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Abstract: The paper presents a possible variant of a systemic approach, for the numerical 
modeling and simulation of some usual categories of processes with distributed parameters, by 
�the matrix of the partial derivatives of the state vector�, noted with Mdpx and associated to the 
Taylor series. The definition and use of the matrix Mdpx in this paper could be considered as being 
original in this domain. 
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1. THE CATEGORY OF PROCESSES 
WITH DISTRIBUTED PARAMETERS 

 
These processes are defined by equations, or 
equation systems with partial derivatives (pde) 
[eventually ordinary differential equations 
(ode)] whose (independent or dependent) state 
variables fulfill the continuity conditions in the 
Cauchy way. 

An example of pdeII.4 (of the IInd order, with 
four independent variables) can be presented on 
the complete form (1). 
The next coefficients (a�) can be constant or 
a�=a�(t, p, q, r) wit the fulfillment of the 
continuity conditions. 
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The independent variables (t), (p), (q) and (r) 
represent the time (t) and (p), (q) and (r) can be, 
for instance, space variables in different 
coordinates: Cartesian, polar, etc. 
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Introducing the notation: 
 

T P Q R

TPQR T P Q R

yx
t p q r

+ + +∂=
∂ ∂ ∂ ∂

                     (2) 

 
which in particular can become 

T T

T T T

y d yx
t dt

∂= =
∂

                       (3) 

 
pde II.4 from (1) can be rewritten in a simpler 
form 
 

0000 0000 1000 1000 0100 0100 0010 0010

0001 0001 2000 2000 1100 1100 0200 0200

0110 0110 0020 0020 0011 0011 0002 0002

1001 1001 1010 1010 0101 0101 0000

a x a x a x a x
a x a x a x a x
a x a x a x a x
a x a x a x

+ + + +
+ + + + +
+ + + + +
+ + + = ϕ

     (4) 

 
Further on, the numerical integration will be 
considered in accordance to the time (t) for the 
entire paper. 
 
 
2. THE DEFINITION OF �THE 
MATRIX OF PARTIAL DERIVATIVES OF 
THE STATE VECTOR� (Mdpx) 
 
�The matrix of partial derivatives of the state 
vector�, defined as: 

 
1 M

1 M

n n

dpx N N

0000 0PQR

1000 1PQR

2000 2PQR

PQR n 1,000 n 1,PQR

T TPQR n,000 n,PQR

n 1,000 n 1,PQR

n 2,000 n 2,PQR

n 1 N,000 n 1 N,PQR

x
x
x

... ...
x
x

x
x

... ...
x

×

×

− −
= × = ×

+ +

+ +

− + − +

M

x
x
x

x x x
x x x

x
x

x

 

         (5) 
 
noted with Mdpx, is the complex matrix (5) 
formed of: 

- the state vector x(nx1), having a number 
of (n) lines, equal to the number of state 
variables and implicitly to the order 
(pde) with respect to time (t), in 
accordance to which the integration 
operates; 

- the state vector derived N times with 

respect to time 
N

T N

d(N 1) ( )
dt

× =x x , 

where usually N≥4; 
- the state vector, partially derived with 

respect to (p), (q) and (r), noted with 
xPQR(nxM), where (M) corresponds to 
the total number of the partial 
derivatives that were operated; 

- the vector partially derived with respect 
to (p), (q) and (r ), noted with 
xTPQR(NxM), the total number of these 
partial derivatives being (M). 

 
As a result, 
 

P Q R

PQR (P Q R M)P Q R ( );
p q r

+ +

+ + =
∂=

∂ ∂ ∂
x x               (6) 

 
P Q R

TPQR T (P Q R M)P Q R ( );
p q r

+ +

+ + =
∂=

∂ ∂ ∂
x x           (7) 

 
where usually M>N. All these matrices (xPQR) 
and (xTPQR) have a great number of elements. 
With the above four independent variables, the 
elements of the line matrix (xτPQR) for τ = 0, 1, 2, 
�, n-1+N, correspond the following partial 
derivatives, progressively increasing: xτ100, xτ010, 
xτ001, xτ200, xτ110, xτ020, xτ011, xτ002, xτ101, xτ300, xτ210, 
xτ120, xτ030, xτ021, xτ012, xτ003, xτ102, xτ201, xτ111, xτ400, 
xτ310, xτ220, xτ130, xτ040, xτ031, xτ022, xτ013, xτ004, xτ103, 
xτ202, xτ301, xτ211, xτ121, xτ112, and so on, where the 
index (τ) underlines the order of the partial 
derivative with respect to time (t). For the above 
example, M=3 if only the derivatives of the Ist 
order are considered; M=9 if we consider all the 
derivatives of the Ist and IInd order; M=19 if we 
consider all the derivatives of the Ist, IInd and 
IIIrd order, →M=34 if we limit to all the 
derivatives of the Ist, IInd, IIIrd and IVth order, 
etc. 
Due to some reasons to which we will return, for 
the element (xn,000) from the general form (5), 
we will use the name of �pivot element�, which 
result from the explicit use of the partial 
derivative of a maximum order with respect to 
time (t), from the general form (pde). In the 
example (4), this �pivot element� is (x2000). 
Returning to pde (4), where n=2 and the state 
vector x(2x1) we have (Mdpx) of the particular 
form: 
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1 M

