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Abstract: The paper deals with a new approach for synthesis of time-optimal control for a class of 
linear systems. It is based on the decomposition of the time-optimal control problem into a class of 
decreasing order problems, and the properties and relations between problems within this class. 
First, the problems’ state-space properties are analyzed, and then the optimal control is obtained 
by using a multi-step procedure avoiding the switching hyper surface description. The emphasis in 
this paper is on the optimal control synthesis stage of the approach proposed. A property of the 
considered class of problems is studied which enables development of a fast algorithm for 
synthesis of time-optimal control without using the switching hyper surface. 

Keywords: Time-optimal control, Pontryagin's maximum principle, Synthesis of optimal systems, 
Linear systems. 

1. INTRODUCTION 
 
The linear time-optimal control problem has a 
half-a-century history. Fundamental theoretical 
results have been obtained and a great number 
of papers have been published in this field. 
However, in the last decade the interest towards 
this problem considerably declines. It may be 
stated that despite the more than 40-year 
intensive research, the synthesis of time-optimal 
control for high order systems is still an open 
problem. An approach to go further in the 
solution of the time-optimal synthesis problem 
is to refine the well-known state-space method, 

removing the factors that restrict its application 
to low order systems only. Some new state-
space properties of a class of linear systems 
make possible to develop an efficient time-
optimal synthesis approach requiring no 
description of the switching hyper surface [3] - 
[7]. In this paper a property of the considered 
class of problems is studied which makes it 
possible to develop a fast time-optimal control 
synthesis algorithm without having to use the 
switching hyper surface. 
The following time-optimal synthesis problem 
for a linear system of order k is considered. The 
system is described by 
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The initial and the target states of the system are 
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and 
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where kft  is unspecified. The admissible control 

)(tuk  is a piecewise continuous function that 
takes its values from the range 
 

0,)( 000 >=≤≤− constuutuu k
. (4) 

 
We suppose that )(tuk  is continuous on the 
boundary of the set of allowed values (4) and in 
the points of discontinuity τ  we have  
 

)0()( +τ=τ uu . (5) 
 
The problem is to find an admissible control 

)( kkk uu x=  that transfers the system (1) from its 
initial state (2) to the target state (3) in minimum 
time, i.e. minimizing the performance index 
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We shall refer to this problem as Problem A(k) 
and to the set {Problem A(n), Problem A(n-1), 
…, Problem A(1)}, 2≥n , as class of problems 
A(n), A(n-1), …, A(1).  
 
The following relations exist between the 
systems of Problem A(k) and Problem A(k-1), 

2,nk =  : 
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For Problem A(k), 1,nk = , denote: 
- )(tu o

k  - the optimal control which is a 
piecewise constant function taking the values 
+ 0u  or − 0u  and having at most )1( −k  
discontinuities [1], [2], [ 8 ] ,  [9]; 
- o

kft    - the minimum of the performance 
index; 
- 1−kkL  - the set of all state space points for 
which the optimal control has no more than 

)2( −k  discontinuities; 
- kS   - the switching hyper surface. Note 
that kS  is time-invariant and includes the state 
space origin. As it is well known, the switching 
hyper surface kS  is identical with the set 1−kkL  
[1] (ch. 14). 
 
 
2. PRELIMINARY RESULTS 
 
In this section we present some preliminary 
results proved in [3] - [7], along with the idea of 
the proposed approach.  
 
Let .2≥k  Suppose we are in the initial point 

)0(kx  of the Problem A(k) state-space and the 
obviously easier Problem A(k-1) has been 
solved, i.e. we have the optimal control )(1 tu o

k −  
and the minimum of the performance index o

fkt 1−  
of Problem A(k-1). Applying the optimal control 

)(1 tu o
k − of Problem A(k-1) to the system of 

Problem A(k) with initial state )0(kx  we obtain 
the trajectory 
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The following result is valid for this trajectory. 
 
Theorem 1 [3], [4], [6]. The state trajectory of 
system (1) starting from the initial point )0(kx  
and generated by the optimal control )(1 tu o

k − , 
],0[ 1

o
fktt −∈ , either entirely lies on the switching 

hyper surface kS , or is above or below kS , 
nowhere intersecting it. 
 
