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Abstract: The paper focuses on a new approach to MATLAB Simulink-based modelling 
and analysis of hybrid systems whose event-driven part(s) is (are) modeled by the Petri 
Net (PN) formalism. A Petri Net Simulink Block (PNSB) allows the connection of a PN 
with other Simulink blocks, by means of events and data regarding the current status of 
the PN. Some issues regarding the implementation and exploitation of the Simulink 
blocks included in the Petri Net Library (PNL) are briefly presented. A complex example 
illustrates the effectiveness of the utilization of PNSBs in simulation-based performance 
analysis of hybrid systems. 
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1. INTRODUCTION 
 
Hybrid systems represent a topic of great 
interest in the control systems area. Their 
behaviour is determined by interacting 
continuous and discrete dynamics. During the 
last two decades different modelling issues and 
approaches have been addressed, in accordance 
with the scientific motivation of the groups 
promoting the researches. These approaches 
differ with respect to the emphasis on the 
complexity of the continuous and discrete 
dynamics, providing various analysis 
(verification), simulation and synthesis 
methodologies (Koutsoukos and Antsaklis, 
2003). Despite some valuable intentions to 

prove the compatibility between various trends, 
e.g. (Heemels et al., 2001), the state of art still 
cannot offer a unifying theoretical framework. 
This aspect is also reflected by the diversity of 
the software instruments used by the research 
groups. Generally speaking, each research group 
developed its own software tools, in order to 
support specific applications, corresponding to 
particular theoretical approaches. 
 
The dynamics of a hybrid system can be 
described by a finite number of continuous 
dynamical models, represented by sets of 
nonlinear differential or difference equations, 
and a set of rules for switching between these 
models. These switching rules are typically 
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described by logic expressions or a discrete 
event system with a finite automaton 
representation.  
 
Our approach to modelling, simulation and 
analysis of hybrid systems is based on the usage 
of Petri net (PN) formalism (Murata, 1989) for 
representing their discrete-event driven parts. 
The main reason we have opted for this 
methodology is the expressiveness of PNs which 
can be viewed as a generalization of finite 
automata. PNs proved to be an excellent tool for 
capturing concurrency, conflict, synchronization 
and buffer sizes within a system. A PN 
representation for a concurrent process will be 
more compact (fewer vertices) than its 
associated automaton representation. Ever since 
their introduction, PNs have been extensively 
used to model manufacturing systems, 
communication systems, information processing 
systems, and chemical processes among others. 
Furthermore, they can be successfully 
incorporated in approaches to hybrid systems, 
e.g. (Nenninger and Krebs, 1997), (Koutsoukos 
and Antsaklis, 1999). 
 
MATLAB-Simulink is widely recognized as the 
most popular software environment in Control 
Engineering Education. Despite that, besides the 
Stateflow, also developed by the MathWorks 
Inc. (the producers of MATLAB) and relying on 
finite state machines for representing the 
discrete dynamics of a hybrid system, there are 
currently available only a few MATLAB-
Simulink based software packages dedicated to 
hybrid systems modelling. CheckMate 
(Chutinan and Krogh, 2003) is a tool for 
modelling, simulating and verifying properties 
of hybrid systems based on standard Simulink 
and Stateflow blocks. Other software packages 
are the NetLab (NetLab, 2004) and the recently 
updated Hybrid Toolbox (Bemporad, 2005). 
 
This paper presents new instruments for 
addressing the dynamics of hybrid systems 
within the framework of MATLAB-Simulink 
software. A Simulink library, the Petri Net 
Library (PNL), was especially developed to 
allow including discrete event driven modules 
modelled by PNs into Simulink block diagrams. 
Our approach to hybrid systems modelling and 
analysis allows incorporating accurate nonlinear 
models for the continuous dynamics (built from 
blocks available in the standard Simulink 
libraries) with PN models for discrete event 
dynamics. 

