
βk

))
, q2 =

n∑
k=0

(
bkω

βk
c sin

(π
2
βk

))

H =
(

2Nωγc cos
(π

2
γ
)
− γ sin

(π
2
γ
)
ωγ−1c

)
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N =

−p1

(
m∑
i=0

(
aiαiω

αi−1
c sin

(
π
2
αi

)))
+q1

(
m∑
i=0

(
aiαiω

αi−1
c cos

(
π
2
αi

)))
p2
1
+q2

1

+L +

p2

(
n∑
k=0

(
bkβkω

βk−1
c sin

(
π
2
βk

)))
−q2

(
n∑
k=0

(
bkβkω

βk−1
c cos

(
π
2
βk

)))
p2
2
+q2

2

On solving (10), (11), and (12) simultaneously, we get K1,
K2 and γ.

In the present paper, we extend this work to develop such
novel tuning expressions for [PI]α and [PD]β controllers
as follows:

[PI]α Controller: The substitution of P(s) and C(s)
expressions (given in (5) and (2) respectively) in (6)-(8)
yields the following expressions for controller parameters
Kp, Ki, and α (See APPENDIX 1 for derivation.):

Ki = −ωc tan

(
−tan−1

(
q1
p1

)
+ tan−1

(
q2
p2

)
+ Lωc − π + φm

α

)
(13)

Ki =
α±

√
α2 − 4N2ω2

c

2N
(14)

Kp =
1

K

√√√√√ (p22 + q22)

(p21 + q21)

(
1 +

(
Ki
ωc

)2)α (15)

where,

p1 =

m∑
i=0

(
aiω

αi
c cos

(π
2
αi

))
, q1 =

m∑
i=0

(
aiω

αi
c sin

(π
2
αi

))
p2 =

n∑
k=0

(
bkω

βk
c cos

(π
2
βk

))
, q2 =

n∑
k=0

(
bkω

βk
c sin

(π
2
βk

))

N =

−p1

(
m∑
i=0

(
aiαiω

αi−1
c sin

(
π
2
αi

)))
+q1

(
m∑
i=0

(
aiαiω

αi−1
c cos

(
π
2
αi

)))
p2
1
+q2

1

+L+

p2

(
n∑
k=0

(
bkβkω

βk−1
c sin

(
π
2
βk

)))
−q2

(
n∑
k=0

(
bkβkω

βk−1
c cos

(
π
2
βk

)))
p2
2
+q2

2

On solving (13), (14), and (15) simultaneously, we get Kp,
Ki, and α.

[PD]β Controller: The substitution of P(s) and C(s)
expressions (given in (5) and (4) respectively) in (6)-(8)
yields the following expressions for controller parameters
Kp, Kd, and β (See APPENDIX 2 for derivation.):

Kd =

tan

(
−tan−1

(
q1
p1

)
+tan−1

(
q2
p2

)
+Lωc−π+φm

β

)
ωc

(16)

Kd =
β ±

√
β2 − 4N2ω2

c

2Nω2
c

(17)

Kp =
1

K

√√√√ (p22 + q22)

(p21 + q21)
(

1 + (Kdωc)
2
)β (18)

where,

p1 =

m∑
i=0

(
aiω

αi
c cos

(π
2
αi

))
, q1 =

m∑
i=0

(
aiω

αi
c sin

(π
2
αi

))
p2 =

n∑
k=0

(
bkω

βk
c cos

(π
2
βk

))
, q2 =

n∑
k=0

(
bkω

βk
c sin

(π
2
βk

))

N =

−p1

(
m∑
i=0

(
aiαiω

αi−1
c sin

(
π
2
αi

)))
+ q1

(
m∑
i=0

(
aiαiω

αi−1
c cos

(
π
2
αi

)))
p2
1
+ q2

1

+L +

p2

(
n∑
k=0

(
bkβkω

βk−1
c sin

(
π
2
βk

)))
− q2

(
n∑
k=0

(
bkβkω

βk−1
c cos

(
π
2
βk

)))
p2
2
+ q2

2

On solving (16), (17), and (18) simultaneously, we get Kp,
Kd, and β.

Remark 2. It is important to note that Wang et al. (2009b)
specifications only ensure the required positive phase mar-
gin at a given gain crossover frequency and don’t guaran-
tee closed loop stability in general. For instance, if there
occur multiple gain crossover frequencies, such restrictive
specifications cannot ensure all the phase margins to be
positive. Hence, the generalized derivations presented in
this section are useful only for those plants which lead to
closed loop stablilty. Therefore, closed loop stability check
is essential after designing the controller for Wang et al.
(2009b) specifications.

