
CEAI, Vol. 7, No. 4, pp. 55-62, 2006 Printed in Romania

A NEW APPROACH TO HYBRID SYSTEM SIMULATION:
DEVELOPMENT OF A SIMULINK LIBRARY FOR PETRI NET

MODELS

Mihaela Matcovschi, Constantin Popescu and Octavian Pastravanu

Department of Automatic Control and Industrial Informatics
Technical University “Gh. Asachi” of Iasi, Blvd. Mangeron 53A, 700050 Iasi, Romania

Phone/Fax: +40-232-230751, E-mail: {mhanako, opastrav}@delta.ac.tuiasi.ro

Abstract: The paper focuses on a new approach to MATLAB Simulink-based modelling
and analysis of hybrid systems whose event-driven part(s) is (are) modeled by the Petri
Net (PN) formalism. A Petri Net Simulink Block (PNSB) allows the connection of a PN
with other Simulink blocks, by means of events and data regarding the current status of
the PN. Some issues regarding the implementation and exploitation of the Simulink
blocks included in the Petri Net Library (PNL) are briefly presented. A complex example
illustrates the effectiveness of the utilization of PNSBs in simulation-based performance
analysis of hybrid systems.

Keywords: Petri nets, Hybrid systems, MATLAB, Simulink, Control engineering
education.

1. INTRODUCTION

Hybrid systems represent a topic of great
interest in the control systems area. Their
behaviour is determined by interacting
continuous and discrete dynamics. During the
last two decades different modelling issues and
approaches have been addressed, in accordance
with the scientific motivation of the groups
promoting the researches. These approaches
differ with respect to the emphasis on the
complexity of the continuous and discrete
dynamics, providing various analysis
(verification), simulation and synthesis
methodologies (Koutsoukos and Antsaklis,
2003). Despite some valuable intentions to

prove the compatibility between various trends,
e.g. (Heemels et al., 2001), the state of art still
cannot offer a unifying theoretical framework.
This aspect is also reflected by the diversity of
the software instruments used by the research
groups. Generally speaking, each research group
developed its own software tools, in order to
support specific applications, corresponding to
particular theoretical approaches.

The dynamics of a hybrid system can be
described by a finite number of continuous
dynamical models, represented by sets of
nonlinear differential or difference equations,
and a set of rules for switching between these
models. These switching rules are typically

 CONTROL ENGINEERING AND APPLIED INFORMATICS

56

described by logic expressions or a discrete
event system with a finite automaton
representation.

Our approach to modelling, simulation and
analysis of hybrid systems is based on the usage
of Petri net (PN) formalism (Murata, 1989) for
representing their discrete-event driven parts.
The main reason we have opted for this
methodology is the expressiveness of PNs which
can be viewed as a generalization of finite
automata. PNs proved to be an excellent tool for
capturing concurrency, conflict, synchronization
and buffer sizes within a system. A PN
representation for a concurrent process will be
more compact (fewer vertices) than its
associated automaton representation. Ever since
their introduction, PNs have been extensively
used to model manufacturing systems,
communication systems, information processing
systems, and chemical processes among others.
Furthermore, they can be successfully
incorporated in approaches to hybrid systems,
e.g. (Nenninger and Krebs, 1997), (Koutsoukos
and Antsaklis, 1999).

MATLAB-Simulink is widely recognized as the
most popular software environment in Control
Engineering Education. Despite that, besides the
Stateflow, also developed by the MathWorks
Inc. (the producers of MATLAB) and relying on
finite state machines for representing the
discrete dynamics of a hybrid system, there are
currently available only a few MATLAB-
Simulink based software packages dedicated to
hybrid systems modelling. CheckMate
(Chutinan and Krogh, 2003) is a tool for
modelling, simulating and verifying properties
of hybrid systems based on standard Simulink
and Stateflow blocks. Other software packages
are the NetLab (NetLab, 2004) and the recently
updated Hybrid Toolbox (Bemporad, 2005).

