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THE USE OF THE MATRIX (Mg4px) ASSOCIATED TO THE TAYLOR
SERIES, FOR NUMERICAL MODELING AND SIMULATION OF THE
PROCESSES WITH DISTRIBUTED PARAMETERS

Tiberiu Colosi

Faculty of Automation and Computer Sciences, Technical University of Cluj-Napoca

Abstract: The paper presents a possible variant of a systemic approach, for the numerical
modeling and simulation of some usual categories of processes with distributed parameters, by
“the matrix of the partial derivatives of the state vector”, noted with Mg, and associated to the
Taylor series. The definition and use of the matrix Mgy, in this paper could be considered as being

original in this domain.
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1. THE CATEGORY OF PROCESSES
WITH DISTRIBUTED PARAMETERS

These processes are defined by equations, or
equation systems with partial derivatives (pde)
[eventually ordinary differential equations
(ode)] whose (independent or dependent) state
variables fulfill the continuity conditions in the
Cauchy way.

An example of pdell.4 (of the IInd order, with
four independent variables) can be presented on
the complete form (1).
The next coefficients (a._) can be constant or
a.=a_(t, p, q, r) wit the fulfillment of the
continuity conditions.
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The independent variables (t), (p), (q) and (1)
represent the time (t) and (p), (q) and (r) can be,
for instance, space variables in different
coordinates: Cartesian, polar, etc.
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Introducing the notation:

aT+P+Q+Ry

o = o aq @

which in particular can become
'y dy

TN T )

pde IL.4 from (1) can be rewritten in a simpler
form

X +a X +a X +a X +

a0000 0000 1000*1000 0100“*0100 0010°*0010

+a0001X0001 + a2000X2000 + a1100X1100 + a0200X0200 +

(4)

+a X +a X +

X +a0011 0011 0002 *0002

X + a0020 0020

0110“*0110

+a,,,, X +a X +a X

1001“*1001 1010“*1010 0101 0101:(p0000

Further on, the numerical integration will be
considered in accordance to the time (t) for the
entire paper.

2. THE DEFINITION OF “THE
MATRIX OF PARTIAL DERIVATIVES OF
THE STATE VECTOR” (Mypy)

“The matrix of partial derivatives of the state
vector”, defined as:

IxM

X0000 XopPQR
X1000 XipQr
X2000 XopQR
b
M, =) X | XpoRr _: X 121,000 X1-1,PQR
Y| Xr ‘ Xrpor | | Xn,000 X, PQR
X 141,000 Xh+1,PQR
X 142,000 X142,PQR
Xn-14N,000 | Xn-1+N,PQR
5)

noted with Mgy, is the complex matrix (5)
formed of:

- the state vector x(nx1), having a number
of (n) lines, equal to the number of state
variables and implicitly to the order
(pde) with respect to time (t), in
accordance to which the integration
operates;

- the state vector derived N times with
N

respect to time XT(le)zdt—N(x),

where usually N>4;

- the state vector, partially derived with
respect to (p), (q) and (r), noted with
xpor(nXM), where (M) corresponds to
the total number of the partial
derivatives that were operated;

- the vector partially derived with respect
to (p), (@ and (r ), noted with
xrpor(NXM), the total number of these
partial derivatives being (M).

As a result,

QPHOR

Xpor = W(x);(P+Q+R:M) (6)
QPrerR

Xrpor = W (X1 );(P+Q+R:M) (7)

where usually M>N. All these matrices (Xpgr)
and (xrpor) have a great number of elements.
With the above four independent variables, the
elements of the line matrix (x;pgr) for t=0, 1, 2,
.., n-14N, correspond the following partial
derivatives, progressively increasing: X:100, X010,
X001, Xr200, Xt110, X7020, X011, X7002, Xz101, X300, Xr210,
X1120, X1030, X1021, X012, X003, Xt102, X1201, Xr111, Xr400,
X310, X220, X1130, X040, X031, X1022, X1013, X004, Xr103,
X202, X301, Xe211, Xe121, X112, and so on, where the
index (1) underlines the order of the partial
derivative with respect to time (t). For the above
example, M=3 if only the derivatives of the Ist
order are considered; M=9 if we consider all the
derivatives of the Ist and IInd order; M=19 if we
consider all the derivatives of the Ist, IInd and
IlIrd order, —M=34 if we limit to all the
derivatives of the Ist, IInd, IIIrd and IVth order,
etc.
Due to some reasons to which we will return, for
the element (X,000) from the general form (5),
we will use the name of “pivot element”, which
result from the explicit use of the partial
derivative of a maximum order with respect to
time (t), from the general form (pde). In the
example (4), this “pivot element” is (X2000)-
Returning to pde (4), where n=2 and the state
vector x(2x1) we have (Mgy) of the particular
form:
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IxM