The design and implementation of the PNL 
derived a full benefit from our previous 
experience accumulated during the development 
of the Petri Net Toolbox (PN Toolbox) for 
MATLAB (Mahulea et al., 2005), (Pastravanu et 
al., 2004), which commenced in 2000. In mid 
2003 we released version 2.0 of the PN Toolbox 
that was included, at the beginning of 2004, in 
the Connections Program of The MathWorks 
Inc. (MathWorks, 2005), as broadening the 
utilization domain of MATLAB toward the area 
of discrete-event systems. The current version 
2.2 is fully compatible with MATLAB 7 SP2. 
 
The organization of this paper is as follows. 
Section 2 presents a brief description of the 
PNL. The main facilities offered by a Petri Net 
Simulink Block (PNSB) are depicted in Section 
3. The simulation-based performance analysis of 
a complex system illustrates the utilization of a 
PNSB in Section 4. Some final remarks are 
formulated in Section 5. 
 
 
2. DESCRIPTION OF THE PETRI NET 

LIBRARY 
 
The PNL (Fig. 1) contains three Petri Net 
Simulink Blocks (PNSBs) corresponding to the 
three types of PN models that can be integrated 
into the Simulink model of a hybrid system, 
namely untimed, P-timed and T-timed. The 
current version of the PNL includes the 
Simulink block operating with untimed PNs 
which was presented in (Matcovschi et al., 
2005). The changes brought by this new version 
of the PNL also refer to the internal architecture 
of the PNSBs, the treatment of the external 
events used in the synchronization of the PNs 
and the possibility of broadcasting internal 
events generated by firing certain transitions in 
the PN model. A Simulink block diagram can 
contain any number of PNSBs needed to model 
a complex system. 
 

 
Fig. 1. The Petri Net Library. 
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The PN model stored in a PNSB should contain 
synchronized (triggered) transitions (David and 
Alla, 2005). The firing of a synchronized 
transition depends on the occurrence of external 
(triggering) events. It is fired whenever (i) it is 
enabled by the net marking and (ii) one of its 
associated triggering events, defined at the PN 
level, occurs. Both finite and infinite server 
semantics (David and Alla, 2005) can be used 
for transition firings. 
 

 

 
Fig. 2. The internal architecture of a PNSB. 

 
The internal architecture of a PNSB is presented 
in fig. 2. A PNSB accepts, as inputs, a set of 
signals, which can be continuous or discrete; the 
evolution of each signal can generate a Simulink 
event. Once an input signal generates an event, 
the simulation time of Simulink “freezes”, the 
PNSB identifies the generated event and fires all 
the enabled transitions. 

 
Fig. 3. The main window of the PNSB Editor. 

 
At each simulation step, the PNSB outputs the 
net marking as a vector of n integer values, 
where n represents the number of places in the 
net. In the case when the firing of some 
transition in the PN model is associated with an 
internal event, these events are also outputted. 
After that, the simulation is resumed until a new 
event is generated. The implementation of the 
PNSBs required the development of tools for 

managing the events and for controlling the 
simulation. 
 
 
3. USAGE OF THE PNSB 
 
A PNSB is equipped with a graphical interface 
that allows the user to draw the PN model 
(PNSB Editor - see fig. 3), define the triggering 
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events (PNSB Event Explorer - see fig. 4) and 
debug the Simulink model (PNSB Debugger - 
see fig. 7). The operation of the PNSB relies on 
callback functions that (i) initialize variables, (ii) 
generate the graphical interface, (iii) display the 
PNSB Editor when the user double clicks the 
Simulink block, (iv) hide the editor window 
when the user closes it and (v) save/load the PN 
model into/from an xml file. 
 