1 M

n 2 n 2

dpx N N

0000 0PQR

1000 1PQR

PQR 2000 2PQR

T TPQR 3000 3PQR

1 N,000 1 N,PQR

x
x
x
x

... ...
x

×

×

= =
= × = ×

+ +

M

x
x

x x x
x x x

x

 

         (8) 
 
 with N≥4, and for the elements of the matrix 
(xTPQR), the indexes τ = 0, 1, 2, �1+N. The 
dimensions M=3; M=9; M=19 or M=34 
correspond to the limitations to partial 
derivatives (with respect to p, q, r) of the Ist 
order, Ist and IInd order, Ist, IInd and IIIrd 
order, respectively Ist, IInd, IIIrd and IVth order. 
Thus, for each (pde) we can associate a model 
expressed by �the matrix of partial derivatives of 
the state vector� with the dimension 
Mdpx[(n+N)x(1+M)], where (n) represents the 
number of lines of the state vector x(nx1). The 
choice of the dimensions N≥4 and M=3, 9, 19 or 
34, conditions the error of the approximation for 
the numerical solution, which becomes smaller 
as N and M become bigger. 
 
3. STATE VARIABLES, INITIAL 
CONDITIONS, BORDER CONDITIONS, 
FINAL CONDITIONS 
 
Formally identical with (1) and (4) we can write 
a big diversity of (pde) for which the Ist, IInd, 
IIIrd or IVth order are associated to the 
derivatives with respect to time (t), and the 
number (2), (3) or (4) of the independent 
variables contains the variable (t). The number 
of state variables corresponds to the order of 
these (pde) with respect to time (t), and the 
indexes underline the number of independent 
variables that define (pde), emplified in Table1. 
 
Table. 1. 

edp I.2 I.3 I.4 II.2 II.3 II.4 
x00 x000 x0000

x x00 x000 x0000 x10 x100 x1000

 
edp III.2 III.3 III.4 IV.2 IV.3 IV.4

x00 x000 x0000 x00 x000 x0000

x10 x100 x1000 x10 x100 x1000

x20 x200 x2000 x20 x200 x2000
x 

   x30 x300 x3000

For a number of (2), (3) or (4) independent 
variables the following variables correspond: (t, 
p), (t, p, q), respectively (t, p, q, r). 
Table 2 presents the state vector for the initial 
conditions (xIC) and the state vector for some 
possible border conditions (xBC), respectively 
final conditions (xFC), where the indexes (o) and 
(f) underline the initial values, respectively the 
final values. 
 
Table 2. 

xIC xBC xFC 

x(t0, p) x(t, p0) 
x(t, p0, q, 

r) x(tf, p) 

x(t0, p, q) x(t, p0, 
q) 

x(t, p0, 
qf, r) 

x(tf, p, q) 

x(t0, p, q, r) x(t, p0, 
qf) 

x(t, p, q0, 
r) x(tf, p, q,r) 

 
 
4. NUMERICAL INTEGRATION OF 
(pde) BY TAYLOR SERIES AND (Mdpx) 
 
If the numerical integration, in order to obtain 
the state vector (x) operates by Taylor series, the 
well known vector relations are being used: 
 

T

k k 1 ,k 1
1

t
!

τ

− τ −
τ=

∆≅ +
τ∑x x x                                  (9)

     
T

PQR,k PQR,k 1 PQR,k 1
1

t
!

τ

− τ −
τ=

∆≅ +
τ∑x x x                      (10) 

  
The indexes (k) and (k-1) represent the current 
and regressive sequence from the moments 
tk=k.∆t, respectively tk-1=(k-1).∆t, where the 
integration step (∆t) is considered to be small 
enough. From (5) it can be seen that (9) results 
from the components of the vector (xT, k-1), and 
(10) is obtained from the components of the 
matrix (xTPQR,k-1). Thus, for the right members 
belonging to (9) and (10) we have: 
 

dpx,k 1

k 1 PQR,k 1

T,k 1 TPQR,k 1
−

− −
=

− −
M

x x
x x

                     (11) 

 
everything being considered at the sequence (k-
1). 
The sequence (k-1) at the moment tk-1=(k-1).∆t 
could also correspond to the beginning of the 
calculations [at tk-1=t0 and initial conditions (IC) 
known], for which 
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k 1 IC k 1(t , p,q, r)− −= =x x x                             (12)
   
which represents the known state vector for the 
initial conditions (IC). As a result, the matrix 
  

P Q R

PQR,k 1 PQR,CI k 1P Q R ( )
p q r

+ +

− −
∂= =

∂ ⋅ ∂ ⋅∂
x x x         (13)

       
where the partial derivatives will operate 
successively, with respect to (p), (q) and (r) of 
the Ist order and then Ist and IInd order, Ist, IInd 
and IIIrd order, etc. 
The calculus of the matrices (xPQR, k-1) from (13) 
begins in the first line of the vector (xk-1), and 
then continues successively to the last line of 
this vector. 
The elements of this vector (xT, k-1) and the 
matrix (xTPQR, k-1) are established in the 
following succession: 

a) the pivot element (xn,000,k-1) is calculated 
from (5), which also represents the 
element in the first line of the vector 
(xT,k-1). This element is a polynomial 
function with respect to the existing 
elements in (xk-1) and (xPQR, k-1), defined 
in (12) and (13). 