This paper presents new instruments for
addressing the dynamics of hybrid systems
within the framework of MATLAB-Simulink
software. A Simulink library, the Petri Net
Library (PNL), was especially developed to
allow including discrete event driven modules
modelled by PNs into Simulink block diagrams.
Our approach to hybrid systems modelling and
analysis allows incorporating accurate nonlinear
models for the continuous dynamics (built from
blocks available in the standard Simulink
libraries) with PN models for discrete event
dynamics.

The design and implementation of the PNL
derived a full benefit from our previous
experience accumulated during the development
of the Petri Net Toolbox (PN Toolbox) for
MATLAB (Mahulea et al., 2005), (Pastravanu et
al., 2004), which commenced in 2000. In mid
2003 we released version 2.0 of the PN Toolbox
that was included, at the beginning of 2004, in
the Connections Program of The MathWorks
Inc. (MathWorks, 2005), as broadening the
utilization domain of MATLAB toward the area
of discrete-event systems. The current version
2.2 is fully compatible with MATLAB 7 SP2.

The organization of this paper is as follows.
Section 2 presents a brief description of the
PNL. The main facilities offered by a Petri Net
Simulink Block (PNSB) are depicted in Section
3. The simulation-based performance analysis of
a complex system illustrates the utilization of a
PNSB in Section 4. Some final remarks are
formulated in Section 5.

2. DESCRIPTION OF THE PETRI NET

LIBRARY

The PNL (Fig. 1) contains three Petri Net
Simulink Blocks (PNSBs) corresponding to the
three types of PN models that can be integrated
into the Simulink model of a hybrid system,
namely untimed, P-timed and T-timed. The
current version of the PNL includes the
Simulink block operating with untimed PNs
which was presented in (Matcovschi et al.,
2005). The changes brought by this new version
of the PNL also refer to the internal architecture
of the PNSBs, the treatment of the external
events used in the synchronization of the PNs
and the possibility of broadcasting internal
events generated by firing certain transitions in
the PN model. A Simulink block diagram can
contain any number of PNSBs needed to model
a complex system.

Fig. 1. The Petri Net Library.

CONTROL ENGINEERING AND APPLIED INFORMATICS

57

The PN model stored in a PNSB should contain
synchronized (triggered) transitions (David and
Alla, 2005). The firing of a synchronized
transition depends on the occurrence of external
(triggering) events. It is fired whenever (i) it is
enabled by the net marking and (ii) one of its
associated triggering events, defined at the PN
level, occurs. Both finite and infinite server
semantics (David and Alla, 2005) can be used
for transition firings.

Fig. 2. The internal architecture of a PNSB.

The internal architecture of a PNSB is presented
in fig. 2. A PNSB accepts, as inputs, a set of
signals, which can be continuous or discrete; the
evolution of each signal can generate a Simulink
event. Once an input signal generates an event,
the simulation time of Simulink “freezes”, the
PNSB identifies the generated event and fires all
the enabled transitions.

Fig. 3. The main window of the PNSB Editor.

At each simulation step, the PNSB outputs the
net marking as a vector of n integer values,
where n represents the number of places in the
net. In the case when the firing of some
transition in the PN model is associated with an
internal event, these events are also outputted.
After that, the simulation is resumed until a new
event is generated. The implementation of the
PNSBs required the development of tools for

managing the events and for controlling the
simulation.

3. USAGE OF THE PNSB

A PNSB is equipped with a graphical interface
that allows the user to draw the PN model
(PNSB Editor - see fig. 3), define the triggering

 CONTROL ENGINEERING AND APPLIED INFORMATICS

58

events (PNSB Event Explorer - see fig. 4) and
debug the Simulink model (PNSB Debugger -
see fig. 7). The operation of the PNSB relies on
callback functions that (i) initialize variables, (ii)
generate the graphical interface, (iii) display the
PNSB Editor when the user double clicks the
Simulink block, (iv) hide the editor window
when the user closes it and (v) save/load the PN
model into/from an xml file.