X 0000 X0oPQR
" X1000 XipQr
wa| X | Xpor | 2| X2000 XopQR

Mg =% =X
Xt ‘ XTPQR X3000 X3pQr
X14N,000 | X14N,PQR

)

with N>4, and for the elements of the matrix
(xrpgr), the indexes T = 0, 1, 2, ...1+N. The
dimensions M=3; M=9; M=19 or M=34
correspond to the limitations to partial
derivatives (with respect to p, q, r) of the Ist
order, Ist and IInd order, Ist, IInd and Illrd
order, respectively Ist, IInd, IlIrd and IVth order.
Thus, for each (pde) we can associate a model
expressed by “the matrix of partial derivatives of
the state wvector” with the dimension
Mp[(n+N)x(1+M)], where (n) represents the
number of lines of the state vector x(nx1). The
choice of the dimensions N>4 and M=3, 9, 19 or
34, conditions the error of the approximation for
the numerical solution, which becomes smaller
as N and M become bigger.

3. STATE VARIABLES, INITIAL
CONDITIONS, BORDER CONDITIONS,
FINAL CONDITIONS

Formally identical with (1) and (4) we can write
a big diversity of (pde) for which the Ist, IInd,
IIrd or IVth order are associated to the
derivatives with respect to time (t), and the
number (2), (3) or (4) of the independent
variables contains the variable (t). The number
of state variables corresponds to the order of
these (pde) with respect to time (t), and the
indexes underline the number of independent
variables that define (pde), emplified in Tablel.

Table. 1.
edp |12 |13 |14 |IL2 |1L3 | 114

X0 | X000 | X0000

X X00 | X000 | X0000
X10 | X100 | X1000

For a number of (2), (3) or (4) independent
variables the following variables correspond: (t,
p), (t, p, q), respectively (t, p, q, 1).

Table 2 presents the state vector for the initial
conditions (x;c) and the state vector for some
possible border conditions (xpc), respectively
final conditions (xgc), where the indexes (o) and
(f) underline the initial values, respectively the
final values.

Table 2.
XicC XBC XFC
tﬂ 9 b
xtop) | xtp) |XERE ] x(p)
X(ta p()a X(ta p()a
t 9 b t b b
X(op(]) q) Qf,r) X(qu)
X(t, p()a X(ta pa q()a
t 9 b b t b b bl
Xt P, g ) | 1) x(ts p, q1)

edp | I11.2 | TIL.3 | 1114 | IV.2 | IV.3 | IV4

X00 X000 | X0000 X00 X000 | X0000
X10 X100 | X1000 X10 X100 | X1000
X20 X200 | X2000 X20 X200 | X2000
X30 X300 | X3000

4. NUMERICAL INTEGRATION OF
(pde) BY TAYLOR SERIES AND (Magpy)

If the numerical integration, in order to obtain
the state vector (x) operates by Taylor series, the
well known vector relations are being used:

AT
X, =X, + Z_|Xt,k—1 )
1=1 T!
T AtT
XPQR,k = XPQR,k—l + Z?XTPQR,k—I (10)
1=1 .

The indexes (k) and (k-1) represent the current
and regressive sequence from the moments
ti=k'At, respectively t.;=(k-1)At, where the
integration step (At) is considered to be small
enough. From (5) it can be seen that (9) results
from the components of the vector (xr, k1), and
(10) is obtained from the components of the
matrix (Xrpork-1)- Thus, for the right members
belonging to (9) and (10) we have:

Xy | XpQR k-1

(11)

dpx, k-1 =

X1 k-1 ‘ XTPQR k-1

everything being considered at the sequence (k-
1).