4. ILLUSTRATION WITH EXAMPLES

In this section, the design of [PI]α and [PD]β controllers
using the generalized tuning expressions proposed in sec-
tion 3.2 is demonstrated by considering several plant ex-
amples belonging to different classes.

Example 1. [PI]α Design for Fractional Horsepower Dy-
namometer

The fractional horsepower dynamometer Luo et al. (2010)
has following transfer function:

P (s) =
1

0.4s0.5 + 1

The above plant is compared with the generalized plant
structure (5) and (13), (14), and (15) are solved simulta-
neously for ωc = 10rad/s, φm = 70◦ to get the following
controller:

C(s) = 0.2097

(
1 +

97.8062

s

)1.007

For solving (13) and (14) simultaneously, we follow here
a graphical approach in which Ki is plotted against α as
per (13) and (14). This leads to two intersecting curves.
The point of intersection gives the solution for Ki and
α. Further, Kp is obtained using (15). Fig. 2 shows the
graphical approach adopted here.

For assessing the performance of designed controller,
Oustaloup Oustaloup et al. (2000), Vinagre et al. (2000)
approximation of the fractional order term is considered.
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Fig. 2. Graphical approach to obtain Ki and α (fractional
horsepower dynamometer)

The order of approximation is taken as 3 and it is valid
over [0.001, 1000] rad/s.

Fig. 3 shows the bode plot for [PI]α compensated plant
for fractional horsepower dynamometer. It is seen from the
figure that the designed controller meets the desired phase
margin and gain crossover frequency specifications.

It is important to check the closed loop stability. One
way to verify such is to obtain pole-zero map of the
closed loop transfer function. If all the poles lie on the
left side of jω-axis, the closed loop system is stable. One
can also get the closed loop stability status from the
open loop bode response obtained using MATLAB Matlab
(R2010a) toolbox (as seen in Fig. 3, for instance). For
the fractional horsepower dynamometer case, thus, it is
confirmed that the closed loop system is stable with the
designed controller.

Fig. 4 shows the closed loop unit step response with the
tuned controller for ± 20% variation in plant gain K
around its nominal value. This shows that the isodamping
condition is also met.

Example 2. [PI]α Design for DC Motor Velocity Servo
System

The DC motor velocity servo system Wang et al. (2009a)
has following transfer function:

P (s) =
1

0.4s+ 1

For ωc = 10rad/s, φm = 70◦, the resulting controller is:

C(s) = 2.7482

(
1 +

18.1507

s

)0.5567

The corresponding bode and closed loop step response
plots are presented in Fig. 5 and 6 respectively. It can
be seen from these responses that the designed controller
meets the required specifications. Also, the closed loop
system is stable as observed in Fig. 5.

Fig. 3. Bode plot for [PI]α compensated plant (fractional
horsepower dynamometer)

Fig. 4. Closed loop unit step response with [PI]α controller
(fractional horsepower dynamometer)

Fig. 5. Bode plot for [PI]α compensated plant (DC motor
velocity servo system)
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Fig. 6. Closed loop unit step response with [PI]α controller
(DC motor velocity servo system)

Example 3: [PI]α Design for Precision Modular Servo
System

An experimental set-up of precision modular servo Sys-
tem Reference-Manual-33-927S developed by Feedback
Instruments, UK available at our Control Systems Lab is
shown in Fig. 7. The set-up consists of DC Motor, Digital
Encoder, Power Supply, Pre Amplifier, Servo Amplifier,
and Analogue Control Interface units.

The complete mathematical model of the precision modu-
lar servo System is nonlinear due to presence of elements
such as saturation limits in the Pre Amplifier and Servo
Amplifier stages, friction in the Motor, static backlash
due to clearance in the belt that connects Motor shaft
to Digital Encoder.

For demonstrating the controller design with our unified
expression technique, linear portion of the system in the
form of its transfer function is considered. It relates pre
amplifier input voltage to the voltage equivalent of DC
Motor shaft angular position as follows:

Fig. 7. Precision Modular Servo Real time Setup

P (s) =
KKt

s(JLs2 + (RJ + dL)s+ (dR+KbKt))

The numeric details of the plant parameters Reference-
Manual-33-927S are given in Table 1.