It is worth noticing that the functions of the
PNSB Editor are similar to the editing facilities
available in the Draw Mode of the PN Toolbox;
this ensures the immediate adaptation of the
user's skills, once he/she has already been
acquainted with the exploitation of the PN
Toolbox. The PNSB Editor exhibits five control
panels (fig. 3): Menu Bar (PNE1), Quick Access
Toolbar (PNE2), Drawing Panel (PNE3),
Drawing Area (PNE4) and a Message Box
(PNE5). The Menu Bar (PNE1) displays a set of
six drop-down menus, from which the user can
access all the facilities available in the
application. The Quick Access Toolbar (PNE2)
maps the most frequently used facilities of the
PNSB Editor. The Drawing Area (PNE4) is
implemented as a matrix of cells, where the
nodes of the PN graph are to be placed, with two
scrollbars for moving the desired parts of the
graph into view. The Drawing Panel (PNE3)
presents five buttons that facilitate user access to
Edit objects, Add Place, Add Transition, Add
Arc and Add Token commands. Messages
related to the simulation are displayed in the
Message Box (PNE5).

The PNSB Event Explorer (fig. 4) allows the
user to manage the triggering events of the
current PN model. The user can edit the name
(EE1) and the triggering mode (EE2) for each
external event. The number and order of PNSB
input signals has to match the number and order
of triggering events defined in the Event
Explorer for the PN model. The selection of a
certain event displayed in the Event panel is
accomplished by pressing the corresponding
Select event button (EE3). The user can Add
(EE4) or Delete (EE5) events, and change their
order by moving up (EE6) or down (EE7). There
are three types of events that can be defined by
the user, the differences between them resulting
from the triggering conditions that must be met
by the corresponding Simulink signal. Thus, a
rising edge event triggers the PNSB when the
input signal rises from a zero or negative value
to a positive value (or zero if the initial value is

negative), while a falling edge event is activated
whenever the input signal falls from a positive
value to a zero or negative value (or zero if the
initial value is positive). An either edge event
triggers the PNSB when the input signal is either
rising or falling. The default triggering mode for
a newly created event is either edge.

Fig. 4. The PNSB Event Explorer.

The PNSB Editor allows specifying the event(s)
triggering the firing of a transition in the PN
model by means of the corresponding Edit
Transition window (fig. 5). If multiple events
are associated with a transition they must be
separated by ‘,’ and, as a consequence, the
transition can fire on the occurrence of an event
in the list. A transition controlled by a triggering
event is distinguished from an ordinary
transition by one of the icons presented in fig. 6.

Fig. 5. Edit Transition windows.

 (a) (b) (c) (d)

Fig. 6. Icons used for representing: (a) rising edge,
(b) falling edge, (c) either edge triggered

transitions; (d) transitions triggered by events that
are still undefined.

CONTROL ENGINEERING AND APPLIED INFORMATICS

59

The PNSB Debugger is a useful tool when
simulating a Simulink model containing both
time-driven and event-driven systems. The
debugger pauses the simulation at each
simulation step, allowing the user to inspect the
current state of the Petri net or to visualize the
evolution of some particular signals from the
Simulink model. The MATLAB Fig. opened
when the user selects the Debugger option from
the Tools menu is presented in fig. 7. The upper
buttons (D1) start and stop the simulation, the
time progress being displayed in a bar (D2)
together with the simulation time, the start and
the stop simulation time. If the Enable
Debugger checkbox (D3) is checked, the
simulation is interrupted on each occurrence of a
triggering event associated with the PNSB. The
Step button (D4) fires one transition of the Petri
net at a time, while the Continue button (D5)
runs the simulation introducing, between
successive firings, a delay set by the Delay
listbox (D6). The maximum number of firings is
set by the value entered in the Breakpoint edit
item (D7).