The sequence (k-1) at the moment ty=(k-1)At
could also correspond to the beginning of the
calculations [at t,;=t, and initial conditions (IC)
known], for which
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X, =X =X(t,,,p,q,1) (12)

which represents the known state vector for the
initial conditions (IC). As a result, the matrix

OPrQR
Xpor k-1 = Xpor,c1 = W (x,) (13)

where the partial derivatives will operate
successively, with respect to (p), (q) and (r) of
the Ist order and then Ist and IInd order, Ist, IInd
and IIIrd order, etc.

The calculus of the matrices (Xpor, k1) from (13)
begins in the first line of the vector (xi), and
then continues successively to the last line of
this vector.

The elements of this vector (xr, ;) and the
matrix (Xtpor, k1) are established in the
following succession:

a) the pivot element (Xy000x-1) 18 calculated
from (5), which also represents the
element in the first line of the vector
(Xrx1). This element is a polynomial
function with respect to the existing
elements in (Xx.;) and (Xpgg, k-1), defined
in (12) and (13).

b) The first line of the matrix (Xrpor, k-1),
respectively (Xnpor, k-1) i Obtained by the
partial derivation of the pivot element
(Xn,000, k1) With respect to (p), (q), and
(r), progressively from the Ist order,
then Ist and IInd, then Ist, IInd and Illrd
order, etc. All these elements are
polynomial functions, with respect to
the existing elements in (xk.;) and (Xpgr,
k1) defined in (12) and (13).

c) The following element (Xy1 000, x-1) from
the second line of the vector (xr, k1) is
obtained by the analytic derivation with
respect to time of the pivot element
(Xn,ooo, k-l)-

d) The second line of the matrix (Xrpgr, k-1),
that is (Xp+1, PR, k-1) 1S Obtained by the
partial derivation of the element (Xu+1,000,
1) previously calculated, with respect
to (p), (q) and (r), progressively for the
Ist order, then Ist and IInd, then Ist, IInd
and IIIrd order, etc. All these elements
are also  polynomial  functions
previously calculated with respect to the
existing elements in (Xx1), (Xpor. k-1),
(Xn,000) and in the first line of the matrix
(XTpQR, k-1)> TESPECtivEly (XnpoR, k-1)-

e) The following element (Xn+2,000, k-1) in the
third line of the vector (Xrx1) is

obtained by the analytical derivation
with respect to time of the vector
(Xn+1, 000, k-l)-

f) The third line of the matrix (Xtpor, k-1)
respectively (Xn+2, por, k-1) 18 obtained by
the partial derivation of the element
(Xnt2, 000, k-1), previously calculated, with
respect to (p), (q) and (r ) progressively
for the Ist order, then Ist and IInd, then
Ist, IInd and IIIrd order, etc. All these
elements are also polynomial functions
previously calculated with respect to the
existing elements in (Xx1), (Xpor. k-1),
(Xn,000) (Xn+1000) @s well as in the first
two lines of the matrix  (Xrpor, k-1)
respectively (Xnpor, k-1) and (Xp+1, poR, k-1)-

This algorithm continues to the last line of the
vector (Xr, k1) and the matrix (Xtpor, k-1)s
respectively (XHN,OOO, k-l) and (XHN, PQR, k-l)-
Finally, the components of the matrix (Mgpxk-1)
in (11) necessary for (9) and (10) have resulted
this way: (xi.1) in (12); (Xpor, k1) in (13); (Xr, k1)
and (Xtpor, k-1) from the stages of calculations a),
b),...f). Thus from (9) and (10) we calculate
(xx), respectively (Xpor, x) having for each
integration step a number of Taylor series of

NST=n:(1+M) (14)
according to (n) and (M) from (5).

The total number (M) of the partial derivatives
which corresponds to the number of the columns
of the matrix (Xpgr) or (Xrpor) from (5) depends
on the number of independent variables (t, p, q,
1), noted with (NIV), as well as on the maximum
order of the partial derivatives (MOPD) that are
taken into consideration. For instance, if we
limit to MOPD =4 and NIV = 4, the number of
these partial derivatives is included in the row
presented after formula (7).

