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Abstract: A nonlinear adaptive controller for controlling a nonlinear and time-varying fed-batch 
fermentation process involving one limiting substrate for biomass growth and product synthesis is 
proposed. More exactly, in the context of a large class of fed-batch bioreactors for which 
dynamical kinetics are not exactly known and time-varying and not all the state variables are 
measurable, for the regulation of the substrate concentration, based on input-output state feedback 
linearization technique, a nonlinear adaptive control algorithm is proposed. A recursive least-
squares algorithm with forgetting factor for the on-line estimation of the unknown parameters is 
proposed. The stability and convergence properties of this algorithm are proved provided that the 
regressor matrix is persistently exciting. Computer simulations performed under identical 
circumstances are included in order to demonstrate the performances of this controller compared 
to an exactly nonlinear linearizing controller.  
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1. INTRODUCTION 

The control problem of biotechnological 
processes is an important practical problem 
attracting wide attention. The main engineering 
motivation in applying control methods to such 
living systems is to improve operational stability 
and production efficiency.  

Fermentation processes that are carried out in 
perfectely stirred tank reactors are commonly 
described by a set of ordinary differential 
equations expressing mass and energy balances. 
A basic difficulty for the application of modern 
control techniques to these processes lies in the 
fact that, in many cases, the models include 

kinetic parameters, which are highly uncertain 
and time varying. For these reasons, chemical 
and biological reactors are often good 
candidates for the application of adaptive 
nonlinear control techniques in order to improve 
system performances in spite of parametric 
uncertainty [1]. 

In contrast with continuous stirred tank reactors, 
which continuously operate in steady state, fed-
batch reactors are permanently in a transient 
regime and therefore offer challenging problems 
to the control engineer. A fed-batch reactor is 
initially partially filled with an amount of some 
of the needed reactants. The other reactants are 
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then progressively added to the reactor as and 
when required. The process is stopped when 
enough products have been accumulated.  

Industrial fed-batch stirred tank reactors are 
traditionally operated in open loop using 
precalculated feeding patterns and dosage 
schemes [13]. But in recent years, there has been 
strong interest in the application of modern 
control theories to fed-batch fermentation 
processes. So, for optimization of alcoholic fed-
batch fermentation process there were used 
dynamic programming [2] and nonlinear 
programming schemes [3]. 

In this paper we are concerned with the control 
of a fed-batch fermentation process involving 
one limiting substrate for biomass growth and 
product synthesis, with respect to the volumetric 
feed rate of this substrate. More exactly, in the 
context of a large class of fed-batch bioreactors 
for which dynamical kinetics are not exactly 
known and time-varying and not all the state 
variables are measured, for the regulation of the 
substrate concentration, a nonlinear adaptive 
control algorithm is proposed.  

The adaptive controller is based on the nonlinear 
structure of the process and it is obtained based 
on input-output state feedback linearization 
technique [6]. If the process model is linearly 
parameterized, for the estimation of the 
unknown parameters a recursive least-squares 
algorithm with forgetting factor is proposed. The 
stability and convergence properties of this 
algorithm are proved through Lyapunov’s 
methods provided that the regressor matrix is 
persistently exciting. 

Another objective is to analyze why and how to 
apply feeding rate profiles that are on-line 
calculated in a feedback loop with an adaptive 
nonlinear control strategy in order to obtain a 
maximum production of alcohol. 

Computer simulations performed under identical 
circumstances are included to demonstrate the 
performances of the designed controllers.  

The rest of this paper is organized as follows. 
The process model is presented in Section 2. 
Section 3 describes the proposed adaptive 
control algorithm for which the stability and 
convergence properties are provided. The 
effectiveness of the proposed control algorithms 
is presented in Section 4. Concluding remarks 
complete this paper. 
 

2. MATHEMATICAL PROCESS MODEL 

Consider the class of fed-batch fermentation 
processes involving one limiting substrate for 
biomass growth and product synthesis that are 
carried out in stirred tank bioreactors. A 
representative process from this class is the 
alcoholic fermentation bioprocess whose 
mathematical model obtained from mass balance 
considerations is given by the following set of 
nonlinear equations: 

)/()()( VFXXtX in−⋅µ=&            (1) 

( ) )/()()( VFSSXtS ininS −+⋅ν−=&          (2) 

)/()()( VFPXtP inP −⋅ν=&           (3) 

inFtV =)(&              (4) 

with X  the biomass concentration (g/l), S  the 
substrate concentration (g/l), inS  the influent 
substrate concentration (g/l), P  the product 
concentration (g/l), V  the volume of the culture 
medium (l), inF  the volumetric feed rate (l/h), µ 
the specific growth rate (h-1), Sν  the specific 
substrate consumption rate (h-1) and Pν  the 
specific production rate (h-1). 

