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Abstract: This paper compares the Biogeography-Based Optimization (BBO) and Particle Swam 
Optimization (PSO) algorithms for the tuning of Proportional Integral Derivative (PID) controller 
parameters and concludes BBO works well compared to other in reducing the body acceleration of 
Vehicle Active Suspension System (VASS). Biogeography a mushrooming nature enthused global 
optimization procedure, which is based on the study of the geographical distribution of biological 
organisms and a swarm intelligence technique are used to find the optimal parameters of the PID 
controller to improve the performance of VASS. Simulations of passive system, active system with PID 
controller with and without optimization are performed with dual bump, sinusoidal and random kind of 
road disturbances using MATLAB/SIMULINK. The simulation results indicate the improvement of 
results with the BBO algorithm. 
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1. INTRODUCTION 

The automobile industries promote the research on vibration 
control in order to guarantee the driving and travelling 
comfort to the passengers. Otherwise the vibration will lead 
to unwanted noise in the vehicle, damage to the fittings 
attached to the car and cause severe health problems such as 
increase in heart rate, spinal problems etc to the passengers. 
The suspension system of an automobile plays a vital role in 
vehicle handling and ride comfort. Handling of vehicle 
depends on the force acting between the road surface and the 
wheels. Ride comfort is related to vehicle motion sensed by 
the passenger. In order to improve the handling and ride 
comfort performance, instead of conventional static spring 
and damper system, semi-active and active systems are being 
developed. A semi-active suspension involves the use of 
dampers with variable gain. An active suspension involves 
the passive components augmented by actuators that supply 
additional forces. Alternatively, an active suspension system 
possesses the ability to reduce the acceleration of sprung 
mass continuously as well as to minimize suspension 
deflection which results in the improvement of tyre grip with 
the road surface (Seok_il Son, 1996; Hrovat D., 1997). 
Increased competition in the automotive market has forced 
industries to research on the control strategies of Vehicle 
Active Suspension System (VASS).  

In the past, many researchers discussed about a number of 
control approaches theoretically, simulated using simulation 
software, experimentally verified and proposed for the 
control of active suspension system. The survey of optimal 
control technique applications to the design of active 
suspensions are listed in (Hrovart D., 1993) and the emphasis 

is on Linear-Quadratic (LQ) optimal control. A methodology 
to design a controller with a model which includes the 
passenger dynamics is presented in (Esmailzadeh E. and 
Taghirad H. D., 1996). The comparison of Linear Matrix 
Inequality (LMI) based controller and optimal Proportional 
Integral Derivative (PID) controller by (Abdalla MO et al., 
2007) proved the sprung mass displacement response 
improvement by LMI controller with only the suspension 
stroke as the feedback.    

PID controller for single Degree of Freedom (DOF), two 
DOF Quarter Car (QC) and half car model are discussed in  
(Abdalla MO et al., 2007; Rajeswari K. and Lakshmi P., 
2011; Demir O. et al., 2012) respectively. Design of robust PI 
controller which is used to obtain optimal control is discussed 
in (Yeroglu C. and Tan N. 2008). The conclusion made by 
(Dan Simon, 2008), stimulated the idea of using 
Biogeography-Based Optimization (BBO) for the 
optimization of PID parameters.   

(Panchal V. K. et al., 2009) focused on classification of the 
satellite image of a particular land cover using the theory of 
BBO and concluded that with this highly accurate land cover 
features can be extracted effectively. (Urvinder Singh et al., 
2010) used BBO to optimize the element length and spacing 
for Yagi-Uda antenna and the performance is evaluated with 
a method of moment’s code NEC2. (Aniruddha Bhattacharya 
and Pranab Kumar Chattopadhyay, 2010) presented BBO 
algorithm to solve both convex and non-convex Economic 
Load Dispatch (ELD) problems of thermal plants and 
suggested that it is the promising alternative approach for 
solving the ELD problems in practical power system. (Dan 
Simon, 2011) used Markov theory for partial immigration 
based BBO to derive a dynamic system model. (Abhishek 
Sinha et al., 2011) given a better insight into the dynamics of 
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migration in actual biogeography systems and also helped in 
the understanding of the search mechanism of BBO on 
multimodal fitness landscapes. (Jamuna K. and Swarup K. S. 
2012) projected a multi-objective BBO algorithm to design 
optimal placement of phasor measurement units which makes 
the power system network completely observable and 
performed the simultaneous optimization of the two 
conflicting objectives such as minimization and 
maximization of two different parameters. (Aniruddha 
Bhattacharya and Pranab Kumar Chattopadhyay, 2012) 
highlighted the effectiveness of BBO over Genetic Algorithm 
(GA) and Particle Swam Optimization (PSO) for an ELD 
problem. (Haiping Maa et al., 2013) tested the performance 
of BBO for real-world optimization problems with some 
benchmark functions. (Lohokare M. R. et al., 2013) presented 
an improved accuracy yielding algorithm in which the 
performance of BBO is accelerated with the help of a 
modified mutation and clear duplicate operators. Also 
discussed the suitability of BBO for real time applications.  