If we keep MOPD =4 but NIV = 3, we will have
the following row of partial derivatives: Xqo;
X101, X720, X111 X102 X130, X215 Xq12 X103 X140, X131,
X225 X113;X104-

Finally, if we maintain MOPD =4 and NIV= 2,
then the row of these partial derivatives
becomes: X;1; X2 X3 Xea-

As a result, according to (14) and to those
present as follows in Table 3 we present the
number of Taylor series (NTS) for each
integration step (At). We denote with (n) the
number of state variables (which also
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corresponds to the order (pde) with respect to
time (t), limited here to 4 and with (NIV) the
number of independent variables (formed out of
t, p, q, r) limited here also to 4.

Table 3.
n 1 2
NIV=2 M 1 2 3 4 1] 2 3 4
NTS 3 4 5 6 8 10
n 1 2
NIV=3 M 215 9 14125 9 14
NTS | 3 6 10 | 156 | 12| 20 | 30

NTS | 4 |10 ] 20 | 358 | 20 | 40 | 70

NIV=2 | M 11213 4 1123 4

NIS| 6 | 9 | 12| 15 | 8 | 1216 20

NIV=3 | M 2 15109 14 1215109 14

NIS| 9 | 18130 | 45 [ 122440 60

NIV=4 | M 319119134 1319 ]19] 34

NTS | 12 | 30 | 60 | 105 | 16 | 40 | 80 | 140

With the stages covered above, the matrix
(Mgpxx-1) 1s calculated completely, and the
sequence (k-1) for the moment (tx.;) is
considered to be ended.
The sequence (k) at the moment t,=k At consists
in the establishment of:

Xy | XpQR k

(15)

dpx,k =

X1k ‘ XTPQR k

where the state vector (xx) and the matrix (Xpork)
are calculated according to (9), respectively
(10), for which the development of Taylor series
of the line (1) results as:

X 1000k = XtOOOk—l +
10} T—‘E
(16)
+TZ (T - 1)! 7 X To000,k-1
respectively
X por.k = Xipor.k-1 T
T-1
Z“’ _At (17)
TPQR k-1
T=1+1 (T - T)'

The above (7) lines correspondtot=0, 1, 2, ...
(n-1), and the last considered derivative is ® =
n-1+N, as it can be observed in (5).

As a result, the Taylor series for the first line (t
= 0) in (16) and (17) contain the maximum
number of (n-1+N) derivatives with respect to
time, and the Taylor series for the last line (w=n-
1) contain the minimum number of (N)
derivatives with respect to time.

After finishing the calculations for (x;) and
(Xpork) In (15) we calculate (xrx) and (Xtporx),
according to the stages a), b), ...f) from the
previous sequence (k-1), which now becomes
the current sequence (k). Finally we obtain
(Mypxi) from (15) with the important observation
that all these details of calculus, for (15) from
the sequence (k) now operate automatically
through the program.

The above sequence (k) ended this way will be
considered again the sequence (k-1) for (15),
which now becomes (11), and then we restart
the stages of automatic calculations through the
program, presented at the sequence (k-1). It will
thus insure the incrementation of the moment
t=ti.1tAt and implicitly the iterative advance
with the integration step (At), from (to) to (tp).

5. STAGES OF  NUMERICAL
INTEGRATION, FOR AN EXAMPLE OF
(PDE) I1.4

We revert to the example of (pde) 1.4 from (1)
and (4), from which we extrapolate the pivot
variant of the form:

1
oo = (Do — (@000 * Xi000 T 3010 * Xouw T
%000
Q010 " X0010 T 30001 " Xooor TA1100 “ X100 T 3200 XKoo T (1 8)

110 Xor10 3020 X000 T Q0011 Xoor1 T 8002 Koo T

001 Xior T 31010 *Xigro Tagi1 'X0101)]

We operate the following partial derivatives:

X2+T,PQR = L[(pTPQR - (awoo .XHT,PQR +

2000
+a,49 'XT,P+1,QR +a 'XT,P,1+Q,R +
+ay99; 'XTPQ,1+R +a,,4 'X1+T,1+P,Q,R +
+a59 'XT,2+P,Q,R +ay 'XT,1+P,.1+Q,R + (19)
+a059 'XTP,2+Q,R +ay,; 'XTP,1+Q,1+R +
+a40, 'XTPQ,2+R +a, 'X1+T,PQ,1+R +
+a,0;9 'X1+T,P,1+Q,R +a, 'XT,1+P,Q,1+R )]7
forT=1,2,...5,P=0,1,...6,Q=0,1, ...6; R
=0,1,...6.
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We calculate:

Ix18

n=2 X XPQR

Md'“:'ésx X1pQ i
T | XTPQR
1x18
X000 i Xo0100 | X0010 | Xooo01 X 0666
X1000 : X1100 | X1010 | X1001 | -+ | Xi666
=2[X2000 | X2100 | X2010 | X2001 X 2666
=X
N=5
X3000 i X3100 | X3010 | X3001 | -+ | X3666
X6000 i X6100 | X6010 | X6001 X 6666
(20)

resulting the dimensions x(2x1); Xpor(2x18);
XT(SXI); XTPQR(5X18) and Mdpx(7X19)~

Further on, the details of calculus from the
sequence (k-1) correspond to those presented at
(11), (12), (13) and the stages a), b), ...f), and
for the sequence (k) we operate according to
(15), (16) and (17).

In order to insure the start of the calculations for
checking the performance of the numerical
integration, we have used a particular solution,
common in technique, of the form:

Yan (6P, 451) = Vooo +
t —t
+(Jgp +Ipe T+, €R)
-P P
Jpp +Ip € +1,,-87)- 1)
| —q
Joo +J1g €Y +1,0-8%)-

Jog +Ig €5+, %) K, -u
where:

Yoooo =1; t6=0; t=1; po=0; p=1; qi=0; q=1; 15=0;
I'le, T1: 015tf, Tzz Oltf,

P= 0.15p¢; P, = 0.1'pr ; Q= 0.15-qs ; Q2 =
0.1-gr; Ri=0.151¢; R,=0.11¢; K, =1;

u=1; Jor =Jop = Jog = Jor =1;

IT T,-T, > Jor T,-T, > Jip P _P, )

Jop == & > = % s dg =7 % >
P,-P Q-Q, Q,-Q

o= R, . __ R, .

IR R,—R, > YIR R, R, )

So, numerical integration frames in a hypercube
with wunitary sides. The indicator of the
performance of the numerical integration is
defined by the “cumulative relative error in
percentages” (crepy), respectively

K¢

Z |AXOOOOK|

Crep = Crepx gy, = 100 -K°—, (22)

where yank is the particular analytical solution
(21), and AX()()()()k:X()()()()k — Yank is the error of the
solution numerically approximated (Xoooox)
against the particular analytical solution (yan).
The numerator and denominator of (22) are

Kf
considered in absolute values. The notation »_
Ko

is a symbol of the iterative sum of all sequences
_t — (tf _toy
of calculus, from K, =", to K, = At

where (to) and (tp) correspond to the initial
moments, respectively final, and (At) is the
integration step, considered small enough.

Table 4
t 0.01 0.1 0.2 0.3 0.4
crepyi 0 1.6:10° 10 26-10* | 3-10°
t 0.5 0.6 0.7 0.8 0.9 1
X0000k 1.726 1.794 1.845 1.876 1.897 1.912
crepy, | L1107 3.5-10° 8107 1.4-102 1.8-102 L9:10

Table 4 presents the results of the numerical
integration for all coefficients (a_) in (18) of
unitary value, and p = pr q=qg r =ry, for the
integration step At=0,01, according to the
program RBPD3(4). Even if the order of partial
derivatives with respect to (t), (p), (q) and (r )
from the Taylor series has been limited to 6, the
values (crepyy) maintain low enough, that is
under 0,02%. Comparable results for (crepyy)
have been obtained for multiple other values of
(p), (@) and (r) for the same integration step
At=0.01.