The parameters appearing in this description are 
complicated functions of the variables of 
interest. The challenge for the control engineer 
arises from the fact that the analytical modelling 
of these specific rate functions νµ,  and Pν  is 
highly uncertain and generally not reproductible 
from one fed-batch to the next one. Several 
experiments have been carried out by specialists 
(biochemists) and the following expressions for 
the bacterial growth rate has been adopted. 
Thus, the kinetic terms are given by [3]: 
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with SXY /  the biomass on substrate yield 
coefficient, SPY /  the product on substrate yield 
coefficient and mP  the alcohol inhibition factor. 
This model takes into account substrate and 
product inhibition on the growth and the fact 
that growth and production interact. 
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Fed-batch fermentation processes have been 
found to be most effective in overcoming such 
effects as substrate inhibition, catabolite 
repression, and glucose effects. In other words, 
whenever the specific rate of growth µ  and/or 
production are non-monotonic functions of the 
limiting substrate concentration (as in our case), 
a fed-batch operation may be superior and it is 
then necessary to determine the optimal feed 
rate of substrate [13]. 
 
 
3. CONTROL STRATEGIES 

For the presented bioprocess, the control 
objective is to get a large production of alcohol. 
From the above considerations, it follows that 
the alcohol production process requires 
regulation of the substrate concentration S  
inside the bioreactor at a set point *S  
corresponding to a desired biomass specific 
growth rate by acting on the feeding substrate 
rate inF .  
 
3.1. Nonlinear inverse dynamic controller 
Controller design is made by the input-output 
linearizing technique. Remember that the input-
output linearizing principle [6] consists of the 
calculus of a nonlinear control law such that the 
behaviour of closed loop system (controller + 
process) is the same as the behaviour of a linear 
stable system. 

Firstly, we consider the ideal case where 
maximum prior knowledge concerning the 
process is available. In particular, we suppose 
that the functions νµ,  and Pν  in the model 
(1)-(4) are completely known and all state 
variables are available for on-line 
measurements.  

It can be seen that equations (2) in the model 
(1)-(4) have the relative degree equal to 1 [6], 
[9]. Assume that for the closed loop system we 
wish to have the following first-order linear 
stable dynamics: 

( ) ( ) 0*
1

* =−λ+− SSSS
dt
d ,   01 >λ           (8) 

Then, from (2) and (8), the above closed-loop 
dynamics will be achieved by implementing the 
following exactly linearizing nonlinear control 
law: 

[ XYSS
SS

VF SX
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in µ+−λ
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= )/1()( /
*
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         ]XY PSP ν+ )/1( /                       (9) 

where *S  is the desired value of S and 1λ  is a 
design parameter.  

The control law (9) leads to the following linear 
error model: 

tt ee ⋅λ−= 1&           (10) 

where SSet −= *  represent the tracking error. 
It is clear that for 01 >λ , the error model (10) 
has an exponentialy stable point at 0=te . 
 
3.2. Nonlinear adaptive controller 
Let us suppose now that the substrate 
concentration S  and the product concentration 
P  inside of the bioreactor are the only 
measurements which are available on-line and 
that specific reaction rates µ  and Pν  and 
obviously Sν  are time varying and unknown.  

The practical implementation of the regulation 
law (9) requires the knowledge of the states S  
and X , and of the specific reaction rates µ  and 

Pν . Since the state X  is not measured on-line 
and the kinetic rates µ  and Pν  are unknown, 
the regulation law (9) becomes an adaptation 
regulation law by replacing the true unknown 
values of X , µ  and Pν  by their corresponding 
on-line estimates provided by a suitable state 
observer and a parameter estimator.  