Table 1. List of Plant Parameters

Symbol Description Value Unit

J Moment of Inertia 140 × 10−7 kgm2

Kt Torque Constant 0.052 Nm/A

Kb Electromotive Force Constant 0.057 V s/rad

d Linear Approximation of Viscous Friction 10−6 Nms/rad

R Resistance 2.5 Ω

L Inductance 2.5 mH

K Amplifier Gain 9.6 -

Therefore,

P (s) =
1.4263× 107

s3 + 1000s2 + 8.476× 104s

For ωc = 10rad/s, φm = 70◦, the resulting controller is:

C(s) = 0.0524

(
1 +

13.7567

s

)0.2459

The corresponding bode plot and closed loop step response
are presented in Fig. 8 and 9 respectively. It can be seen
from these responses that the designed controller meets
the required specifications. Also, the closed loop system is
stable.

Real Time Testing: For the transfer function model of
precision modular servo set-up, loop shaping is performed
to meet Wang et al. (2009b) specifications as shown
previously. It is important to notice that the nonlinearity
in the plant hasn’t been considered in the controller design
stage. Nevertheless, such an approach is well suited for
such plant cases where the nonlinearity effects on the
transient response are mild.

In general, after design, the controller is tested with
the real set-up. Subsequently, controller parameters are
manually adjusted if the performance deviates from the
desired one due to nonlinearities.

For the current case, we show here the real time testing
results obtained with the designed controller (C(s) =

0.0524
(
1 + 13.7567

s

)0.2459
) using Hardware-in-loop config-

uration. For this purpose, a step reference input of magni-
tude 10 is given and the corresponding response is obtained
as presented in Fig. 10.

It is observed from Fig. 10 that due to presence of
nonlinearity, sustained oscillations are produced in the
steady state of step response. Performance analysis of
the transient response and fine tuning of the controller
parameters is not discussed here owing to the limited scope
of the current paper.
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Fig. 8. Bode plot for [PI]α compensated plant (Precision
Modular Servo system)

Fig. 9. Closed loop unit step response with [PI]α controller
(Precision Modular Servo system)

Fig. 10. Real time closed loop step response with [PI]α

controller (Precision Modular Servo system)

Example 4. [PD]β Design for Fractional Order Thermal
Process

The following transfer function describes a thermal process
Petras et al (2002) heated by an electrical radiator with

the temperature measured by a pyrometer:

P (s) =
1

39.69s1.26 + 0.598

For ωc = 0.5rad/s, φm = 70◦, (16), (17), and (18) are
solved simultaneously to get the following controller:

C(s) = 16.2769 (1 + 0.6484s)
0.0824

Fig. 11 shows the bode Plot for [PD]β compensated
thermal process. From the plot, it is observed that the
required gain crossover frequency and phase margin are
met. Also, phase plot is locally flat around ωc. This ensures
constant phase margin in spite of plant gain variations.
Thus, the isodamping condition is also satisfied. Further,
closed loop system is stable as seen from Fig. 11.

Fig. 12 shows the closed loop unit step response with the
tuned controller for ± 20% variation in thermal process
gain K around its nominal value. The constant maximum
peak overshoot in spite of process gain variations confirms
the isodamping condition in time domain.

Fig. 11. Bode plot for [PD]β compensated plant (thermal
process)

Fig. 12. Closed loop unit step response with [PD]β con-
troller (thermal process)
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Example 5. [PD]β Design for DC Motor Position Servo
System

The DC motor position servo system has following transfer
function Li (2008), Luo (2009):

P (s) =
1

s(0.4s+ 1)

For ωc = 10rad/s, φm = 70◦, (16), (17), and (18) are
solved simultaneously to get the following controller:

C(s) = 16.7780 (1 + 0.2992s)
0.7826

Fig. 13 shows the bode plot for [PD]β compensated DC
motor position servo system. Fig. 14 shows the closed loop
unit step response with the tuned controller for ± 20%
variation in plant gain K around its nominal value. It can
be seen from these responses that the desired conditions
are met. Also, closed loop stability is maintained as seen
from Fig. 13.

Fig. 13. Bode plot for [PD]β compensated plant (DC
motor position servo system)

Fig. 14. Closed loop unit step response with [PD]β con-
troller (DC motor position servo system)

Thus, (16), (17), and (18) are used to design [PD]β

controller for different class of plants.

Thus, the illustration of our derivations for [PI]α and
[PD]β controllers is made by considering plants such as
fractional thermal process, DC motor position servo sys-
tem, precision modular servo system, fractional horse-
power dynamometer, DC motor velocity servo system. The
results are summarized in Table 2.