Tuning the PID controller parameters is a challenging task for 
the controller designers to achieve certain goals. Hence a 
choice is taken to optimize the tuning parameters of PID 
controller applied to VASS with BBO as it has the 
characteristics of information sharing among the solutions. 
To check the suitability of this optimization technique, 
another optimization method PSO which is developed by 
(Kennedy J. and Eberhart R. C., 1995) is used because it can 
generate a high quality solution with more unwavering 
convergence characteristics with less calculation time than 
other stochastic methods. Also it is attractive because there 
are only a few parameters to adjust. Compared to most of 
other evolutionary algorithms, in BBO and PSO each 
solution stay survive to the end of optimization procedure 
which enhances the capability of global search. The chance 
of the population convergence to the optimum is also more 
for BBO compared to GA. (Voratas Kachitvichyanukul, 
2012) highlighted the features PSO compared to GA.  

In (Zwe-Lee Gaing, 2004), the author proposed PSO-PID 
controller for AVR system and shown that it is more efficient 
than the GA-PID controller. (Rajeswari K. and Lakshmi P.  
2010b) optimized a Fuzzy Logic Controller (FLC) used in 
VASS with two optimization algorithms GA and PSO and 
concluded that PSO tuned FLC based active suspension 
system exhibits an improved ride comfort and good road 
holding ability. (Shen-Lung Tung et al., 2011) proposed an 
active suspension mechanism for three DOF twin-shaft 
vehicles of front axle suspension with bounded uncertainties 
using exponential decay control and PSO techniques. (Juing-
Shian Chiou et al., 2012) presented a design method for 
determining the optimal fuzzy PID controller parameters of 
active automobile suspension system using PSO. (Oscar 
Castillo and Patricia Melin, 2012a) considered the application 
of GA, PSO and Ant Colony Optimization (ACO) as three 
different paradigms that help in the design of optimal type-2 
fuzzy controllers and concluded that both PSO and ACO are 
able to outperform GA. Wu Q H and Liao H L (2013) used 
PSO for comparison with newly presented algorithm, 
Function Optimization by Learning Automata (FOLA), to 
solve complex function optimization problems.   

In this paper, an attempt is made to optimize the controller 
parameters with two different optimization techniques 
namely PSO and BBO and the comparison is made with the 
outputs of linear system model which is considered for the 
simulation study. 

Organization of the paper is as follows. QC model dynamics 
of an active suspension system is briefly explained in section 
2. Discussion of PID control scheme is presented in section 3. 
PSO and PSO based PID (PSOPID) are discussed in sections 
4. In section 5, BBO and BBO based PID (BBOPID) are 
discussed. In section 6, the simulation results are presented 
and discussed.  The final section concludes the paper. 

2. ACTIVE SUSPENSION – QUARTER CAR MODEL 

A two DOF QC model of VASS is shown in Fig. 1. It 
represents the automotive system at each wheel i.e. the 
motion of the axle and the vehicle body at any one of the four 
wheels of the vehicle. QC model used in (Rajeswari K. and 
Lakshmi P., 2010a) is considered because it is simple and one 
can observe the basic features of the VASS such as sprung 
mass displacement, body acceleration, suspension deflection 
and tyre deflection. 
 

 

 

 

 

 

 

 

 

 

 

Fig. 1. Two DOF QC model. 