Fig. 7. The PNSB Debugger.

4. ILLUSTRATIVE EXAMPLE

In a steel plant, steel ingots arrive in pairs at a
soaking pit furnace where they are heated so
they can be rolled in the next stage of the

process (Popescu, 2005). There is space for five
ingots in the soaking pit furnace. When an ingot
arrives at the furnace, it is placed into the
furnace if space is available; otherwise, it is
placed in the cold ingots bank to wait for free
space. The interarrival times are exponentially
distributed, the mean value being µ min. The
initial furnace temperature is 2,200 degrees
Fahrenheit. The furnace is heated according to
the differential equation:

 / 2(2600)dF dt F= − (1)

where F is the furnace temperature. The initial
temperature of an arriving ingot is uniformly
distributed between 300 and 500 degrees
Fahrenheit. When an ingot is inserted into the
furnace, it reduces the furnace temperature by
the difference between the furnace temperature
and the ingot temperature, divided by the
number of ingots in the furnace. The
temperature change of ingots as they are heated
in the furnace is described by the differential
equation:

 / 0.15()j jdP dt F P= − (2)

where jP is the temperature of the ingot in the jth
position in the pit. Each ingot is heated in the
furnace until it reaches 2,200 degrees and then it
is removed.

We are interested in the analysis of the system
performances for a simulation time of 2,000
min. when the mean interrarival time µ ranges
from 5 min to 10 min, by recording the statistics
on the utilization of the furnace, the heating time
for the ingots, the temperature of the furnace,
and the number of ingots in cold bank.

Fig. 8. Simulink model of the soaking pit furnace.

 CONTROL ENGINEERING AND APPLIED INFORMATICS

60

Fig. 9. Subsystems modelling the heating of the pits.

Fig. 10. Subsystem modelling the furnace.

The Simulink model corresponding to this
complex system is presented in fig. 8. It includes
the subsystems modelling the heating of the pits
(fig. 9) and of the furnace (fig. 10) built from
conventional Simulink blocks.
The P-timed PN modelling the control logic is
presented in fig. 3. The place ArrCold is timed,
the mean value of the associated exponentially
distributed delay being µ. The firing of transition

InCold, corresponding to the arrival of 2 cold
ingots in the system, places 2 tokens in place
ColdBank that has infinite capacity. Places Pit1,
…, Pit5, whose capacities equal 1, model the
availability of the soaking pits in the furnace.
Transitions In1, …, In5 model the transfer of an
ingot from the cold ingots bank into the furnace.
The firing of transition Ini broadcasts two
events, e and oi, used to reset the integrators in
the subsystems modelling the heating of the
furnace and that of Pit i, respectively, for
i = 1,…,5. Transitions Out1, …, Out5 are
triggered by the rising edge type external events
e1, …, e5 generated based on the temperature of
the ingot from the corresponding pit in the
furnace.

Fig.s 11 and 12 show the time evolution of the
temperatures for the furnace and Pit#1,
respectively, for the last 100 min of operation, in
the case when the mean interarrival time of cold
ingots is 7 min. Table 1 presents the numerical
values of the performance indices obtained
through simulation.

CONTROL ENGINEERING AND APPLIED INFORMATICS

59

1900 1910 1920 1930 1940 1950 1960 1970 1980 1990 2000
1200

1400

1600

1800

2000

2200

2400

2600

2800

time

F

Furnace

temperature
mean value

Fig. 11. Time evolution of the furnace temperature

for 7µ = min.

1900 1910 1920 1930 1940 1950 1960 1970 1980 1990 2000

0

0.5

1

Pit # 1

ut
ili

za
tio

n

1900 1910 1920 1930 1940 1950 1960 1970 1980 1990 2000
0

500

1000

1500

2000

2500

time

te
m

pe
ra

tu
re

Fig. 12. Time evolution of the utilization and the

temperature of Pit#1 for 7µ = min.

