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Abstract: Starting with the basic notions about Liapunov and input/output stability there are 
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1. LECTURE ONE. MODELS OF 
SYSTEMS AND ASSOCIATED STABILITY 
NOTIONS 
 

The two systems representations are too well 
known to the specialists of the field to require a 
revisited presentation. We shall deal here only 

with those properties which are relevant to 
stability. 

 
1.1. States, state equations and Liapunov 
stability 

The modeling of the physical systems by 
state equations is based on the differential 
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equations which represent the mathematical 
expression of the physical laws ruling over the 
phenomena which take place within the system. 

The only systemic aspect is here the 
"orientation" input/output in the sense of 
stimulus-response dependence between the 

terminal variables of the system. The choice of 
some terminal variables is essential in order to 
make a difference among inputs, disturbances 
and outputs - measurements that are performed 
upon the system. 

 
 
 
 
 
 

Fig. 1. The system 
 

Writing the differential equations 
simultaneously with the orientation input/output 
leads, after giving to the equations the normal 
Cauchy form, to the standard input-state-output 
equations of the systems with lumped 
parameters: 
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where x ∈ Ρn is the state vector, u ∈ Ρm is the 
input (control) vector, p ∈ Ρl  is the disturbance 
(also an input in the sense of stimulus but, 
unlike the control, inapplicable in generating 
controlled evolutions of the system) and y ∈ Ρp 
is the output of the system. 

 
Representation (1) is the expression of the 
Newtonian physical determinism: if the 
exogeneous signals u(t) and p(t) are known for t 
≥ t0, the determination of the state trajectory x(t) 
for t ≥ t0 is possible if it is solved the Cauchy 
problem associated to the system of differential 
equations; this requires the knowledge of the 
initial state x(t0) = x0. If we take into account the 
arbitrariness of the initial moment then it is 
obvious that the state at any moment can be an 
initial one in the sense that it generates an 
evolution of the system; by this way we arrive to 
the idea that the state is the system information 
which is completely defined by its previous 
values. 

 
Such a Newtonian representation is "shadowed" 
by the exogeneous signals - control and 
disturbances - which have no correspondence in 
classical physics. It is nevertheless possible to 
introduce a notion of A.M.Liapunov [1] - the 
basic motion. 

 
 
Definition 1 Any state trajectory which is 
interesting for system analysis is called basic 
motion. 

 
Remark that in Control Theory any steady state 
motion could be considered as a basic motion. In 
a system of automatic stabilization of some 
operating point, the associated steady state can 
be considered as basic motion. In an electrical 
circuit with a.c. sources, the periodic currents 
through the branches represent the basic motion. 
The existence of the basic motion, especially for 
nonlinear systems, is itself a problem but it will 
not be tackled here. Our interest will be centered 
around the stability property. 

 
According to a by now folk definition [2] 
stability is concerned with the influence of the 
disturbances on the motion of the physical 
systems (obviously motion is not only the 
mechanical motion but the state evolution in 
time). 

 
Definition 2 Any motion which is different 
from the basic one is called disturbed motion. 

 
In order to formulate a stability problem it is 
necessary to examine the types of disturbances 
that are met in systems. Obviously their 
complete knowledge is not possible: in such a 
case they will cease to be disturbances in the 
strict sense. But we may define classes of 
disturbances having in common one or several 
properties. 

 
We shall call short-period disturbances those 
disturbances that appear at a certain moment and 
disappear at another moment. Mathematically a 
short-period disturbance is defined by 
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There is a simple mechanism of describing the 
effect of the short-period disturbances which is 

Σ 
u(t) 

p(t) 

y(t) 
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illustrated in Fig.2: the system evoluates 
according to the basic motion (deduced from 
system's equations) when the disturbances occur 
at t = t-1. As long as the disturbances are present, 
the dynamic laws of the motion are unknown 
hence the state trajectory cannot be determined. 
At  t = t0 the disturbances disappear hence the 
dynamic laws are valid again, according to the 
Newtonian determinism; the system has reached 
now some state )(ˆ 00 txx ≠ , )(ˆ 0tx being the 
allowable state of the system if the disturbances 
were absent on [t-1, t0] and the basic motion 
would have continued. 

 
The new state x0 which in fact incorporates the 
entire prehistory of the system is the source of a 
disturbed motion for t > t0. 

 
 
 
 
 
 
 
 
 

 
Fig. 2. The effect of short-period disturbances 

 
 
 
 

 
Another way of generating perturbed motions, 
which is specific to Automatic Control, is 
represented by the maneuvers performed on 
physical systems endowed with automatic 
controllers (Fig. 3). 