The suspension model consists of a spring sk , a damper sb  

and an actuator of active force aF . For a passive suspension, 

aF can be set to zero. The sprung mass sm  represents the QC 

equivalent of the vehicle body mass. An unsprung mass um  
represents the equivalent mass due to axle and tyre. The 
vertical stiffness of the tyre is represented by the spring tk  . 

The variables sz , uz  and rz  represents the vertical 
displacements from static equilibrium of sprung mass, 
unsprung mass and the road respectively. Equations of 
motion of two DOF QC model of VASS are given in (1). It is 
assumed that the suspension spring stiffness and tyre stiffness 
are linear in their operating ranges and that the tyre does not 
leave the ground. The state space representation of QC model 
is given in (2). 
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a rX = AX + BF + Fz                                                 (3) 

where 1 s 2 s 3 u 4 uX  = z , X  = z , X  = z , X  = z      

The natural frequency of unsprung mass is 

s t
0

u

k +k
ω =

m
               (4) 

3. PID CONTROL STRUCTURE 

PID controller (Rajeswari K. and Lakshmi P. 2011) which is 
a combination of proportional, integral and derivative 
controller can improve the total performance of the system. 
In other words, both the transient and steady state response 
can be improved. 

 

 

 

 

 

 

Fig. 2. The block diagram representation of control scheme 
of VASS using PID controller. 

c p i d
de

U  = k e(t) + k e(t)dt + k
dt                                              (5) 

where cU  is the controller output 

pk     Proportional gain  

ik     Integral gain 

dk  Differential gain 

e(t)   Input to the controller 

e(t)dt   Time integral of the input signal 

de

dt
   Time derivative of the input signal 

To reduce the effect of road disturbance input (Fig. 2), two 
QC suspension parameters such as suspension deflection 
( s uz - z ) and sprung mass velocity ( sz ) are feedback to the 
controllers (Jyh-Chyang Renn, and Tsung-Han Wu 2007). 
The feedback gains are eG and vG  respectively. The output 

control signals are amplified by a gain uG  and then given as 
the input to the actuator. In this work the nonlinear dynamics 
of actuator is not considered and the gain of the linear 
actuator is taken as aG . The actuator force aF which is the 
additional input to the system is proportional to the controller 
output to have better comfort. PID Controllers are tuned by 
three methods -robust response tuning, PSO tuning and BBO 
tuning. First, autotuning has been carried out for both PID1 

and PID2 to give robust performance using the MATLAB 
simulation software. Next, for optimized tuning, the RMS 
value of body acceleration ( sz ) is taken as the performance 
index.  The objective is to find tuning parameters of PID1 
((kp1, ki1 & kd1) and PID2 (kp2, ki2 & kd2) to minimize the 
cumulative RMS value of body acceleration signal ( sz ).  In 
other words, 

Minimize
T

2
s

0

1
J  (K)= z dt

T                                               (6) 

where T  is the total time period 

4.  PARTICLE SWAM OPTIMIZATION 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3. The Flow Chart for PSO Optimization. 

A population based stochastic optimization technique PSO 
which is developed because of the insight of group actions of 
bird flocking or fish schooling is having immense curiosity 
among the optimizing techniques In PSO, the optimization 
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random solutions as in GA and searches for optima by 
updating generations (Oscar Castillo and Patricia Melin, 
2012b). Compared to other evolutionary algorithms, in PSO 
the individual solutions called particles, fly through the 
problem space by following the current optimum particles 
with the change of its velocity and position. Each and every 
particle keeps the pathway of its coordinates in the problem 
space, which are associated with the best solution it has 
achieved so far in each generation. In every iteration, each 
particle is updated by two "best" values Pbest and Gbest. Out 
of which the Pbest is the best solution (fitness) it has 
achieved so far and the Gbest is the best solution obtained so 
far by any particle in the population.  Each particle knows 
Pbest and Gbest. Each particle tries to modify its position 
using the current velocity and the distance from Pbest and 
Gbest. The modified velocity and position of each particle 
can be calculated using equations given below. 
 k+1 k k k

i,g i,g 1 1 i,g i,g 2 2 g i,gv = w*v +c *rand *(Pbest - x )+c *rand *(Gbest - x )    (7)  

k+1 k k+1
i,g i,g i,gx  = x  + v                                                                     (8) 

           i =1, 2,…..n 

           g =1, 2,…..m 

where  n - Number of particles in a group 
 m   - Number of members in a particle 