b) The first line of the matrix (xTPQR, k-1), 
respectively (xnPQR, k-1) is obtained by the 
partial derivation of the pivot element 
(xn,000, k-1) with respect to (p), (q), and 
(r), progressively from the Ist order, 
then Ist and IInd, then Ist, IInd and IIIrd 
order, etc. All these elements are 
polynomial functions, with respect to 
the existing elements in (xk-1) and (xPQR, 

k-1) defined in (12) and (13). 
c) The following element (xn+1,000, k-1) from 

the second line of the vector (xT, k-1) is 
obtained by the analytic derivation with 
respect to time of the pivot element 
(xn,000, k-1). 

d) The second line of the matrix (xTPQR, k-1), 
that is (xn+1, PQR, k-1) is obtained by the 
partial derivation of the element (xn+1,000, 

k-1) previously calculated, with respect 
to (p), (q) and (r), progressively for the 
Ist order, then Ist and IInd, then Ist, IInd 
and IIIrd order, etc. All these elements 
are also polynomial functions 
previously calculated with respect to the 
existing elements in (xk-1), (xPQR, k-1), 
(xn,000) and in the first line of the matrix  
(xTPQR, k-1), respectively (xnPQR, k-1). 

e) The following element (xn+2,000, k-1) in the 
third line of the vector (xT,,k-1) is 

obtained by the analytical derivation 
with respect to time of the vector          
(xn+1, 000, k-1). 

f) The third line of the matrix (xTPQR, k-1), 
respectively (xn+2, PQR, k-1) is obtained by 
the partial derivation of the element 
(xn+2, 000, k-1), previously calculated, with 
respect to (p), (q) and (r ) progressively 
for the Ist order, then Ist and IInd, then 
Ist, IInd and IIIrd order, etc. All these 
elements are also polynomial functions 
previously calculated with respect to the 
existing elements in (xk-1), (xPQR, k-1), 
(xn,000) (xn+1,000) as well as in the first 
two lines of the matrix  (xTPQR, k-1), 
respectively (xnPQR, k-1) and (xn+1, PQR, k-1). 

 
This algorithm continues to the last line of the 
vector (xT, k-1) and the matrix (xTPQR, k-1), 
respectively (x1+N,000, k-1) and (x1+N, PQR, k-1). 
Finally, the components of the matrix (Mdpx,k-1) 
in (11) necessary for (9) and (10) have resulted 
this way: (xk-1) in (12); (xPQR, k-1) in (13); (xT, k-1) 
and (xTPQR, k-1) from the stages of calculations a), 
b),�f). Thus from (9) and (10) we calculate 
(xk), respectively (xPQR, k) having for each 
integration step a number of Taylor series of 
                                                
NST=n·(1+M)                  (14) 

 
according to (n) and (M) from (5). 
 
The total number (M) of the partial derivatives 
which corresponds to the number of the columns 
of the matrix (xPQR) or (xTPQR) from (5) depends 
on the number of independent variables (t, p, q, 
r), noted with (NIV), as well as on the maximum 
order of the partial derivatives (MOPD) that are 
taken into consideration. For instance, if we 
limit to MOPD =4 and NIV = 4, the number of 
these partial derivatives is included in the row 
presented after formula (7). 
If we keep MOPD =4 but NIV = 3, we will have 
the following row of partial derivatives: xτ10; 
xτ01; xτ20; xτ11 xτ02 xτ30; xτ21; xτ12 xτ03 xτ40; xτ31; 
xτ22; xτ13;xτ04. 
 
Finally, if we maintain MOPD =4 and NIV= 2, 
then the row of these partial derivatives 
becomes: xτ1; xτ2; xτ3; xτ4. 
 
As a result, according to (14) and to those 
present as follows in Table 3 we present the 
number of Taylor series (NTS) for each 
integration step (∆t). We denote with (n) the 
number of state variables (which also 
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corresponds to the order (pde) with respect to 
time (t), limited here to 4 and with (NIV) the 
number of independent variables (formed out of 
t, p, q, r) limited here also to 4. 
 
Table 3. 

n 1 2 
M 1 2 3 4 1 2 3 4 NIV=2 

NTS 2 3 4 5 4 6 8 10 
n 1 2 
M 2 5 9 14 2 5 9 14 NIV=3 

NTS 3 6 10 15 6 12 20 30 
n 1 2 
M 3 9 19 34 3 9 19 34 NIV=4 

NTS 4 10 20 35 8 20 40 70 
 

n 3 4 
M 1 2 3 4 1 2 3 4 NIV=2 

NTS 6 9 12 15 8 12 16 20 
n 3 4 
M 2 5 9 14 2 5 9 14 NIV=3 

NTS 9 18 30 45 12 24 40 60 
n 3 4 
M 3 9 19 34 3 9 19 34 NIV=4 

NTS 12 30 60 105 16 40 80 140 
 
With the stages covered above, the matrix  
(Mdpx,k-1) is calculated completely, and the 
sequence (k-1) for the moment (tk-1) is 
considered to be ended. 
The sequence (k) at the moment tk=k.∆t consists 
in the establishment of: 

dpx,k

k PQR,k

T,k TPQR,k
=M

x x
x x

                     (15) 

 
where the state vector (xk) and the matrix (xPQRk) 
are calculated according to (9), respectively 
(10), for which the development of Taylor series 
of the line (τ) results as: 
           

0 0 0 k 0 0 0 k 1

T

T 0 0 0 , k 1
T 1

t
( T ) !