According to this theorem all points of trajectory 
(8) have the same relation to the switching hyper 
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surface kS  of Problem A(k), including the initial 
point )0(kx  and the final point 
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It is shown in [3], [4], [6] that  
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and its last, kth coordinate denoted by kwx  is 
given by 

.,)( 2,

0
1

)(
0

1

11
nk

t
o
kk

t
k

t
kw

o
fk

o
fkk

o
fkk dubexex =−

τ−λλ ∫
−

−− ττ+=  (11) 

 
Another property of the class A(n), A(n-1), …, 
A(1) is also studied in [3] - [7], which makes 
possible the synthesis of optimal control for 
Problem A(k), 2,nk = .  
 
Theorem 2 [3]. There exists no piecewise 
constant control )(tu  with an amplitude 0u  and 
k non zero intervals of constancy, )1(1 −≤≤ nk , 
transferring the system 
 

jib
RbRubxx

jii

njiiiiiii

≠λ≠λ≠
∈∈λ+λ= =

when,0
,,,, ,1,&  (12) 

 
from any point of any axis nOxOxOx ,...,, 21  in 
the system state space to the origin O, and vice-
versa − from the origin O to a point of any axis 

nOxOxOx ,...,, 21  in the state space. 
 
From this theorem and the properties of the 
switching hyper surface kS  it follows 
 
Corollary 1 [3], [4], [6]. The unique time 
optimal control that transfers the system of 
Problem A(k), where 2≥≥ kn , from every point 
of the positive or negative part of any state 
space axis kOxOxOx ,...,, 21  to the origin O, has 
exactly k non zero intervals of constancy, and 
the positive, respectively the negative, part of 
any axis kOxOxOx ,...,, 21  is above or below the 
switching hyper surface kS . 
 
In accordance with this corollary the term 

{ }1,1 +−∈+kx , nk ,2= , is introduced in [3] - [7] to 
indicate the relation of the axis kOx  to the 

switching hyper surface kS  and the optimal 
control values for the points of the positive and 
negative semi-axis kOx . Thus for 
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we have 0)0( uu o

k = . 
 
The time-optimal synthesis problem for the 
initial point )0(kx  can be solved based on the 
solution of problem A(k-1) and the relation of 
the final point (9) of trajectory (8) to the 
switching hyper surface kS  [3] - [7].  
 
Theorem 3 [3], [4], [6]. If the solution of 
Problem A(k-1), 2,nk = , is found, then the 
optimal control of Problem A(k) for initial state 

)0(kx  can be determined as  
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where kwx  is given by (11). 
 
Based on this theorem, the following time-
optimal synthesis algorithm is proposed [3] - 
[7].  
 

Basic Algorithm for synthesis of optimal 
control for the initial state of Problem A(k), 

2,nk =   
 
Step 1. Solve Problem A(k-1) to find )(1 tu o

k −  
and o

fkt 1− ; 
Step 2. Compute kwx  from (11); 
Step 3. Determine ))0(()0( kk

o
k uu x=  according 

to (13). 
 
From Theorem 3 it also follows 
 
Corollary 2. If 0=kwx , the solution of Problem 
A(k-1) is also the solution of Problem A(k), i.e. 

)()(1 tutu o
k

o
k =− , o

kf
o

fk tt =−1 , and vice-versa: if 
Problem A(k) and Problem A(k-1) have the same 
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solution, i.e. )()(1 tutu o
k

o
k =− , o

kf
o

fk tt =−1 , then 

0=kwx .  
 
Corollary 3. Depending on the value of kwx , 
there are three possibilities:  
-  all )0(kx  for which 0=kwx  lie on the 
switching hyper surface kS ; 
-  all )0(kx  corresponding to 0>kwx  are 
above or below kS  and the optimal control for 
these points is 0uxk + ; 
-  all )0(kx  for which 0<kwx  are also above 
or below kS , but in opposite to the area for 

0>kwx , and the corresponding optimal control 
is 0)1( uxk +− . 
 
For 0≠kwx , the trajectory with initial point 

)0(kx  is considered, generated by 
))0(()0( kk

o
k uu x= . For the points of this 

trajectory, a New Problem A(k) is 
consecutively defined in the same way as 
Problem A(k) but taking as initial state the 
current trajectory point. The corresponding new 
sub-problem A(k-1) is then solved and the value 
of kwx  is computed. The movement along the 
trajectory continues until obtaining 0=kwx . 
 
In the next section we shall show that under 
some conditions the solution of the new problem 
A(k-1) and the computation of kwx  can be 
avoided for a part of the optimal trajectory. This 
makes possible to develop a faster algorithm for 
synthesis of time-optimal control for Problem 
A(k).  
 