1 2c , c   - Weight factors 
k
i , gv   - Velocity of the particle i in kth iteration 
k
i , gx   - Position of particle i in kth iteration 

1 2rand , rand  - Random numbers between 0 and 1 

i,gPbest   - Pbest of particle i 

gGbest   - Gbest of the group 

Proper selection of inertia weight parameter w  by (9) 
provides a balance between global and local explorations. 

max max min
max

t
w = w  - ((w  - w )* )

t
                        (9)  

where maxw  and minw  are the upper and lower bounds for w . 

t       - Current iteration number 

maxt    - Maximum number of iterations 

The flowchart for optimization steps of PSO algorithm 
(Juing-Shian Chiou et al. (2012)) is shown in Fig. 3. 

4.1. PSOPID controller 

In this paper, PSO algorithm is used to find the PID 
parameters (Zwe-Lee Gaing, 2004) of both the PID 
controllers [ kp1, ki1, kd1, kp2, ki2, kd2 ] which represents an 
individual K. Hence there are six members in a paricle (m). 
Since the number of individuals in a group is n, the 
population dimension is n x 6. The fitness function f is the 
performance index J (K). 

f  =  J ( K )            (10) 

For each variables to be tuned the velocity is updated as in 
(7), the position is updated as in (8) The optimization steps 
explained in section 4 are followed by maintaining the values 
with in the lower and upper bounds. 

5.  BIOGEOGRAPHY-BASED OPTIMIZATION 

Another population based BBO technique has been 
developed based on the theory of Biogeography (Yeroglu C. 
and Tan N., 2008) which describes how species voyage from 
one habitat to other, how new species come up and how 
species become vanished. A habitat is a geographically 
isolated island from other habitats.  Each habitat has its 
individual features which are specified by the Habitat 
Suitability Index (HSI) variables. A habitat with high HSI is 
well suited for species living. The migration of a species 
among habitats takes place when the high HSI habitats have 
more species or habitat has low HSI. This process is known 
as emigration. Another process called immigration takes 
place when the species move towards the habitat with high 
HSI having few species. The emigration and immigration of 
species from a habitat are called migration. The emigration 
rate (µ) and immigration rate (λ) vary with the number of 
species available in the habitat. With no species the 
immigration rate touches the upper limit and with maximum 
number of species it is zero where as the emigration rate 
increases with increase in the number of species. The change 
in HSI due to natural disaster is taken into account with the 
mutation operation. 

The optimization steps of BBO algorithm (Jamuna K. and 
Swarup K. S., 2012) are described as follows: 
1. Initialize the optimization problem and the BBO 
parameters. 
2. Initialize randomly the habitat variables. 
3. Perform BBO migration operation as in definition 7 and 
mutation operation as in definition 8 (Yeroglu C. and Tan N., 
2008) and compute the HSI.  
4. The emigration and immigration rates of each solution are 
useful in probabilistically sharing the information between 
the habitats. Each solution can be modified with the habitat 
modification probability to yield good solution. Recompute 
HSI and modify the habitats. 
5. Check the stopping criteria. If not achieved, repeat from 
step3.  

BBO does not involve the reproduction of solution as in GA. 
In each generation, the fitness of every solution (habitat) is 
used to find the migration rates. 

5.1. BBOPID controller 

As discussed in section 4.1, to find the individual K, instead 
of PSO, BBO is introduced. With the initial random choice of 
the individual K, depending on the emigration rate and 
immigration rates decided by the HSI allows the survival of a 
habitat in the search space. Good solutions can be achieved 
by increasing the diversity of population by mutation 
operation. Mapping of HSI to the maximum number of 
species Smax, calculation of the emigration rate and 
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immigration rate using equations 11 and 12 are done. 

max

d
λ = 1(1 - )

S
                                                                    (11) 

 
max

E×d
μ =

S
                                                                          (12) 

where d is the number of species at the instant of time. Final 
values of individual K are taken by checking the fitness 
function. 

6.  SIMULATION 

The parameters of the quarter car model taken from 
Rajeswari K and Lakshmi P (2010a) are listed below. 