 
 
 
 
 
 
 

Fig. 3. Automatic control system 
 

For yr = c1 a steady-state (operating point) is set 
up in the system; this operating point is 
described by some constant values of the 
parameters defining the state of the system. If 
there are no disturbances the system remains in 
that steady state. But system operation requires 
often some modifications of the steady state 

which are performed by modifying the reference 
signal yr. Due to physical inertia (i.e. to system's 
dynamics) the system does not reach the new set 
point instantaneously but after a motion 
generated by the "old" steady state transformed 
in an initial condition. Indeed, consider the 
mathematical description of the system of Fig.3. 
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From here the state equations of the feedback 
system are obtained 
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To these equations we can add those outputs that 
might be of interest. According to the classical 
theory of linear control systems [3] such output 
signals might be the control error ε, system's 
output y, the control signal u. 

 
For t < t0 the following steady-state equations 
are valid 
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At t = t0 we have yr = c2 what asks for the 
following steady-state equations 
 

 
the new steady-state being, generally speaking, 
different of the previous one. If ( )i

c
i xx , ,          i 

= 1, 2 are the two steady states then the 
perturbed motion will be generated by 
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Now the way of introducing the stability concept 
becomes almost obvious. The basic motion is 
stable if the perturbed motions remain in its 
neighborhood. Even in the case of the maneuver 
we may say that the new steady state is stable 
provided the evolution of the system takes place 
in the neighborhood of that steady state. A 
stronger property is obtained when the disturbed 
motion tends asymptotically to the basic one or 
when the steady state imposed by the maneuver 
is reached asymptotically. These facts obtain a 
rigorous expression in the notion of stability in 
the sense of Liapunov. 

 
Consider a general system described by 

 
),( tzFz =&  (8)

 
and let )(ˆ tz be a basic motion of it. 
 
Definition 3 The basic motion )(ˆ tz  is called 
stable (in the sense of Liapunov) if for any ε > 0 
and any t0∈Ρ there exists some δ(ε,t0)>0 such 
that if δ<− 00 )(ˆ ztz then 

ε<− ),;()(ˆ 00 zttztz , ∀ t ≥ t0. 
 

Here z(t; t0, z0) means the solution of (8) with 
the initial condition z0 at t = t0:                 z(t0; t0, 
z0) = z0. 

 
Note also that in the above definition t0 is the 
initial moment of the perturbed motion – when 
the short-period disturbances have just 
disappeared. Obviously in practice it is not 
possible to "catch" this moment and for this 
reason (as well as for many other) it is more 
useful to have a property which is independent 
of t0. 
 
Definition 4  The basic motion is called 
uniformly stable if  δ  of Definition 3 is 
independent of t0. 
 
A stronger property is that of asymptotic 
stability. 
 
Definition 5 The basic motion is called 
uniformly asymptotically stable if: i) it is 
uniformly stable; ii) it is equally attractive i.e. 
there exists δ0 > 0 such that for any z0 with the 

property that 000)(ˆ δ<−ztz  and for any ε > 0 
there exists T(δ0,ε) > 0 such that 

ε<− ),;()(ˆ 00 zttztz ,∀ t > t0+ T. 
 
One can see that uniform asymptotic stability is 
exactly the property of asymptotic vanishing of 
the effect of short-period  disturbances. The 
following remarks are also useful. 
First, the property of stability concerns the basic 
motion and not the system itself which may 
have stable and unstable motions. The 
expression stable system corresponds to the 
reality only in the linear case. 

 
Second, in all the definitions above there are 
involved only the differences between the basic 
and the perturbed motions - the so-called 
deviations. In order to simplify the writing there 
is introduced the system in deviations (with 
respect to the basic motion). Define the 
deviation 

 
                   ˆ( ) ( ) ( )x t z t z t= −  

which will verify the system 
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where 
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Obviously 
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hence as one could expect the system in 
deviations has the trivial (identically zero) 
solution. The above definitions will be 
reformulated as follows 
 
Definition 6  a) The zero solution of system 
(9) is called stable if for any ε  > 0 and any     t0 
∈Ρ there exists δ (ε, t0)>0 such that if δ<0x  

then ε<),;( 00 xttx , t > t0. 
b) If δ can be chosen independently of t0 the zero 

solution is called uniformly stable. 

c) The zero solution is called uniformly 
asymptotically stable if it is uniformly stable and 
equally attractive i.e. there exists δ0 > 0 such 
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that ∀ 00 δ<x  and any ε > 0 there exists T(δ0, 

ε) > 0 such that ε<),;( 00 xttx  , t > t0 + T. 
 