τ τ −

− τω

−
= + τ

= +

∆+ ⋅
− τ∑

x x

x            (16) 

 
respectively 
 

P Q R , k P Q R , k 1

T

T P Q R , k 1
T 1

t
( T ) !

τ τ −

− τω

−
= + τ

= +

∆+ ⋅
− τ∑

x x

x            (17) 

 
The above (τ) lines correspond to τ = 0, 1, 2, � 
(n-1), and the last considered derivative is ω = 
n-1+N, as it can be observed in (5). 

As a result, the Taylor series for the first line (τ 
= 0) in (16) and (17) contain the maximum 
number of (n-1+N) derivatives with respect to 
time, and the Taylor series for the last line (ω=n-
1) contain the minimum number of (N) 
derivatives with respect to time. 

After finishing the calculations for (xk) and 
(xPQRk) in (15) we calculate (xTk) and (xTPQRk), 
according to the stages a), b), �f) from the 
previous sequence (k-1), which now becomes 
the current sequence (k). Finally we obtain 
(Mdpxk) from (15) with the important observation 
that all these details of calculus, for (15) from 
the sequence (k) now operate automatically 
through the program. 

The above sequence (k) ended this way will be 
considered again the sequence (k-1) for (15), 
which now becomes (11), and then we restart 
the stages of automatic calculations through the 
program, presented at the sequence (k-1). It will 
thus insure the incrementation of the moment 
tk=tk-1+∆t and implicitly the iterative advance 
with the integration step (∆t), from (t0) to (tf). 
 
 
5. STAGES OF NUMERICAL 
INTEGRATION, FOR AN EXAMPLE OF 
(PDE) II.4 

 
We revert to the example of (pde) II.4 from (1) 
and (4), from which we extrapolate the pivot 
variant of the form: 
 

2000 0000 1000 1000 0100 0100
2000

0010 0010 0001 0001 1100 1100 0200 0200

0110 0110 0020 0020 0011 0011 0002 0002

1001 1001 1010 1010 0101 0101

1x [ (a x a x
a

a x a x a x a x
a x a x a x a x
a x a x a x )]

= ϕ − ⋅ + ⋅ +

⋅ + ⋅ + ⋅ + ⋅ +
+ ⋅ + ⋅ + ⋅ + ⋅ +
+ ⋅ + ⋅ + ⋅

(18) 

 
We operate the following partial derivatives: 

2 T,PQR TPQR 1000 1 T,PQR
2000

0100 T,P 1,QR 0010 T,P,1 Q,R

0001 TPQ,1 R 1100 1 T,1 P,Q,R

0200 T,2 P,Q,R 0110 T,1 P,.1 Q,R

0020 TP,2 Q,R 0011 TP,1 Q,1 R

0002 TPQ,2 R 100

1X [ (a X
a

a X a X
a X a X
a X a X
a X a X
a X a

+ +

+ +

+ + +

+ + +

+ + +

+

= ϕ − ⋅ +

+ ⋅ + ⋅ +

+ ⋅ + ⋅ +

+ ⋅ + ⋅ +

+ ⋅ + ⋅ +

+ ⋅ + 1 1 T,PQ,1 R

1010 1 T,P,1 Q,R 0101 T,1 P,Q,1 R

X
a X a X )];

+ +

+ + + +

⋅ +

+ ⋅ + ⋅

          (19) 

 
for T = 1, 2, �5; P = 0, 1, �6; Q = 0, 1, �6; R 
= 0, 1, �6. 
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We calculate: 
 

1 18

n 2

dpx N 5

1 18

n 2

N 5

PQR

T TPQR

0000 0100 0010 0001 0666

1000 1100 1010 1001 1666

2000 2100 2010 2001 2666

3000 3100 3010 3001 3666

6000 6100 6010 6001 6666

x x x x ... x
x x x x ... x
x x x x ... x
x x x x ... x

... ... ... ... ... ...
x x x x ... x

×

=

=

×

=

=

= × =

= ×

M
x x

x x

     

       (20) 
 
resulting the dimensions x(2x1); xPQR(2x18); 
xT(5x1); xTPQR(5x18) and Mdpx(7x19). 

Further on, the details of calculus from the 
sequence (k-1) correspond to those presented at 
(11), (12), (13) and the stages a), b), �f), and 
for the sequence (k) we operate according to 
(15), (16) and (17). 