It is worth noticing that the functions of the 
PNSB Editor are similar to the editing facilities 
available in the Draw Mode of the PN Toolbox; 
this ensures the immediate adaptation of the 
user's skills, once he/she has already been 
acquainted with the exploitation of the PN 
Toolbox. The PNSB Editor exhibits five control 
panels (fig. 3): Menu Bar (PNE1), Quick Access 
Toolbar (PNE2), Drawing Panel (PNE3), 
Drawing Area (PNE4) and a Message Box 
(PNE5). The Menu Bar (PNE1) displays a set of 
six drop-down menus, from which the user can 
access all the facilities available in the 
application. The Quick Access Toolbar (PNE2) 
maps the most frequently used facilities of the 
PNSB Editor. The Drawing Area (PNE4) is 
implemented as a matrix of cells, where the 
nodes of the PN graph are to be placed, with two 
scrollbars for moving the desired parts of the 
graph into view. The Drawing Panel (PNE3) 
presents five buttons that facilitate user access to 
Edit objects, Add Place, Add Transition, Add 
Arc and Add Token commands. Messages 
related to the simulation are displayed in the 
Message Box (PNE5).  
 
The PNSB Event Explorer (fig. 4) allows the 
user to manage the triggering events of the 
current PN model. The user can edit the name 
(EE1) and the triggering mode (EE2) for each 
external event. The number and order of PNSB 
input signals has to match the number and order 
of triggering events defined in the Event 
Explorer for the PN model. The selection of a 
certain event displayed in the Event panel is 
accomplished by pressing the corresponding 
Select event button (EE3). The user can Add 
(EE4) or Delete (EE5) events, and change their 
order by moving up (EE6) or down (EE7). There 
are three types of events that can be defined by 
the user, the differences between them resulting 
from the triggering conditions that must be met 
by the corresponding Simulink signal. Thus, a 
rising edge event triggers the PNSB when the 
input signal rises from a zero or negative value 
to a positive value (or zero if the initial value is 

negative), while a falling edge event is activated 
whenever the input signal falls from a positive 
value to a zero or negative value (or zero if the 
initial value is positive). An either edge event 
triggers the PNSB when the input signal is either 
rising or falling. The default triggering mode for 
a newly created event is either edge. 

 
Fig. 4. The PNSB Event Explorer. 

 
The PNSB Editor allows specifying the event(s) 
triggering the firing of a transition in the PN 
model by means of the corresponding Edit 
Transition window (fig. 5). If multiple events 
are associated with a transition they must be 
separated by ‘,’ and, as a consequence, the 
transition can fire on the occurrence of an event 
in the list. A transition controlled by a triggering 
event is distinguished from an ordinary 
transition by one of the icons presented in fig. 6. 
 

   
Fig. 5. Edit Transition  windows. 

 

 
                (a)            (b)           (c)           (d) 

Fig. 6. Icons used for representing: (a) rising edge, 
(b) falling edge, (c) either edge triggered 

transitions; (d) transitions triggered by events that 
are still undefined. 
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The PNSB Debugger is a useful tool when 
simulating a Simulink model containing both 
time-driven and event-driven systems. The 
debugger pauses the simulation at each 
simulation step, allowing the user to inspect the 
current state of the Petri net or to visualize the 
evolution of some particular signals from the 
Simulink model. The MATLAB Fig. opened 
when the user selects the Debugger option from 
the Tools menu is presented in fig. 7. The upper 
buttons (D1) start and stop the simulation, the 
time progress being displayed in a bar (D2) 
together with the simulation time, the start and 
the stop simulation time. If the Enable 
Debugger checkbox (D3) is checked, the 
simulation is interrupted on each occurrence of a 
triggering event associated with the PNSB. The 
Step button (D4) fires one transition of the Petri 
net at a time, while the Continue button (D5) 
runs the simulation introducing, between 
successive firings, a delay set by the Delay 
listbox (D6). The maximum number of firings is 
set by the value entered in the Breakpoint edit 
item (D7). 
 

 
Fig. 7. The PNSB Debugger. 