6. EXAMPLES OF MODELING-
SIMULATION FOR (pde), BY TAYLOR
SERIES AND THE MATRIX (M)

The method of numerical modeling-simulation
of processes with distributed parameters
presented in this paper has been verified on a
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great and diversified number of cases, out of
which we have extracted (15) examples. For
each example we present: the type of (pde), the
dimensions (Mgy), the particular analytical
solution yan(t, ...), the initial and final limits of
the integration (to, tr po, ps, -..) as well as (crepy)
to which we complete with further details.

Pde 1.2. The program EDPTL32(33)

0 0
Aoy + ay %"' Ay %: p(t,p) (23)

x(Ix1) | xp(1x30)
xp(6x1) | xpp (6x30)

Mdpx (7 X30) =

24)

t t

Yan(tP) =Yoo +Jor +J17 € " +1y e B
P P

Jp+T,€ " +7,€ ")K,  u
(25)

t=0; t=10; p;=0; p=10; At=0,1; crepy<6.2'10".

Pde 1.3. The program EDPTL35(36)

0 0 p)
R 26)
=0(t,p,q)

x(1x1 X 1x30

xp(6x1) | Xppq (6x30)

LI A &
Vvt pq) =Yoo +J-€7-€ 7€ 0
(28)

t=0; t=10; po=0; p=10; qo=0 ; q=10 ; At=0,5;
crepy = (2 10°+2:107).

Pde 1.4. The proeram RBPD1(2)

dy dy dy Ay
B0y T 900 "5~ +2 +a0010-a—q+a 2=

ot 0100 % 0001 or

=o(t,p,q,r)
(29)

X(IX1) | Xpop (1x343)
xp (6X1) | Xppor (6X343)

M, (7x344) = (30)

Yan(6D,0,T) = Yoo +J-€ TPQR ‘K, -u (31)

t=0; t=1; pe=0; p=1; q=0; q=1 ; 1=0 ; r=1
At=0,01 ; crepy = (5 10°+210).

a.
Pde I12. The program EDPTL.90(91)

dy dy d’y o’y
a5y tay, '§+a01 '%"'azo ’ o ta,- at-ap +

(32)

2

0
+a,, ﬁ =@(t,p)

x(2x1) | x;(2x30)
x1(7x1) ‘ X1p(7%30)

M, (931) = (33)

t t

+lyr e Tz)'

T

Yan(LP) =Yoo +Upr + 108

p p

'(Jop +J1P '87PT+J2P 'efﬂ)'
K, -u-(u, +u, sinot)
(34)

t=0; t=10; p=0; p=10; At=0,1; crepy = (3 10"
+5107).

b.
Pde 113. The program EDPTL.48(49)

d’y 9’y dy
Ay a5 '?"'aozo a_pz 002 a_qz - (35)

=0(t,p,q)

x(2x1) | xpq(2x63)
xp (6X1) | Xppq (6x63)

M, (564)- (36)

_ q
YAN(t:p:q):}looo'i'J'8 N ‘K, (37)

t=0; t=10; po=0; p=10; q5=0 ; q=10 ; At=0,1;
crepy = (6 10°9:10™).

Pde I14. The program RBPD3(4). Example
presented in detail in [5], respectively [1], [4].

C.
Pde I11.2. The program EDPTL55(56)
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9’ 0’ o* 9! o*
aooy+a3oaTZ+ao3a_p}31: o(t,p) (38) aoooy+a4ooaTZ+ao4oﬁ+aoo4ﬁzq’(tapacn (47)
x(3x1 X, (3%x19 x(4x1 Xo (4%63
M, (9%20) = (31) | %y(319) (39) M, (8x64)= (4x1) | Xpo(4x63) (48)
xp (6x1) | x1p(5x19) xp (4x1) | xppq (4x63)

Yan (LP) = Yoo t+
+(Tgp +Jp87 T 47,67 (40)
Jop + 3,7 +7,,e"™)K u
t=0; t=10; pe=0; p~=10; At=0,1; crepy = (5 10
+5107).

d.
Pde I11.3. The program EDPTL62(63)

3 3 9
aoooy+a3oo?"_30308_1)}31"_30038_(1}31:(9(@1)9(1) (41)
x(3x1 X, (3%63
M, (8x64)= (3) | xp(3x63) (42)
X1 (5x1) ‘ X1p (5%63)
R
Yan(6:0,9) =Yoo +J-€ ree ‘K, -u (43)

t=0; t=10; p=0; p=10; q5=0 ; q=10 ; At=0,1;
crepy = (10°+107).