In order to insure the start of the calculations for 
checking the performance of the numerical 
integration, we have used a particular solution, 
common in technique, of the form: 
 

1 2

1 2

1 2

1 2

AN oooo
t t

T T
0T 1T 2T

p p
P P

0P 1P 2P
q q

Q Q
0Q 1Q 2Q

r r
R R

0R 1R 2R u

y (t, p,q, r) y

(J J J )

(J J J )

(J J J )

(J J J ) K u

−−

− −

− −

− −

= +

+ + ⋅ε + ⋅ε ⋅

⋅ + ⋅ε + ⋅ε ⋅

⋅ + ⋅ε + ⋅ε ⋅

⋅ + ⋅ε + ⋅ε ⋅ ⋅

              (21)   

 
where: 
  
y0000 =1; t0=0; tf=1; p0=0; pf=1; q0=0; qf=1; r0=0; 
rf=1; T1= 0.15·tf ; T2 = 0.1·tf ; 
P1= 0.15·pf ; P2 = 0.1·pf ; Q1= 0.15·qf ; Q2 = 
0.1·qf ; R1= 0.15·rf ; R2 = 0.1·rf ; Ku =1; 
u =1; J0T  = J0P  = J0Q  = J0R  =1;  

1
1T

1 2

T
J ;

T T
= −

−
2

2T
2 1

T
J ;

T T
= −

−
1

1P
1 2

P
J ;

P P
= −

−
  

2
2P

2 1

P
J ;

P P
= −

−
1

1Q
1 2

Q
J ;

Q Q
= −

−
2

2Q
2 1

Q
J ;

Q Q
= −

−
 

1
1R

1 2

R
J ;

R R
= −

−
2

2R
2 1

R
J ;

R R
= −

−
 

So, numerical integration frames in a hypercube 
with unitary sides. The indicator of the 
performance of the numerical integration is 
defined by the �cumulative relative error in 
percentages� (crepy), respectively 
                                

f

0

f

0

K

0000K
K

0000 K

ANK
K

x
crep crepx 100 ,

y

∆
= = ⋅

∑

∑
              (22)                                

 
where yANk is the particular analytical solution 
(21), and ∆x0000k=x0000k � yAnk is the error of the 
solution numerically approximated (x0000k) 
against the particular analytical solution (yANk). 
The numerator and denominator of (22) are 

considered in absolute values. The notation 
f

0

K

K
∑  

is a symbol of the iterative sum of all sequences 

of calculus, from 0
0

tK t= ∆  to ( )f 0
f

t tK t
−= ∆  

where (t0) and (tf) correspond to the initial 
moments, respectively final, and (∆t) is the 
integration step, considered small enough. 
 
Table 4 

tk 0.01 0.1 0.2 0.3 0.4 
x0000k 1.0015 1.124 1.297 1.478 1.622 
crepyk 0 1.6⋅10-5 10-4 2.6⋅10-4 3⋅10-4 

 
tk 0.5 0.6 0.7 0.8 0.9 1 

x0000k 1.726 1.794 1.845 1.876 1.897 1.912 
crepyk 1.1⋅10-3 3.5⋅10-3 8⋅10-3 1.4⋅10-2 1.8⋅10-2 1.9⋅10-

5 

 
Table 4 presents the results of the numerical 
integration for all coefficients (a�) in (18) of 
unitary value, and p = pf; q=qf; r =rf, for the 
integration step ∆t=0,01, according to the 
program RBPD3(4). Even if the order of partial 
derivatives with respect to (t), (p), (q) and (r ) 
from the Taylor series has been limited to 6, the 
values (crepyk) maintain low enough, that is 
under 0,02%. Comparable results for (crepyk) 
have been obtained for multiple other values of 
(p), (q) and (r) for the same integration step 
∆t=0.01. 
 
 
6. EXAMPLES OF MODELING-
SIMULATION FOR (pde), BY TAYLOR 
SERIES AND THE MATRIX (Mdpx) 
 
The method of numerical modeling-simulation 
of processes with distributed parameters 
presented in this paper has been verified on a 
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great and diversified number of cases, out of 
which we have extracted (15) examples. For 
each example we present: the type of (pde), the 
dimensions (Mdpx), the particular analytical 
solution yAN(t, �), the initial and final limits of 
the integration (t0, tf, p0, pf, �) as well as (crepy) 
to which we complete with further details. 
 
Pde I.2. The program EDPTL32(33) 
 

),(011000 pt
p
ya

t
yaya ϕ=

∂
∂+

∂
∂+   (23)       

 

( )
( ) ( )
( ) ( )dpx

P
7 30

T TP

1 1 1 30
6 1 6 30

× =
× ×
× ×

M
x x

x x
            (24) 

               

1 2

1 2

t t
T T

AN 00 0T 1T 2T
p p
P P

0P 1P 2 P u

y (t, p) y (J J J )

(J J J ) K u

− −

− −

= + + ⋅ ε + ⋅ ε ⋅

⋅ + ⋅ ε + ⋅ ε ⋅ ⋅
            

       (25) 
) 

t0=0; tf=10; p0=0; pf=10; ∆t=0,1; crepy≤6.2.10-5. 
 
Pde I.3. The program EDPTL35(36) 
                                         

100 010 001
y y ya a a a
t p q

(t,p,q)

000y
∂ ∂ ∂+ ⋅ + ⋅ + ⋅ =
∂ ∂ ∂

= ϕ
               (26) 

 

( )
( ) ( )
( ) ( )dpx

PQ
7 30

T TPQ

1 1 1 30
6 1 6 30

× =
× ×
× ×

M
x x

x x
            (27) 

 

Q
q

P
p

T
t

AN Jyqpty
−−−

⋅⋅⋅+= εεε000),,(  
                    (28) 

 
t0=0; tf=10; p0=0; pf=10; q0=0 ; qf=10 ; ∆t=0,5;                   
crepy = (2. 10-6÷2.10-5). 
 