 
 
4. ILLUSTRATIVE EXAMPLE 
 
In a steel plant, steel ingots arrive in pairs at a 
soaking pit furnace where they are heated so 
they can be rolled in the next stage of the 

process (Popescu, 2005). There is space for five 
ingots in the soaking pit furnace. When an ingot 
arrives at the furnace, it is placed into the 
furnace if space is available; otherwise, it is 
placed in the cold ingots bank to wait for free 
space. The interarrival times are exponentially 
distributed, the mean value being µ min. The 
initial furnace temperature is 2,200 degrees 
Fahrenheit. The furnace is heated according to 
the differential equation: 
 
 / 2(2600 )dF dt F= −  (1) 
 
where F is the furnace temperature. The initial 
temperature of an arriving ingot is uniformly 
distributed between 300 and 500 degrees 
Fahrenheit. When an ingot is inserted into the 
furnace, it reduces the furnace temperature by 
the difference between the furnace temperature 
and the ingot temperature, divided by the 
number of ingots in the furnace. The 
temperature change of ingots as they are heated 
in the furnace is described by the differential 
equation: 
 
 / 0.15( )j jdP dt F P= −  (2) 
 
where jP  is the temperature of the ingot in the jth 
position in the pit. Each ingot is heated in the 
furnace until it reaches 2,200 degrees and then it 
is removed. 
 
We are interested in the analysis of the system 
performances for a simulation time of 2,000 
min. when the mean interrarival time µ ranges 
from 5 min to 10 min, by recording the statistics 
on the utilization of the furnace, the heating time 
for the ingots, the temperature of the furnace, 
and the number of ingots in cold bank. 

 
Fig. 8. Simulink model of the soaking pit furnace. 
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Fig. 9. Subsystems modelling the heating of the pits. 
 

 
Fig. 10. Subsystem modelling the furnace. 

 

The Simulink model corresponding to this 
complex system is presented in fig. 8. It includes 
the subsystems modelling the heating of the pits 
(fig. 9) and of the furnace (fig. 10) built from 
conventional Simulink blocks. 
The P-timed PN modelling the control logic is 
presented in fig. 3. The place ArrCold is timed, 
the mean value of the associated exponentially 
distributed delay being µ. The firing of transition 

InCold, corresponding to the arrival of 2 cold 
ingots in the system, places 2 tokens in place 
ColdBank that has infinite capacity. Places Pit1, 
…, Pit5, whose capacities equal 1, model the 
availability of the soaking pits in the furnace. 
Transitions In1, …, In5 model the transfer of an 
ingot from the cold ingots bank into the furnace. 
The firing of transition Ini broadcasts two 
events, e and oi, used to reset the integrators in 
the subsystems modelling the heating of the 
furnace and that of Pit i, respectively, for 
i = 1,…,5. Transitions Out1, …, Out5 are 
triggered by the rising edge type external events 
e1, …, e5 generated based on the temperature of 
the ingot from the corresponding pit in the 
furnace. 

Fig.s 11 and 12 show the time evolution of the 
temperatures for the furnace and Pit#1, 
respectively, for the last 100 min of operation, in 
the case when the mean interarrival time of cold 
ingots is 7 min. Table 1 presents the numerical 
values of the performance indices obtained 
through simulation. 
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Fig. 11. Time evolution of the furnace temperature 

for 7µ =  min. 
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Fig. 12. Time evolution of the utilization and the 

temperature of Pit#1 for 7µ =  min. 
 

Table 1. Mean values of the performance indices of the system under study obtained through simulation. 
 

Mean interarrival time 
[min] 5 6 7 8 9 10 

Total # processed 775 678 574 500 458 421 
Mean # in cold bank 17.35 3.33 1.57 0.78 0.62 0.51 
Mean waiting time [min] 46.71 9.74 5.45 3.13 2.72 2.41 
Mean utilization / pit 0.978 0.850 0.717 0.621 0.566 0.518 
Mean processing time [min] 12.61 12.53 12.49 12.41 12.36 12.31 
Mean furnace temperature 
[F] 2514 2522.5 2532.4 2537.7 2541.4 2544.9 

 
 
5. CONCLUSIONS 
 
The newly created Simulink blocks extend the 
possibilities offered by the MATLAB-Simulink 
environment for studying the dynamics of the 
hybrid systems, employing both discrete and 
continuous behavior. They allow the integration 
of PN models with the general simulation 
philosophy implemented in Simulink. 
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