5. CONCLUSION

In this paper, the readily usable tuning expressions for
three-parameter-fractional-controllers such as [PD]β and
[PI]α have been presented. These novel expressions are
applicable to any class of integer or fractional order LTI
plant. The designed controllers satisfy required phase
margin, gain crossover frequency and isodamping property.
Usefulness of such expressions has been demonstrated with
several integer and fractional order plants which include:

• Fractional Thermal Process
• DC Motor Position Servo System
• Real Time Precision Modular Servo Set-up
• Fractional Horsepower Dynamometer
• DC Motor Velocity Servo System

The results with these cases confirm the correctness of the
proposed derivations.
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APPENDIX 1

Derivation for [PI]α Parameters

The generalized plant structure as given in (5) is:

P (s) = K

m∑
i=0

(ais
αi)

n∑
k=0

(bksβk)
e−Ls

The [PI]α controller has following structure as given in
(2):

C(s) = Kp

(
1 +

Ki

s

)α
Therefore, [P (s)C(s)]s=jω

=K

m∑
i=0

(ai(jω)αi)

n∑
k=0

(bk(jω)βk)
e−L(jω)Kp

(
1 +

Ki

jω

)α

=K

m∑
i=0

(aiω
αijαi)

n∑
k=0

(bkωβkjβk)
e−L(jω)Kp

(
1− jKi

ω

)α

=K

m∑
i=0

(aiω
αiej

π
2 αi)

n∑
k=0

(bkωβkej
π
2 βk)

e−L(jω)Kp

(
1− jKi

ω

)α

= K

m∑
i=0

(
aiω

αi
(
cos(π

2
αi) + jsin(π

2
αi)
))

n∑
k=0

(
bkω

βk

(
cos(π

2
βk) + jsin(π

2
βk)
)) e−L(jω)

Kp

(
1 − j

Ki

ω

)α

Therefore, [P (s)C(s)]s=jωc

=K
p1 + jq1
p2 + jq2

e−L(jωc)Kp

(
1− jKi

ωc

)α
where,

p1 =

m∑
i=0

(
aiω

αi
c cos

(π
2
αi

))
q1 =

m∑
i=0

(
aiω

αi
c sin

(π
2
αi

))
p2 =

n∑
k=0

(
bkω

βk
c cos

(π
2
βk

))
q2 =

n∑
k=0

(
bkω

βk
c sin

(π
2
βk

))
Therefore, P (jωc)C(jωc)

= K
p1 + jq1
p2 + jq2

e−L(jωc)Kp

√1 +

(
Ki

ωc

)2

e
jtan−1

(
−Kiωc

)α

Gain crossover frequency specification has been given in
(7) as:

|C(jωc)P (jωc)| = 1

∴ K

√
p21 + q21√
p22 + q22

Kp

√1 +

(
Ki

ωc

)2
α

= 1

∴ Kp =
1

K

√√√√√ (p22 + q22)

(p21 + q21)

(
1 +

(
Ki
ωc

)2)α
Phase margin specification has been given in (6) as:

∠[C(jωc)P (jωc)] = −π + φm

Therefore,

tan−1
(
q1
p1

)
−tan−1

(
q2
p2

)
−Lωc+αtan−1

(
−Ki

ωc

)
= −π+φm

Therefore,

Ki =−ωc tan

−tan−1
(
q1
p1

)
+ tan−1

(
q2
p2

)
+ Lωc − π + φm

α


Isodamping condition has been expressed in (8) as:(

d(∠[C(jω)P (jω)])

dω

)
ω=ωc

= 0

Therefore,

p1

(
m∑
i=0

(
aiαiω

αi−1
c sin(π2 αi)

))
−q1

(
m∑
i=0

(
aiαiω

αi−1
c cos(π2 αi)

))
p21+q

2
1

−
p2

(
n∑
k=0

(
bkβkω

βk−1
c sin(π2 βk)

))
−q2

(
n∑
k=0

(
bkβkω

βk−1
c cos(π2 βk)

))
p22+q

2
2

− L+ α

Ki
ω2
c

1+
(
−Kiωc

)2 = 0

Let,

N =

−p1

(
m∑
i=0

(
aiαiω

αi−1
c sin(π2 αi)

))
+q1

(
m∑
i=0

(
aiαiω

αi−1
c cos(π2 αi)

))
p21+q

2
1

+L+

p2

(
n∑
k=0

(
bkβkω

βk−1
c sin(π2 βk)