 
3. MAIN RESULT 
 
Denote by 

kt
tu o

k x
)(1−′  and 

ktkt

o
fkk tJ

xx 11min −− ′=′  the 

optimal control and the minimum of the 
performance index of New Problem A(k-1) for 
the current point ktx  of the trajectory of system 
(1) starting from )0(kx  generated by the control 

))0(()0( kk
o
k uu x= , nk ≤≤2 .  

 
We shall prove the following result. 
 
Theorem 4. Let the initial state )0(kx  of 
Problem A(k), nk ≤≤2 , not belong to the 

switching hyper surface kS . Consider the part of 
the optimal trajectory not lying on kS , i.e. the 
trajectory with initial point )0(kx  generated by 

))0(()0( kk
o
k uu x=  for ),0[ 1

o
ktt ∈ . If there exists a 

point 
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such that  
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then: 
1. the part of the trajectory of system (1) with 

initial point )( 1tkx  generated by the control 

)(1
1

)(
t

o
k

k
tu

x−′  for ],0[ 1
11−′∈ ktt , where 1

11−′kt  is the 

length of the first constancy interval of 

)(1
1

)(
t

o
k

k
tu

x−′ , is also a part of the optimal 

trajectory for )0(kx , which does not lie on 

kS ; 
2. for the optimal trajectory points +1

kx  not lying 
on kS  and situated after the considered 
common trajectory part, it is valid 
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i.e. the initial optimal control in New 
Problem A(k-1) for +1

kx  has an opposite value 
to the optimal control ))0(()0( kk

o
k uu x= , 

except in the case 

 .0)0( 11 =′
+−

k

o
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Proof. Consider the part of the optimal 
trajectory of system (1) situated out of the 
switching hyper surface kS , i.e. the part of the 
trajectory of (1) starting from )0(kx  and 
generated by the control ))0(()0( kk

o
k uu x=  for 

),0[ 1
o
ktt ∈ . If a New Problem A(k) is formulated 

for every point p
kx  of this trajectory part, then 

according to Theorem 1 and Corollaries 2 and 3, 
the trajectory of (1) starting from p

kx  and 
generated by the optimal control 

p
k

tu o
k x

)(1−′ , 

],0[ 1 p
k

o
fktt

x−′∈ , does not lie on the switching 

hyper surface kS  and nowhere intersects kS .  
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Suppose, there exists a point )( 1tkx  of the 
considered trajectory part, defined as  
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so that  
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Then the trajectory of system (1) starting from 

)( 1tkx  and generated by 
)(1

1
)(

t

o
k

k
tu

x−′ , 

],0[ 1 p
k

o
fktt

x−′∈ , is situated out of and nowhere 

intersects the switching hyper surface kS , and its 
first part for ],0[ 1

11−′∈ ktt  is generated by the 
control )0(o

ku . It follows from the theorem for 
existence and uniqueness of a normal system 
[10] that this first trajectory part is also a part of 
the trajectory of (1) with initial state )0(kx  
generated by the control ))0(()0( kk

o
k uu x=  for 

),0[ 1
o
ktt ∈ . This completes the first part of the 

theorem proof. 
 
Consider now the points +1

kx  of the trajectory of 
(1) generated by ))0(()0( kk

o
k uu x=  for ),0[ 1
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which are situated after the considered common 
trajectory part. Let the end of this common part 
correspond to 2tt = , i.e. 
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Problem A(k-1) for the point )( 2tkx  is  
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The control 
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x−′  is a piecewise constant 

function with no more than )1( −k  non-zero 
intervals of constancy, where nk ≤≤2 . 
Therefore, the optimal control 
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k
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nk ≤≤2 , in the New Problem A(k-1) for the 
point )( 2tkx  is a piecewise constant function 
with no more than )2( −k  non-zero constancy 
intervals. This means that the point )( 21 tk−x  in 
the state space of Problem A(k-1), defined as 
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is a point of the switching hyper surface 1−kS , i.e.  
 

121 )( −− ∈ kk Stx  , nk ≤≤2 . 
 
Then the following two alternative cases are 
possible for )( 21 tk−x : 
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In the first case 

)(1
2

)(
t

o
k

k
tu

x−′  is a piecewise 

constant function with no more than 1)2( ≥−k  
non-zero intervals of constancy, where 

nk ≤≤2 . Since equations (14) and (15) are 
valid, it follows  
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and denote by 3
11−′kt  the length of the first 

constancy interval of 
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x−′ . Then  
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Therefore, for the points of the trajectory of (1) 
generated by ))0(()0( kk

o
k uu x= , which belong to 

the part from )0(kx  to )( 3tkx , it is valid  
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For 0=t  it follows from (18)  
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which contradicts (16). Hence the assumption 
(17) is not true and thus the second part of 
Theorem 4 in case 1 is proved. 
 