To end this section remark that the introduction 
of the system in deviations and of the stability 
for the zero solution gives to the approach some 
degree of "universality" and hides (in a way) the 
basic motion; nevertheless this is only apparent 
since, according to its definition, the system in 
deviations depends on the basic solution. 
Moreover, if the initial system is time invariant 
but the basic motion is not constant, the system 
in deviations will result time-varying. 
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1.2. Signals, input/output equations and 
input/output stability 
 
We return to the general model of the system as 
in Fig.1. If we are interested only in the behavior 
viewed at the terminal variables, the output y(t) 
appears as a "result" of the control signal u(t) 
and of the disturbance p(t). For a self-contained 
theory of such systems there is no need of the 
notion of state but only of the notion of ground 
state(zero-state). 

 
Definition 7  A system has the ground state if 
from u(t) ≡ 0, p(t) ≡ 0 it follows that y(t) ≡ 0. 
 
In this way the system is defined as signal 
producer based on other signals. Worth 
mentioning that the effect of the initial state may 
be incorporated in a perturbation; consider the 
linear system: 
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and let ),( τtX A  be the state transition matrix 
defined by 
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The variations of parameters formula will give 
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The last equality shows that the term which is 
dependent on the initial condition x0 can be  
considered as an additional disturbance. The 
equality has in fact the form of an input 
(disturbance)/output relation: 

∫+=
t

t

dutHtpty
0

)(),()()( τττ  (12)

 
where ),( τtH is the matrix of the weighting 
patterns, defining an input/output operator. 
Starting from (12) the system appears to be a 
mapping between two sets of signals and, 
therefore, stability will result also as an 
input/output property; its natural definition is 
that of the boundedness of the above defined 
input/output mapping [4]. It is quite clear that 
the input/output stability is somehow  arising 
from stability with respect to persistent 
perturbations [4]. The most important problem 
is here the suitable choice of the signal spaces 
with respect to which input/output stability is 
considered. 

 
To fix the ideas consider the case of the systems 
described by nonlinear integral equations of 
Hammerstein type 
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where ϕ : Ρ → Ρ is a nonlinear function, ϕ(0) = 
0. Let U be a space of the input signals u and p 
and Y  be a space of the output signals y which 
remain unspecified for a while. 
 
Definition 8  The ground state of system (13) 
is stable with respect to the pair (U, Y) or the 
pair (U, Y) is admissible with respect to (13) if 
p, u ∈ U ⇒ y ∈ Y. 
 
A way of specifying the spaces U, Y is to make 
use of the signal spaces with physical  
significance, well known from Signal Theory. 
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We give below some of them which are all 
Banach spaces: 
a) the space of finite energy signals, defined on 
the time interval (a, b) with the norm 
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hence the space L2(a, b). 
b) the space of finite action signals, defined on 
the interval (a, b) with the norm 
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hence the space L1(a, b). 
c) the space of essentially bounded on [a, b] 
signals with the norm 
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hence the space L∞(a, b); an important subspace 
of L∞(a, b) is C(a, b), the space of the 
continuous on [a, b] functions, with the uniform 
convergence norm (compatible with the esssup 
norm). 

 
Using these spaces one may define the notions 
of stability that are widely used in Control and 
in Electronic engineering: 
• L2 stability or energetic stability; 
• BIBO (bounded input/bounded output) 

stability which is known since Nyquist or 
even earlier. 

 
We have to mention here that stability with 

respect to persistent perturbations [2] is also 
defined within the framework of the space L∞ 
i.e. of the bounded signals and perturbations. 

 
 
1.3. Concluding remarks 
 
We introduced above the two main concepts of 
stability which are associated to the main 
models of systems. Which of the two concepts is 
to be chosen depends on the application, more 
precisely on the interest paid to short-period or 
to persistent perturbations.  
 
The state space is not relevant and is not 
involved too much in the input/output stability 
analysis. The results are in fact dependent of the 

system and of the signal spaces. The 
input/output stability is particularly suitable for 
systems with distributed parameters i.e. 
described by partial differential equations; for 
these systems the state space and the state 
transition might be complicated but they are 
somehow avoided in the developments. 

 
On the contrary, the stability in the sense of 
Liapunov is an internal property of the system, 
the inputs and the outputs being of secondary 
interest. Nevertheless this concept is also 
important for control when short-period 
perturbations are considered. Also a connection 
between the two concepts as well as between the 
corresponding stability criteria may be 
established (at least in the linear case). 
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