Sprung mass ( ms )  =  290 kg 

Unsprung mass ( mu )  =  59 kg 

Damper coefficient ( bs )  =  1,000 Ns/m 

Suspension stiffness ( ks )  =  16,812 N/m 

Tyre stiffness ( kt )  =  190,000 N/m 
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 Fig. 4.  Road Input profile (a) Dual Bump Input (b) 
Sinusoidal  Input (c) Random input . 

International Organization for Standardization gives the 
classification of road roughness using Power Spectral 
Density values. In this work three kinds of the road 
disturbance are considered – initially a dual bump and for 
robustness checking a sinusoidal and random input. 
Mathematical representation of the dual bump input with 
10cm and 5cm amplitude can be stated as 

1
r

a (-cos(8πt))
z (t) = 

2
  if 1.0 ≤ t ≤ 1.25 

          2a (-cos(8πt))

2
  if 3.0 ≤ t ≤ 3.25 

           0                  otherwise                                           (13) 
where 1a  and 2a  denotes the two bump amplitudes.     

The following parameters are initialized for PSO. 

Population size   : 100 
Number of variables to be tuned : 6 
Initial population   : Random selection 
Initial velocity   : 0 
Mutation rate   : 0.5 
Number of iterations  : 100  
Weight factors (c1, c2)  : 0.5, 0.5 
Minimum and maximum parameter values of decision 
variable (K)    : Table 1 

The following parameters are initialized for BBO. 
Population size    : 100 
The maximum species count (Smax)  : 50 
Migration probability   : 1 
Mutation probability   :  0.05 
Selectiveness parameter δ   : 2 
Max migration rate I  : 1 
Max emigration rate E  : 1 
Step size used for numerical integration : 1  
Minimum and maximum parameter values of decision 
variable (K)     : Table 1 

Lower bound and Upper bound for immigration probability 
per gene      : [0.01, 1] 

Table 1. Range of the controller tuning parameters. 

Tuning Parameter Lower Bound Upper Bound 
kp1 0 0.1 
ki1 0 10
 kd1 0 0.5 
kp2 0 10 
ki2 0 1 
kd2 0 1 
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Fig. 5. Statistics of search process. 
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The optimization results were computed by averaging 50 
minimization runs and the convergence characteristics of 
each technique are shown in Fig. 5. Each run yielded the 
global minimum results. From the convergence plot, BBO 
algorithm is found to be superior to PSO algorithm discussed. 
Also the dynamic behaviours and convergence characteristics 
of the algorithms can be analyzed with the statistical indices 
mean (M) and standard deviation (σ) which are given by 

n

i
i=1

f(K )
M =

n


           (14) 

n
2

i
i=1

1
σ = (f(K ) - M)  

n
                               (15) 

where if(K ) the fitness value of the individual iK and n is the 

population size. 

The BBO algorithm results better fitness value and mean 
value compared PSO algorithm (Table 2). 

Table 2. Comparison of computational efficiency of PSO 
and BBO algorithms. 

Algorithm Maximum Minimum Range  M    σ

PSO 968 626.9 341.1 686.9 78.04 
BBO 968 596.9 371.1 652.6 84.37 

The robust response tuning, PSO and BBO optimized values 
of PID tuning parameters which are obtained are appended to 
Table 3. 

Table 3. The Optimized PID tuning parameters with PSO 
and BBO. 

           Controller 
PID 
Parameter 

Robust  
response 
tuning 

 
PSOPID 

 
BBOPID 

kp1 0.0103 0.0329 0.0475 
ki1 0.415 4.8769 4.8
kd1 0.0022 6.34x10-4 0.1450 
kp2 0.3801 6.1419 6.7500 
ki2 0.56 0.8545 0.8750 
kd2 0.0044 0.0342 0.0375 

The mathematical model of vehicle suspension system (1) 
with the PSOPID and BBOPID controllers discussed in 
sections 4 and 5 are simulated with all the mentioned road 
input profiles (Fig. 4). 

The simulation results of passive system, system with PID, 
PSOPID and BBOPID controllers are shown in Fig. 6, 7 and 
8. (a) - (d). Also the RMS values of the time responses of the 
system are tabulated in Tables 4-6. 
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Fig. 6. Time responses with dual bump input (a) Sprung mass 
displacement (b) Body acceleration (c) Suspension deflection 
and (d) Tyre displacement. 
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Fig. 7. Time responses with sinusoidal input (a) Sprung mass 
displacement (b) Body acceleration (c) Suspension deflection 
and (d) Tyre displacement. 