For the estimation of the state X , independent 
of the unknown specific reaction rates µ  and 

Pν , we use an asymptotic observer [10], which 
can be derived here as follows. Let us define the 
auxiliary state Ẑ  as: 

SPYXYZ SPSX ++= )/1()/1(ˆ
//        (11) 

whose dynamics is readily deduced from the 
model (1)-(3) and is expressed by the following 
linear stable equation: 

ininin SVFZVFtZ )/(ˆ)/()(ˆ +−=&         (12) 

Then, the on-line estimate X̂  of the biomass 
concentration X  is calculated from values of Z  
computed from its dynamical equation (12), as: 

( )SPYZYX SPSX −−= )/1(ˆˆ
//         (13) 



                                                                                          CONTROL ENGINEERING AND APPLIED INFORMATICS 
 
 

34

The unknown kinetic terms ),( PSµ  and )(SPν  
in (5) and (6) can be written as follows: 

1),( ρ⋅=µ SPS ;    2)( ρ⋅=ν SSP        (14) 

with 1ρ  and 2ρ  parameters considered 
completely unknown and time varying. This 
simply expresses that S  is a limiting substrate 
of the reactions and that, in consequence 0=µ  
and 0=ν P  if 0=S . Note that for our example: 
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which are positive functions of S . 

The estimation of parameters 1ρ  and 2ρ  can be 
performed by an appropriate parameter 
estimator applied only the dynamics of S  and 
P  given by (2) and (3), respectively, which 
under the above assumptions can be written as 
follows: 
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This model can be written in a more compact 
matrix form as: 

FDGK ssss +ξ−ρξ=ξ )(&         (17) 

with sξ  the selected state vector, sK  the yield 
coefficient matrix, ρ  the unknown parameter 
vector, F  the feed flow rate vector and D  the 
dilution rate, where:  
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3.2.1. A recursive least-squares parameter 
          estimator 

Based on the reformulation of the model (17) in 
a linear regressive form as in [1], in this Section, 
for the estimating of the unknown parameter ρ , 

we propose a recursive least-square algorithm 
with forgetting factor. 

First, we note that the solution )(tsξ  of the 
differential equation (17) may be written as  [1], 
[10]: 

)()()()()( 0 ttttt T
s ε+Ψ+ρΨ=ξ        (19) 

where )(),( 0 ttT ΨΨ  and )(tε  are the outputs of 
the following linear filters [1]: 
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dt

td T
T
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Ψ
0
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d

dt
td T ρΨ−εΩ−=

ε )(        (20c) 

where Ω  in a )( nn ×  symmetrically stable 
matrix, arbitrarily chosen and I is the n-
dimensional unity matrix. If the matrix Ω  is 
stable, the matrices ||||||,)(|| FKG ξ  and |||| sξ  
are uniformly bounded and ρ  is derivable and 
its derivative is bounded, then all the filters (20) 
are uniformly asymptotically stable.  

If we define 

)()()( 0 ttty s Ψ−ξ=          (21) 

then the following linear regressive model 
describes the dynamic of the process (17):  

)()()()( tttty T ε+ρΨ=           (22) 

where )(ty  is the output, )(tTΨ  is the 
regressor, )(tρ  is the unknown parameter that 
must be estimated and )(tε  can be interpreted 
that a perturbed input. Note that the output y  
and the regressor TΨ  can be on-line calculated 
by means of equations (20) from the disponible 
data of Ds ,ξ and F .  

For the estimation of the unknown parameter ρ  
we will propose a recursive algorithm with 
forgetting factor based on the standard least-
squares algorithm [12]. Corresponding to this 
algorithm, the estimate ρ̂  of ρ  will be obtained 
by minimizing of the following integral-
squared-error 

( ) ∫ ττ−τ=ρ τ−λ−
t

t dyyeJ
0
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        ( )∫ τρ−ρΨ= τ−λ−
t

Tt dtte
0
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where 0>λ  is the forgetting factor. 

Owing to the linearity of error equation (22), the 
estimate )(ˆ tρ  may be obtained directly from the 
condition 

( ) ( )[ ]∫ =ττρΨ−τΨ−=ρ
ρ∂
∂ τ−λ−

t
Tt dyeJ

0

)( 0)(ˆ)(2ˆ
ˆ

           (24) 
From (24), the least-squares estimate is given by 
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where it was assumed that the inverse in (25) 
exists. 

For adaptive control applications, we are 
interested in a recursive formulation of (25) 
where parameters are updated continuously on 
the basis on input-output data. Such an 
expression may be obtained by defining: 
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such that, using (29) and (30) its derivative with 
respect to time becomes 
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dt
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Note that the recursive algorithm (31), (29) is 
started with arbitrary initial conditions at 00 =t .  

Finally, a recursive least-square algorithm for 
on-line estimation of parameter ρ , is given by: 
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and the forgeing factor ]1,0[∈λ . 
 