Pde IV.2. The program EDPTL60(61)

Ay, . 9y _
Ay tay, 9t t+ay, ap4 =¢(t,p) (44)
4x1 4%x20
M, (10x21)= X(4x1) | el ) (45)
xp (6x1) | xpp(4x20)
Yan(6P) =Yoo +Uor Hir 'E/Tl +or '8/%2)
_ (46)

D -p
Jop +J1p 'E/PI +p 'sﬁz)'Ku ‘u

t=0; t=10; p¢=0; p=10; At=0,1; crepy = (10

+10™).

Pde IV.3. The program EDPTL64(65)

Y (61:Q) = Yoo + 1 e e Vgt K, -u (49)

t=0; t=10; pe=0; p=10; q5=0 ; q=10 ; At=0,1;
crepy = (10°+107).

Pde IV.4. The program EDP44.1(.2)

4

a4OOOBT‘¥+aHHWB};E)r:(p(t’p,q’r) (50)

(8- x(4x1) | xpor (4X7) s
p X (4x1) ‘ X1por (4X7)

YAN:t4'p'q'r (52)

t=0; t=10; po=0; p=10; q=0; q=10 ;r=0;
r=10 ; At=0,01; crepy = 10°+5107.

Pde I1.2. non linear. The program RBPD5(6)

d 0’
Y TZ=<p(t,p> (53)

dy
(ag + ao1Y)£+ i E"' g P

Ix1 1X9
M, (6x10)= x(x1) | Xp (1x9) (54)
xp(5x1) | xpp(529)
YAN(t:p)ZYOo+(J0T+J1T'8 1+]2T.33) (55)

-p -p

Jop +J1p e +J e XY = Yoo)

t=0; t=14; po=0; p=7; At=(10"+10") ; crepy =
(8 '10+0,8).

The nonlinear (pde) (53) approximates a
modified variant of the Cochen equation from
the theory and practice of the columns of
isotopic separation for (N'°). The particular
solution (55) has proved to be very close to the
experimental results of the concentration y(t, p)
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in accordance to which we have also calculated a=w-y,, (62)
(crepy) for different integration steps (At).
c. da
System of two pde I1.2. The program S2EDP c=Ky-a+K, 'jadt+KD I (63)
22(P).
0 92 0> u=K,-c, (64)
al.i+a2._y21+a3. % =¢,(t,p) (56)
Qg yta —-tag T tay, o+
ot op ot
P TSRS TR FRPARS S ry . oy (©)
Yot T otap Coopt +an'm+aoz'$=®(t,]@),
x(4x1) | xp(4x3) You =Ky -y (66)
M, (124) = (58)
xp (8x1) | Xpp(8x3)
The succession of the above equations
y =2 p’ (59) corresponds to: the comparison element, the PID
! ’ controller, the flow-rate, the process with
- distributed parameters (pde I1.2) designed for
y,=t-p’, (60)

t=0; t=10; p¢=0; p=10 ;At=0,001; crepy = (2
10°+6107).

For the system of (pde) (56) and (57) we have
considered the state variables: X.00=y1; X2.00=Y2;

_oy _ 9%
110 — at -
vector of this system is:

X and x,,, so that the state

1.00

.00 (61)

.10

I~

X
x(4x1) = i
X

2.10

As a result, the use of (Mgyx) can be extended
for systems of (pde).

Control system of a process, defined by pde I1.2.
The program 94(95).