))
−q2

(
n∑
k=0

(
bkβkω

βk−1
c cos(π2 βk)

))
p22+q

2
2

Therefore,

∴ −N +
αKi

ω2
c +K2

i

= 0

Therefore,

Ki =
α±

√
α2 − 4N2ω2

c

2N

Thus, the tuning expressions for [PI]α controller have been
derived.
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APPENDIX 2

Derivation for [PD]β Parameters

The generalized plant structure as given in (5) is:

P (s) = K

m∑
i=0

(ais
αi)

n∑
k=0

(bksβk)
e−Ls

The [PD]β controller has following structure as given in
(4):

C(s) = Kp (1 +Kds)
β

Therefore, [P (s)C(s)]s=jω

=K

m∑
i=0

(ai(jω)αi)

n∑
k=0

(bk(jω)βk)
e−L(jω)Kp (1 +Kd(jω))

β

=K

m∑
i=0

(aiω
αijαi)

n∑
k=0

(bkωβkjβk)
e−L(jω)Kp (1 +Kd(jω))

β

=K

m∑
i=0

(aiω
αiej

π
2 αi)

n∑
k=0

(bkωβkej
π
2 βk)

e−L(jω)Kp (1 +Kd(jω))
β

= K

m∑
i=0

(
aiω

αi
(
cos(π

2
αi) + jsin(π

2
αi)
))

n∑
k=0

(
bkω

βk

(
cos(π

2
βk) + jsin(π

2
βk)
)) e−L(jω)

Kp (1 +Kd(jω))
β

Therefore, [P (s)C(s)]s=jωc

=K
p1 + jq1
p2 + jq2

e−L(jωc)Kp (1 +Kd(jωc))
β

where,

p1 =

m∑
i=0

(
aiω

αi
c cos

(π
2
αi

))
q1 =

m∑
i=0

(
aiω

αi
c sin

(π
2
αi

))
p2 =

n∑
k=0

(
bkω

βk
c cos

(π
2
βk

))
q2 =

n∑
k=0

(
bkω

βk
c sin

(π
2
βk

))
Therefore, P (jωc)C(jωc)

= K
p1 + jq1
p2 + jq2

e−L(jωc)Kp(
√

1 + (Kdωc)2e
jtan−1(Kdωc))β

Gain crossover frequency specification has been given in
(7) as:

|C(jωc)P (jωc)| = 1

Therefore,

K

√
p21 + q21√
p22 + q22

Kp

(√
1 + (Kdωc)2

)β
= 1

Therefore,

Kp =
1

K

√√√√ (p22 + q22)

(p21 + q21)
(

1 + (Kdωc)
2
)β

Phase margin specification has been given in (6) as:

∠[C(jωc)P (jωc)] = −π + φm

Therefore,

tan−1
(
q1
p1

)
−tan−1

(
q2
p2

)
−Lωc+βtan−1(Kdωc) = −π+φm

Therefore,

Kd =

tan

(
−tan−1

(
q1
p1

)
+tan−1

(
q2
p2

)
+Lωc−π+φm

β

)
ωc

Isodamping condition has been expressed in (8) as:(
d(∠[C(jω)P (jω)])

dω

)
ω=ωc

= 0

Therefore,

p1

(
m∑
i=0

(
aiαiω

αi−1
c sin(π2 αi)

))
−q1

(
m∑
i=0

(
aiαiω

αi−1
c cos(π2 αi)

))
p21+q

2
1

−
p2

(
n∑
k=0

(
bkβkω

βk−1
c sin(π2 βk)

))
−q2

(
n∑
k=0

(
bkβkω

βk−1
c cos(π2 βk)

))
p22+q

2
2

− L+ βKd
1+(ωcKd)2

= 0

Let,

N =

−p1

(
m∑
i=0

(
aiαiω

αi−1
c sin(π2 αi)

))
+q1

(
m∑
i=0

(
aiαiω

αi−1
c cos(π2 αi)

))
p21+q

2
1

+L+

p2

(
n∑
k=0

(
bkβkω

βk−1
c sin(π2 βk)

))
−q2

(
n∑
k=0

(
bkβkω

βk−1
c cos(π2 βk)

))
p22+q

2
2

Therefore,

−N +
βKd

1 + (ωcKd)2
= 0

Therefore,

Kd =
β ±

√
β2 − 4N2ω2

c

2Nω2
c

Thus, the tuning expressions for [PD]β controller have
been derived.