Pde I.4. The program RBPD1(2) 
 

0000 1000 0100 0010 0001
y y y ya y a a a a
t p q r

(t,p,q, r)

∂ ∂ ∂ ∂+ ⋅ + ⋅ + ⋅ + ⋅ =
∂ ∂ ∂ ∂

= ϕ
 

       (29) 
 

( )
( ) ( )
( ) ( )dpx

PQR
7 344

T TPQR

1 1 1 343
6 1 6 343

× =
× ×
× ×

M
x x

x x
      (30) 

                                  
t p q r( )
T P Q R

AN 0000 uy (t, p, q, r) y J K u
− + + +

= + ⋅ ε ⋅ ⋅     (31) 
 
t0=0; tf=1; p0=0; pf=1; q0=0 ; qf=1 ; r0=0 ; rf=1 ;  
∆t=0,01 ; crepy = (5. 10-6÷2.10-2). 

a.  
Pde II2. The program EDPTL90(91) 
 

2 2

00 10 01 20 112

2

02 2

y y y ya y a a a a
t p t pt

ya (t, p)
p

∂ ∂ ∂ ∂+ ⋅ + ⋅ + ⋅ + ⋅ +
∂ ∂ ∂ ⋅ ∂∂

∂+ ⋅ = ϕ
∂

(32) 

 

( )
( ) ( )
( ) ( )dpx

P
9 31

T TP

2 1 2 30
7 1 7 30

× =
× ×
× ×

M
x x

x x
              (33) 

 

( )

1 2

1 2

t t
T T

AN 00 0T 1T 2T

p p
P P

0P 1P 2 P

u 0 A

y (t, p) y (J J J )

(J J J )
K u u u sin t

− −

− −

= + + ⋅ ε + ⋅ ε ⋅

⋅ + ⋅ ε + ⋅ ε ⋅
⋅ ⋅ ⋅ + ω

 

       (34) 
 
t0=0; tf=10; p0=0; pf=10; ∆t=0,1; crepy = (3. 10-

5÷5.10-3). 
b.  

Pde II3. The program EDPTL48(49) 
                            

2 2 2

200 020 0022 2 2

y y ya y a a a
t p q

(t,p,q)

000

∂ ∂ ∂+ ⋅ + ⋅ + ⋅ =
∂ ∂ ∂

= ϕ
          (35) 

 

( )
( ) ( )
( ) ( )dpx

PQ
8 64

T TPQ

2 1 2 63
6 1 6 63

× =
× ×
× ×

M
x x

x x
            (36) 

 
t p q( )
T P Q

AN 000 uy (t,p,q) y J K
− + +

= + ⋅ε ⋅         (37) 
 
t0=0; tf=10; p0=0; pf=10; q0=0 ; qf=10 ; ∆t=0,1;  
crepy = (6. 10-6÷9.10-4). 
 
Pde II4. The program RBPD3(4). Example 
presented in detail in [5], respectively [1], [4]. 

c.  
Pde III.2. The program EDPTL55(56) 
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3 3

00 30 033 3

y ya y a a (t, p)
t p

∂ ∂+ + = ϕ
∂ ∂

                (38) 

 

( )
( ) ( )
( ) ( )dpx

P
9 20

T TP

3 1 3 19
6 1 5 19

× =
× ×
× ×

M
x x

x x
              (39) 

 

1 2

1 2

AN 00

t / T t / T
0 T 1T 2 T

p / P p / P
OP 1P 2 P u

y ( t , p ) y

(J J J )

(J J J )K u

− −

− −

= +

+ + ε + ε ⋅

+ ε + ε

                  (40) 

 
t0=0; tf=10; p0=0; pf=10; ∆t=0,1; crepy = (5. 10-

5÷5.10-3). 
d.  

Pde III.3. The program EDPTL62(63) 
 

3 3 3

000 300 030 0033 3 3

y y y
a y a a a (t,p,q)

t p q
∂ ∂ ∂

+ + + = ϕ
∂ ∂ ∂

  (41) 

 

( )
( ) ( )
( ) ( )dpx

P
8 64

T TP

3 1 3 63
5 1 5 63

× =
× ×
× ×

M
x x

x x
              (42) 

                                                                                    
                      

t p q( )
T P Q

AN 000 uy (t,p,q) y J K u
− + +

= + ⋅ε ⋅ ⋅               (43)                                               
 
t0=0; tf=10; p0=0; pf=10; q0=0 ; qf=10 ; ∆t=0,1;  
crepy = (10-6÷10-2). 
 
Pde IV.2. The program EDPTL60(61) 
 

4 4

00 40 044 4

y y
a y a a (t,p)

t p
∂ ∂

+ + = ϕ
∂ ∂

                      (44)     

 

( )
( ) ( )
( ) ( )dpx

P
10 21

T TP

4 1 4 20
6 1 4 20

× =
× ×
× ×

M
x x

x x
             (45)  

 
1 2

1 2

t t
T T

AN 00 0T 1T 2T

p p
P P

0P 1P 2P u

y (t,p) y (J J J )

(J J J ) K u

− −

− −

= + + ⋅ε + ⋅ε

+ ⋅ε + ⋅ε ⋅ ⋅
    (46)                                                                                                                      

 
t0=0; tf=10; p0=0; pf=10; ∆t=0,1; crepy = (10-

5÷10-1). 
 