The control scheme in Fig. 1

n Yoo
L»M F<s| Actuator |» EDPIL2 |» Ead
Ym Transducer |«

Fig. 1.

is defined by the following equation system:

control and respectively the transducer of
chemical concentration (y). For (65), the
particular solution is expressed by:

—t —t
Y =Yoo +Uor +Jir el +lor 'STZ)
i ) i )

Jop+Ip €% +1,,-€")K, -,

(67)

where (T,; T,) and (P,. P,) are time constants,
respectively length constants, associated to a
column of isotopic separation. The system
contains four state variables, respectively two
for the controller (PID) and two for the process
with distributed parameters (pde I1.2).

Finally it has been operated with

x(4x1) | xp(4x30)
M, (11x31)= (68)
xp (7x1) | x5 (7%30)
which for the reference signal
w =100+30-sin(—"—. 1) (69)

1 2

and for K=1; K,~=1; Ky=0,5; Kz=1,85; t=0;
t=15; pe=0; p=10;At=0,01 we have crepy = (3
10-107).

The results are diverse for different weights of
the effects of (PID) in the controller, as well as

for other parameters of structure of the system.
f.
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Control system of a process, defined by pde I1.3.
The program EDPTLI6P(97P)

The control scheme corresponds to the one in
Fig. 1, the only change being the replacement of
the process PDEIL2 with the new process pde
I1.3, defined by:

dy dy dy 9’y o’y
g0 Y T2y E"' Ao10 %"'aom %"'azoo 87"' a0 m"'
9’y 'y o’y %y
+ay ?"' o1y m +ay, W ay0, m =0(t,p,q)
(70)

The equation system (62), (63), ...(66) remains
unchanged, but (65) is replaced with (70), whose
particular solution is considered of a polynomial
form of the third degree with respect to (t, p and
q), respectively:

YZYOOO+(JOT +J1T 't+J2T 't2+J3T 'tS)(JOP+J1P ‘Pt
+Jop 'p2 +J5p 'pS)(JOQ +JIQ 'q+Jzo '(12 +J3Q 'qS)'
K, u

(71)

The system also contains four state variables,
out of which two belong to the (PID) controller,
and two to the process with distributed
parameters (pdell.3).

x(4x1) | xp(4x15)
xp (5x1) | xpp(5x15)

M, (916) - (72)

with the observation that the relatively low
degree of the polynomial form (71) has allowed
the limitation of the number of columns in (72).
For the reference signal:

w:100+3o-sin(?-t) (73)

f

and for: K.=1; K~=1; Ky=1; Kz=1,85; t=0;
t=10; pe=0; p=10;q0=0; q=10; At=0,01 we have
crepy = (10°+4 °10™).

In this example also the results have been
diverse, for different weights of the effects of
(PID) controller, as well as for other parameters
of structure of the system.

7. CONCLUSIONS

The paper defines and uses “the matrix of partial
derivatives of the state variables” (Mgp)
associated to the method of integration by
Taylor series.

Using (Mgpx) we complete:

- the modeling of (pde) or the systems of
(pde) [eventually also having (ode)], by
establishing  the  elements and
dimensions (n, N, M) of this matrix;

- numerical simulation, by elaborating a
logical scheme, with a specific
architecture, imposed to the iterations of
calculus, for the elements that compose
(Mde);

- the analyses of propagation of trunk
errors and the appreciation of the
performances of numerical integration,
with respect to the dimensions(n, N, M)
and the elements of this matrix.

Using (M), associated to Taylor series, for the
numerical integration of (pde), or systems of
(pde) with or without (ode), presents:

- the disadvantage of a relatively great
volume for preparation, in order to
insure the beginning of calculation;

- the advantage of a method of numerical
integration with a quite general, unitary,
performing and well systemized
character, applied for wide categories of
processes with distributed parameters.

The 15 examples, from 6.1, 6.2, ... 6.15 have
been succinctly presented, the eventual details
concerning the structure parameters (a_, J T
Q. R K, u Kp K, Kp K, Ky, etc.)
constructively functional (for 6.14; 6.15, etc.) or
phenomenological interpretation resulting from
the correspondent programs for each example. It
has been dwelled on the value (crepy) which
resulted from the running the programs on the
computer, values that have proved to be
extremely small, even for the dimensions (N, M)
of M[(n+N)x(1+M)] of not too great values.
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