Table 1. Mean values of the performance indices of the system under study obtained through simulation.

Mean interarrival time
[min] 5 6 7 8 9 10

Total # processed 775 678 574 500 458 421
Mean # in cold bank 17.35 3.33 1.57 0.78 0.62 0.51
Mean waiting time [min] 46.71 9.74 5.45 3.13 2.72 2.41
Mean utilization / pit 0.978 0.850 0.717 0.621 0.566 0.518
Mean processing time [min] 12.61 12.53 12.49 12.41 12.36 12.31
Mean furnace temperature
[F] 2514 2522.5 2532.4 2537.7 2541.4 2544.9

5. CONCLUSIONS

The newly created Simulink blocks extend the
possibilities offered by the MATLAB-Simulink
environment for studying the dynamics of the
hybrid systems, employing both discrete and
continuous behavior. They allow the integration
of PN models with the general simulation
philosophy implemented in Simulink.

REFERENCES

[1] Bemporad, A. (2005). Hybrid Toolbox,

University of Siena,
http://www.dii.unisi.it/hybrid/toolbox/.

[2] Chutinan, A. and B. H. Krogh (2003).
Computational Techniques for Hybrid
System Verification, IEEE Trans. on
Automatic Control, vol. 48, no. 1, pp. 64-75.

[3] David, R. and H. Alla (2005). Discrete,
Continuous, and Hybrid Petri Nets, Berlin
Heidelberg: Springer-Verlag.

[4] Heemels, M., B. De Schutter and A.
Bemporad (2001). Equivalence of hybrid

dynamical systems, Automatica, vol. 37, pp.
1082-1091.

[5] Koutsoukos, X.D. and P.J. Antsaklis (1999),

Computational Issues in Intelligent Control:
Discrete-event and Hybrid Systems, In: Soft
Computing and Intelligent Systems: Theory
and Practice, N. Sinha and M. Gupta, Eds.,
Academic Press, pp. 39-69.

[6] Koutsoukos, X.D. and P.J. Antsaklis (2003),
Hybrid Dynamical Systems: Review and
Recent Progress, In: Software-Enabled
Control:

Information Technologies for Dynamical
Systems, T. Samad and G. Balas, Eds.,
Wiley-IEEE Press, pp. 273-298.

[7] Mahulea, C., M.H. Matcovschi and O.
Pastravanu (2005). Home Page of the Petri
Net Toolbox, http://www.ac.tuiasi.ro/pntool.

[8] Matcovschi, M.H., C. Lefter and O.
Pastravanu (2005). Petri nets in hybrid
system simulation under Simulink. The 15th
Int. Conf. on Control Systems and Computer
Science CSCS15, Bucharest, CD-ROM.

[9] The MathWorks Inc. (2005). Connections
Program,

 CONTROL ENGINEERING AND APPLIED INFORMATICS

62

http://www.mathworks.com/products/connecti
ons.

[10]Murata, T. (1989). Petri nets: properties,
analysis and applications, In: Proc. of the
IEEE, vol. 77, no. 4, pp. 541-580.

[11]Nenninger, G. and V. Krebs (1997).
Modeling and analysis of hybrid systems: a
new approach integrating Petri nets and
differential equations, Joint Workshop on
Parallel and Distributed Real-Time Systems,
pp. 234-238.

[12]NetLab Homepage (2004).
http://www.irt.rwth-
aachen.de/download/netlab/.

[13]Pastravanu, O., M.H. Matcovschi and C.
Mahulea (2004). Petri net toolbox –
teaching discrete event systems under
MATLAB, In: Advances in Automatic
Control, M. Voicu (Ed.), Kluwer Academic,
Boston/Dordrecht/London, pp. 257-270.

[14 Popescu, C. (2005). Implementation and
Testing of Simulink Blocks for Petri Net
Models, Research Report – Socrates-
Erasmus Mobility Program, Technical
University “Gh. Asachi” of Iasi and
University of Sheffield.