3.2.2. Stability and tracking properties of the 
          least-square algorithm 

Let us define the tracking error ρ~  as: 

ρ−ρ=ρ ˆ~           (33) 

Considering the equation (32c) and the 
definition (33), the convergence of the recursive 
least-squares algorithm (32) is related to the 
asymptotic stability of following differential 
equation: 

)(~)()()()(~
tttt

dt
td T ρΨΨΓ−=ρ , 0)( >Γ t         (34) 

Regarding to the system (34) we can present the 
following convergence result. 

Theorem 1: If the matrix )(tΨ  in (34), whose 
components are piecewise continuous and 
bounded functions, satisfies the persistency of 
excitation condition, that is there are the 
constants 0,, 021 >αα T  such that [12], 
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then the system (34) is globally exponentially 
stable. 

Proof. Consider the following Lyapunov 
function: 

)(~)()(~)( 1 ttttV T ρΓρ= −          (36) 

where )(tΓ  is a )( nn × -symmetrically and 
positive definite matrix that satisfies the 
equation (32d). Using (27), the derivative of 
(36) along the trajectories of (34) takes the form 
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where for )(1 t−Γ  it was used its expression from 
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inequality 
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from which 
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with the condition that the matrix )()( tt TΨΨ  to 
be uniformly positive. In fact, this is possible 
only if the persistency of excitation condition 
(35) is satisfied. Since )(tV  is a positive definite 
and non-increasing function and its time 
derivative is negative semi-definite, then 

0)0(~ =ρ  is an uniformly stable equilibrium 
point of the system (34). By integrating of (39) 
from t  to 0Tt + , one obtains: 
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∫
+

ττρτΨτΨτρ≤ρα
0

)(~)()()(~)(~ 2
1

Tt

t

TT dt    

    0,)(~ 2
2 ≥∀ρα≤ tt               (41) 
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Using now a theorem of exponentially stability 
from [5], [12], it follows that 0~ =ρ  is a globally 
exponentially stable equilibrium point of the 
system (35). Then it follows that )(ˆ tρ  will 
converge to )(tρ . 
 
3.2.3. The adaptive linearizing algorithm 

Considering the notations in the previous 
sections, the algorithm for on-line computation 
of the unknown parameter ρ  in (17), (18) is 
particularized as follows: 
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where TΨ  is the regressor matrix, Γ  is the gain 
matrix of the updating law (44c), and 0>ω  and 
λ  (forgetting factor) are design parameters at 
the user’s disposal to control the stability and 
the tracking properties of the estimator.  

In our case the regressor matrix in (43a-43d) is 
given by: 
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Finally, the full adaptive linearizing controller is 
made up of the combination of (12), (13) and 
(43) with the control law (9) rewritten as (44):  
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and is schematized in Fig. 1. 
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4. SIMULATION RESULTS 

The performances of the above nonlinear 
adaptive controller have been tested by 
performing extensive simulation experiments.  

Simulations of the alcoholic fermentation 
process where carried out by numerically 
integrating the complete model described in 
Section 2 with the following set yield and 
kinetic coefficient values [3]: 

1
max 54.0 −=µ h , lgKS /5= , lgK I /201= , 

1
max 1.2 −=ν h , lgKS /9' = , lgK I /297' = ,

lgPm /70= , 5.1/ =SXY , 43.0/ =SPY ,
lgSin /160= , lVVV ]16,2[],[ max0 =∈ , 

]2,0[∈inF  l/h. 

The equations (1)-(4) were integrated under the 
following initial conditions: 

lgX /5.1)0( = , lgS /0.3)0( = , 
lgP /0.0)0( = , lgVV /0.4)0( 0 == . 

From equations (1), (2) and (4) we see that the 
accumulations of the biomass quantity )(XV   
and of the product quantity )(PV  in the reactor 
are governed by the following differential 
equations: 

)()( XVXV
dt
d ⋅= µ ; )()( PVPV

dt
d

P ⋅=ν     (45) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2. Final product quantity ff VP  and yield η  vs. 
set point 

It appears that the biomass production rate and 
the production rate are maximum when the 
specific rate functions µ  and Pν  themselves are 
maximum. It follows that the optimization of the 
process efficiency, i.e. the maximization of the 
biomass production and of the production of 
alcohol, clearly requires maintaining the 
substrate concentration S  at a set point *S  that 
maximizes the biomass growth rate and the 
product growth rate respectively. We have thus 
formulated an optimization objective in terms of 
a regulation problem. 

In fact, the substrate regulation in fed-batch 
processes can constitute an efficient tool to 
manage the yield-production conflict which 
occurs in many practical applications, 
particularly in alcoholic fermentation process.  