Pde IV.3. The program EDPTL64(65) 

                                    
4 4 4

000 400 040 0044 4 4

y y y
a y a a a (t,p,q)

t p q
∂ ∂ ∂

+ + + = ϕ
∂ ∂ ∂

 (47) 

 

( )
( ) ( )
( ) ( )dpx

PQ
8 64

T TPQ

4 1 4 63
4 1 4 63

× =
× ×
× ×

M
x x

x x
            (48) 

 
qpt QT P

AN 000 uy (t, p,q) y J K u
−−−

= + ⋅ε ⋅ ε ⋅ ε ⋅ ⋅   (49) 
 
t0=0; tf=10; p0=0; pf=10; q0=0 ; qf=10 ; ∆t=0,1;  
crepy = (10-5÷10-2). 
 
Pde IV.4. The program EDP44.1(.2) 
 

4 4

4000 11114

y y
a a (t,p,q, r)

t p q rt
∂ ∂

+ = ϕ
∂ ∂ ∂ ∂∂

        (50) 

 

( )
( ) ( )
( ) ( )dpx

PQR
8 8

T TPQR

4 1 4 7
4 1 4 7

× =
× ×
× ×

M
x x

x x
         (51) 

 
4

ANy t p q r= ⋅ ⋅ ⋅                                                (52) 
 
t0=0; tf=10; p0=0; pf=10; q0=0 ; qf=10 ;r0=0 ; 
rf=10 ; ∆t=0,01; crepy = 10-5÷5.10-3. 
 
Pde II.2, non linear. The program RBPD5(6) 
 

2

00 01 10 02 2

y y y(a a y) a a (t,p)
p t p

∂ ∂ ∂
+ + + = ϕ

∂ ∂ ∂
         (53) 

  

( )
( ) ( )
( ) ( )dpx

P
6 10

T TP

1 1 1 9
5 1 5 9

× =
× ×
× ×

M
x x

x x
        (54)                         

 

1 2

1 2

t t
T T

AN 00 0T 1T 2T

p p
P P

0P 1P 2P ff 00

y (t,p) y (J J J )

(J J J )(y y )

−−

− −

= + + ⋅ε + ⋅ε

+ ⋅ ε + ⋅ε −

         (55) 

 
t0=0; tf=14; p0=0; pf=7; ∆t=(10-4÷10-1) ; crepy = 
(8 .10-4÷0,8). 
 
The nonlinear (pde) (53) approximates a 
modified variant of the Cochen equation from 
the theory and practice of the columns of 
isotopic separation for (N15). The particular 
solution (55) has proved to be very close to the 
experimental results of the concentration y(t, p) 
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in accordance to which we have also calculated 
(crepy) for different integration steps (∆t). 

e.  
System of two pde II.2. The program S2EDP 
22(P). 

2 2
1 1 2

1 2 3 12

y y y
a a a (t,p)

t t pt
∂ ∂ ∂

⋅ + ⋅ + ⋅ = ϕ
∂ ∂ ⋅∂∂

             (56) 

2 2 2
2 1 2

4 5 6 22 2

y y y
a a a (t,p)

t pt p
∂ ∂ ∂

⋅ + ⋅ + ⋅ = ϕ
∂ ⋅∂∂ ∂

          (57) 

 

( )
( ) ( )
( ) ( )dpx

P
12 4

T TP

4 1 4 3
8 1 8 3

× =
× ×
× ×

M
x x
x x

         (58) 

2 3
1y t p ,= ⋅                                                       (59) 

3 2
2y t p ,= ⋅                                                      (60) 

 
t0=0; tf=10; p0=0; pf=10 ;∆t=0,001; crepy = (2 
.10-3÷6.10-2). 
 
For the system of (pde) (56) and (57) we have 
considered the state variables: x1.00=y1; x2.00=y2; 

`
1.10

yx
t

∂=
∂

 and 2
2.10

yx
t

∂=
∂

 so that the state 

vector of this system is: 
 

( )
1.00

2.00

1.10

2.10

x
x

4 1
x
x

× =x                       (61) 

 
As a result, the use of (Mdpx) can be extended 
for systems of (pde). 
 
Control system of a process, defined by pde II.2. 
The program 94(95). 
 
The control scheme in Fig. 1  
 

w a 

ym 

Controller c Actuator EDPII.2 u 
+

y00

y

Transducer 

 
Fig. 1. 

 
is defined by the following equation system: 

Ma w y ,= −                            (62) 

R I D
dac K a K adt K ,
dt

= ⋅ + ⋅ +∫              (63) 

vu K c,= ⋅                              (64) 

              

2

00 10 01 20 2

2 2

11 02 2

y y ya y a a a
t p t

y ya a (t, p),
t p p

∂ ∂ ∂⋅ + ⋅ + ⋅ + ⋅ +
∂ ∂ ∂

∂ ∂+ ⋅ + ⋅ = ϕ
∂ ⋅∂ ∂

   (65) 

CM My K y.= ⋅             (66) 

 
The succession of the above equations 
corresponds to: the comparison element, the PID 
controller, the flow-rate, the process with 
distributed parameters (pde II.2) designed for 
control and respectively the transducer of 
chemical concentration (y). For (65), the 
particular solution is expressed by: 