It is clear from Fig. 6, 7, 8. (a) and Fig. 6, 7, 8. (b)  that the 
vehicle body acceleration and sprung mass displacement are 
considerably reduced by the proposed BBOPID controller. It 
guarantees the travelling comfort to the passengers. Both the 
designed PSOPID and BBOPID have robust performance 
which is true from Fig. 7, 8. (b). Also Fig. 6, 7, 8. (c) shows 
that the suspension deflection by both the controllers is nearly 
the same. Fig. 6, 7, 8. (d) illustrates the road holding ability 
maintained by both the controllers. Tyre displacement of 
active systems is higher than that of the passive suspension 
system.  
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(d) 

Fig. 8. Time responses with random input (a) Sprung mass 
displacement (b) Body acceleration (c) Suspension deflection 
and (d) Tyre displacement. 
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                                                (b)                                                                                           (c) 

Fig. 9. PSD of Body acceleration comparison of Passive, PID and BBOPID with a) Dual bump b) Sinusoidal c) Random 
inputs. 

Table 4. RMS values of the time responses of quarter car model with dual bump input. 

System Sprung Mass 
Displacement 

x10-3 (m) 

Body 
Acceleration 
x10-3(m/s2) 

Suspension 
Deflection 
x10-3(m) 

Tyre 
Displacement 

(m) 
Passive 19.67 1567 20.09 0.002864 

PID 6.578 968.2 14.64 0.00314 
PSOPID 5.774       634.2 17.2 0.004572 
BBOPID 5.661 596.9 16.86 0.003773 

Table 5. RMS values of the time responses of quarter car model with sinusoidal input. 

System Sprung Mass 
Displacement 

x10-3 (m) 

Body 
Acceleration 
x10-3(m/s2) 

Suspension 
Deflection 
x10-3(m) 

Tyre 
Displacement 

(m) 
Passive 20.82 7617 84.61 0.01122 

PID 14.07 5576 80.4 0.01509 
PSOPID 2.292 2426 81.22 0.01404 
BBOPID 2.934 2273 80.66 0.01381 

Table 6. RMS values of the time responses of quarter car model with random input. 

System Sprung Mass 
Displacement 

x10-3 (m) 

Body 
Acceleration 
x10-3(m/s2) 

Suspension 
Deflection 
x10-3(m) 

Tyre 
Displacement 

(m) 
Passive 59.61 8429 80.68 0.03355 

PID 19.19 7359 65.31 0.03812 
PSOPID 10.39 3742 97.95 0.07377 
BBOPID 9.395 3261 105.3 0.08585 

 
The RMS values of the time responses of the four outputs 
with different inputs are listed in Table 4, 5 and 6. It is clear 
that the VASS using BBOPID controller is useful for 
betterment of ride and travelling comfort with reduced body 
acceleration over PID controller and passive system. In the 
evaluation of vehicle ride quality, the Power Spectral Density 
(PSD) for the body acceleration as a function of frequency is 
of prime interest and is plotted for passive and system with 
PID and BBOPID controller for three different types of road 
inputs (Fig. 9). It is clear from the PSD plot that in the human  
sensitive frequency range 4-8 Hz, compared to PID and 
PSOPID, BBOPID reduces the vertical vibrations to a great 
extent and improves the comfort of travelling. 

8. CONCLUSIONS 

In this paper the PSO and BBO optimization of PID tuning 
parameters has been discussed for application in QC model   

with linear actuator. Repeated runs of both the optimization 
techniques have been carried out 50 times and the simulations 
are carried out with most fitted values. Among the two 
optimization techniques, the BBO gives better performance. 
With BBOPID controller, the results are improved compared 
to passive system, conventional PID and PSOPID controllers 
for the control of VASS. BBOPID reduces the body 
acceleration considerably and ensures the travelling comfort 
to the passengers. The controllers discussed are easy to 
implement and with reference to the PSD of body 
acceleration, it is clear that all the controllers provides better 
vibration control compared to the passive system. BBOPID 
gives better PSD and proves its effectiveness for the control 
of vibration in comparison with the other two controllers 
discussed. In future, the BBO can be hybridized to increase 
the convergence speed. 
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