Thus, if we suppose that the final volume of 
culture medium is fixed, i.e. max)( VtV f = , 
where ft  is the final time of the fed-batch 
operation, we can define the yield η  as the ratio 
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of the final product quantity and the total 
amount of substrate, which has been consumed: 
 

∫+

=
ft

inin

ff

dttFSVS

tVtP

0

)()0()0(

)()(
η         (46) 

The parameters )()( ffff tVtPVP =  and η  are 
plotted in Fig. 2 with respect to the set point *S , 
for a series of simulations, performed with the 
model (1)-(4) under the above adaptive control 
when ht f 5.10= .   

From this figure, it appears clearly that the set 
point *S  (and obviously the associated adaptive 
controller) can be viewed as a mean to modulate 
the process between production maximization 
(but with a low yield) obtained with 

lgS /72* = , and the yield maximization (with 
a low production) obtained with lgS /18* = . It 
is clear that the set point *S  must be chosen in a 
such mode, which corresponds to a compromise 
between the values, which optimize the specific 
growth and production rates. 

The graphs of Fig. 3a-3c show the performances 
of the adaptive nonlinear control given by (12), 
(13), (43) and (44) by comparison to the 
behavior of closed-loop system when all 
elements (state variables and kinetics) are 
assumed to be known and the control law is 
given by (9). So, Fig. 3a shows the evolution of 
state variables (biomass X and estimated 
biomass X̂ , substrate S, alcohol P), and Fig. 3b 
shows the profile of the control variable Fin, 
when the set point is lgS /44* = . 
(Observation. Note that in Fig. 3a, to be 
represented in the same figure, the values of X 
and X̂  were multiplied by 4). 
From these figures it is clear that the two 
algorithms (9) and (44) lead to a similar 
behavior of the state variables.  
 
 
 
 
 
 
 
 
 
 
 

Fig. 3a. Evolution of state variables 

 

 
 
 
 
 
 
 
 

 
 
 

Fig. 3b. Profile of control variable 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 3c. Evolution of process parameters 
 
Furthermore the estimated parameters 1ρ̂  and 

2ρ̂  track their true values 1ρ  and 2ρ , as it is 
shown in Fig. 3c. 

In Fig. 3a-3c the adaptive controller has been 
implemented under the following initial 
conditions and design parameters: 

lgZ /8.3)0(ˆ = ; 1.0)0(ˆ 1 =ρ ; 15.0)0(ˆ 2 =ρ ; 
55.0=λ ;  25)0( I⋅=Γ ; 5.21 =λ ; T/1=ω  

where T  is the sample interval. 

 

 

 

 

 

 

 

 

 
 

Fig. 4a. Evolution of state variables 
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Fig. 4b. Profile of control variable 

 

 

 

 

 

 

 

 

 
Fig. 4c. Evolution of process parameters 

 
We have also compared our adaptive control 
algorithm with  a  simple  classical PI regulator, 
which computes the value of the influent flow 
rate inF  from the regulation error ( )SS −*  as: 

( ) ( )∫ τ−+−=
t

I
Rin dSS

T
SSKtF

0

** 1)(        (47) 

Figures 4a-4c show the evolution of the state 
variables (biomass, substrate, product (alcohol)) 
and the control variable (feed rate) when the 
control law is given by (47) with 7.0=RK  and 

4.0=IT and the set point lgS /44* = . 

We have noted that, although reasonable set of 
design parameters have been considered, the 
performances of the PI  controller are not so 
good, it may be degrading quite easily. 

 
5. CONCLUSIONS 

In this paper an adaptive scheme has been 
presented for the control of the substrate 
concentration in a fed-batch fermentation 
bioreactor.  

The algorithm consists of two estimation steps: 
the estimation of the unmeasured state and then 

the estimation of the unknown specific reaction 
rates. For the estimation of the unknown 
parameters a recursive least-squares algorithm 
with forgetting factor was proposed. The 
stability and convergence properties of this 
algorithm were proved provided that the 
regressor matrix is persistently exciting.  

Because the goal of a fed-batch operation is 
generally to accumulate some reaction products 
that are harvested at the end of the operation (the 
product P , in our example), the goal of the 
feedback control is clearly not to stabilize the 
process globally but rather to keep unstable 
trajectories under control. We have thus 
formulated an optimization objective in terms of 
a regulation problem and discussed why and 
how must to apply the feed rate that is calculated 
on-line with the adaptive nonlinear scheme.  

The results of the application of the proposed 
algorithm in numerical simulation confirm the 
efficiency of the control scheme. 
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