1 2

1 2

t t
T T

00 0T 1T 2T

p p
P P

0P 1P 2P u

y y (J J J )

(J J J )K u,

− −

− −

= + + ⋅ε + ⋅ε

+ ⋅ε + ⋅ ε ⋅

        (67) 

 
where (T1; T2) and (P1; P2) are time constants, 
respectively length constants, associated to a 
column of isotopic separation. The system 
contains four state variables, respectively two 
for the controller (PID) and two for the process 
with distributed parameters (pde II.2). 
Finally it has been operated with 
 

( )
( ) ( )
( ) ( )dpx

P
11 31

T TP

4 1 4 30
7 1 7 30

× =
× ×
× ×

M
x x

x x
             (68) 

 
which for the reference signal 

1 2

2w 100 30 sin( t)
T T

π= + ⋅ ⋅
+

         (69) 

and for Ku=1; Kν=1; KM=0,5; KR=1,85; t0=0; 
tf=15; p0=0; pf=10;∆t=0,01 we have crepy = (3 
.10-4-10-3). 
The results are diverse for different weights of 
the effects of (PID) in the controller, as well as 
for other parameters of structure of the system. 

f.  
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Control system of a process, defined by pde II.3. 
The program EDPTL96P(97P) 
The control scheme corresponds to the one in 
Fig. 1, the only change being the replacement of 
the process PDEII.2 with the new process pde 
II.3, defined by: 

2 2

000 100 010 001 200 1102

y y y y ya y a a a a a
t p q t pt

∂ ∂ ∂ ∂ ∂⋅ + + + + + +
∂ ∂ ∂ ∂ ⋅∂∂

2 2 2 2

020 011 002 1012 2

y y y ya a a a (t,p,q)
p q t qp q

∂ ∂ ∂ ∂+ + + + = ϕ
∂ ⋅∂ ∂ ⋅∂∂ ∂

                                                                       (70) 
 

The equation system (62), (63), �(66) remains 
unchanged, but (65) is replaced with (70), whose 
particular solution is considered of a polynomial 
form of the third degree with respect to (t, p and 
q), respectively: 

 
2 3

000 0T 1T 2T 3T 0P 1P

2 3 2 3
2P 3P 0Q 1Q 2Q 3Q

u

y y (J J t J t J t )(J J p

J p J p )(J J q J q J q )
K u

= + + ⋅ + ⋅ + ⋅ + ⋅ +

+ ⋅ + ⋅ + ⋅ + ⋅ + ⋅ ⋅

⋅ ⋅

    

       (71) 
 

The system also contains four state variables, 
out of which two belong to the (PID) controller, 
and two to the process with distributed 
parameters (pdeII.3). 
 

( )
( ) ( )
( ) ( )dpx

P
9 16

T TP

4 1 4 15
5 1 5 15

× =
× ×
× ×

M
x x
x x

          (72) 

 
with the observation that the relatively low 
degree of the polynomial form (71) has allowed 
the limitation of the number of columns in (72). 
For the reference signal: 
                                      

f

2w=100+30 sin( t)
t
π⋅ ⋅                      (73) 

 
and for:  Ku=1; Kν=1; KM=1; KR=1,85; t0=0; 
tf=10; p0=0; pf=10;q0=0; qf=10; ∆t=0,01 we have 
crepy = (10-5÷4 .10-4). 

In this example also the results have been 
diverse, for different weights of the effects of 
(PID) controller, as well as for other parameters 
of structure of the system. 
 
 
 
 

7. CONCLUSIONS 
 
The paper defines and uses �the matrix of partial 
derivatives of the state variables� (Mdpx) 
associated to the method of integration by 
Taylor series. 
Using (Mdpx) we complete: 

- the modeling of (pde) or the systems of 
(pde) [eventually also having (ode)], by 
establishing the elements and 
dimensions (n, N, M) of this matrix; 

- numerical simulation, by elaborating a 
logical scheme, with a specific 
architecture, imposed to the iterations of 
calculus, for the elements that compose 
(Mdpx); 

- the analyses of propagation of  trunk 
errors and the appreciation of the 
performances of numerical integration, 
with respect to the dimensions(n, N, M) 
and the elements of this matrix. 

Using (Mdpx), associated to Taylor series, for the 
numerical integration of (pde), or systems of 
(pde) with or without (ode), presents: 

- the disadvantage of a relatively great 
volume for preparation, in order to 
insure the beginning of calculation; 

- the advantage of a method of numerical 
integration with a quite general, unitary, 
performing and well systemized 
character, applied for wide categories of 
processes with distributed parameters. 

The 15 examples, from 6.1, 6.2, � 6.15 have 
been succinctly presented, the eventual details 
concerning the structure parameters (a�, J�, T�, 
Q�, R�, Ku, u, KR, KI, KD, Kv, KM, etc.) 
constructively functional (for 6.14; 6.15, etc.) or 
phenomenological interpretation resulting from 
the correspondent programs for each example. It 
has been dwelled on the value (crepy) which 
resulted from the running the programs on the 
computer, values that have proved to be 
extremely small, even for the dimensions (N, M) 
of M[(n+N)x(1+M)] of not too great values. 
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