In case 2, the initial point for the New Problem 
A(k-1) coincides with the terminal point (the 
origin of the state space of Problem A(k-1) ) and 
therefore 
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If we suppose there exists a point }{)( 1
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then similarly to case 1 we get 
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which contradicts (19). Hence the assumption 
(20) is not true and thus the second part of the 
theorem in case 2 is proved. This completes the 
proof of Theorem 4. 
 
This result makes possible to develop a fast 
time-optimal control synthesis algorithm, 
modifying the basic synthesis algorithm in the 
following way. 
 
Suppose Problem A(k-1) is solved and the 
optimal control ))0(()0( kk

o
k uu x=  is obtained. If a 

zero value of kwx  is found, then the computed 
solution of Problem A(k-1) is a solution of 
Problem A(k), i.e. 
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o
k =− , o

kf
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fk tt =−1 . 
 
If 0≠kwx , the optimal control ))0(()0( kk

o
k uu x=  

is applied to system (1) and for the generated 
trajectory points New Problem A(k) is 
consecutively defined. The corresponding New 
Problem A(k-1) is then solved and kwx  is 
computed. The movement along the trajectory 
continues until 0=kwx  is reached. If, during this 
movement, in some point  
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then a jump is made along the trajectory from 

)( 1tkx  to the point  
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Thus the solving of New Problem A(k-1) is 
avoided for the points between )( 1tkx  and 

)( 2tkx , and the movement along the trajectory 
continues further )( 2tkx  until reaching 0=kwx . 
 
 
4. NUMERICAL EXAMPLE  
 
Let 7=n  and the Problem A(7) data be 
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[ ] .1111111)0(

,1615201561

,112),-10,-8,-6,-4,-2,-diag(0,

T
7

T
7

07

=

−−−=

==

x

B

uA
 

 
In the class of problems A(7), A(6), ..., A(1), 
Problem A(1) is solved analytically. For 
problems A(k), 2,nk = , an ε2  hyper cube is set 
around the state space origin. It is assumed that 
the terminal state for a given problem can be any 
point in the corresponding ε area. An admissible 
control is considered as an approximated 
problem solution if it is the optimal control 
making possible to reach a terminal state within 
the ε area.  
 
Denote by )(

~
tu o

k  and 1,,
~

nkt o
kf = , the 

approximated solutions for the class of problems 
A(n), A(n-1), ..., A(1). The controls )(

~
tuo

k  are 
piecewise constant functions with no more than 
k non-zero constancy intervals with lengths o

kit
~  

and signs o
kis
~ , respectively. 

 
After an axes initialization [3], [5], [7] an 
approximated problem solution is computed 
using the proposed fast algorithm for time-
optimal control synthesis. The results obtained 
are presented in Table 1 and Fig. 1 and 2. In Fig. 
2 the time-optimal system output 
 

[ ]1111111, == CCy 7x  
 
is also shown.  
 

5. CONCLUDING REMARKS 
 
In this paper a new approach to the time-optimal 
control synthesis problem for a class of linear 
systems is presented. In contrast to the existing 
time-optimal control synthesis methods, the new 
approach does not require the description of the 
switching hyper surface and thus enables the 
synthesis of time-optimal control for high order 
systems of the given class.  
The presented approach is based on the state-
space properties of the considered class of 
problems and consists of two main stages. The 
first one comprises the state-space analysis 
called axes initialization while at the second one 
the optimal control is obtained. Both stages use 
a multi-step time-optimal control synthesis 
procedure for the problems of the considered 
class.  
 
This paper is focused on the second stage of the 
synthesis procedure and presents a fast 
algorithm for synthesis of time-optimal control 
for the considered class of systems. The 
algorithm makes possible to avoid the solution 
of the corresponding optimal control sub-
problems for a part of the optimal trajectory and 
thus enables efficient design and 
implementation of time-optimal control for 
high order systems.  
 

TABLE 1 
 

i o
it

~
7  [s] 0

~
uso

ki  )(
~
77
o

ftx  
1 1.457 -1.0 -4.441 e-16.
2 0.710  1.0 -1.643 e-04
3 0.414 -1.0 1.280 e-04
4 0.264  1.0 -1.858 e-04
5 0.166 -1.0 -2.049 e-04
6 0.091  1.0 -1.625 e-04
7 0.029 -1.0 -0.952 e-04
 t f

o
7
% = 3.132 [s]   ε = 2.500 e-04 
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