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Abstract: Nonlinear autonomous systems, often arise in different fields of science, are usually difficult 
to analyze. Pseudo linear representation of such systems recently has become very popular to deal with 
this difficulty. This paper presents a deep through analysis about the stability of nonlinear autonomous 
systems represented by pseudo linear forms. By discretization of the continuous-time dynamical systems, 
the stability of original nonlinear system is investigated via the discretized model and some new results 
are obtained for a class of pseudo linear systems. Due to the fact that the error between discrete model 
and that of the original continuous-time model vanishes as the sampling time goes to zero, in this paper 
we consider almost zero sampling time throughout of our analysis to make sure about the validity of 
results obtained for the continuous-time nonlinear systems.  Based on the discretized model, some 
conclusive propositions are established; this apparently provides a framework to tackle the long struggle 
in the stability consideration of nonlinear systems via pseudo linear form by applying the crucial role of 
nonlinear eigenvectors neglected in the previous studies. In addition, based on these stability analysis 
results and the qualitative analysis tools provided through pseudo linear representation of nonlinear 
systems, the question of limit cycle emergence is also tackled. It is shown that, as an elegant application 
of the proposed qualitative analysis tool, the generation of limit cycles with desired shape and numbers 
can be easily performed. Some illustrative examples are finally given to highlight the validity of the 
proposed analysis technique.  
Keywords: Pseudo Linear Systems, Stability Analysis, Limit Cycles, Nonlinear Eigenvalues, Nonlinear 
Eigenvectors.  

1. INTRODUCTION 

Knowing the fact that autonomous equations often arise in 
different field of science and almost all dynamical systems in 
nature are governed by weakly or strongly nonlinear 
equations of this kind, in recent decades analysis of nonlinear 
autonomous system has been a popular field of study. Since 
the 1970’s, (Khalil, 1996), the formulation and analysis of 
procedures for systematic design of nonlinear controllers has 
attracted significant research interest. Applying the ease of 
linear system analysis leads to introduce pseudo linear form 
representation of nonlinear systems by (Banks and Mhana, 
1992) which is also known as extended linearization, 
(Friedland, 1996), or state dependent coefficient (SDC) 
parameterization (Cloutier et al., 1996; Mracek and Cloutier, 
1998; Cloutier, 1997). The concern here is also to make a 
good and yet systematic trade-off between state error and 
input effort via a linear state dependent Riccati equation 
(SDRE).  

The main problem with this approach is the lack of complete 
and yet reliable stability analysis. A review of the recently 
published papers on this field makes it evident that the 
stability analysis of nonlinear systems via pseudo linear 
representation is still a challenging issue. Originally, (Banks 
and Mhana, 1992) proposed that if for every n∈x ¡ , all 
eigenvalues of the pseudo linear form of a nonlinear system 
are located in the left half region of the complex plane, the 
global asymptotic stability of the nonlinear system is 

guaranteed. Later in (Tsiotras et al., 1996), by a counter 
example it has been shown that the Banks' conclusion is not 
true in general. Despite meeting the condition of the proposed 
theorem in (Banks and Mhana, 1992), their counterexample 
has unbounded solutions for some initial states (0)x . Then, 
(Banks and Mhana, 1996) proposed two other stability 
theorems based on the original one by 1) imposing some 

further assumptions on ( )A∂
∂

x
x

 and 2) replacing ( )A x  with 

( ) ( )TA A+x x .  These results were not completely right as 
fully discussed in (Langson and Alleyne, 2002), by 
presenting a counterexample and showing that the theorem in 
(Banks and Mhana, 1996) only leads to local stability. They 
also introduced some further assumptions to assure global 
stability. In (Muhammad and Van Der Woude, 2009), via 
some other counterexamples it has been shown that even the 
results proposed by (Langson and Alleyne 2002), may not be 
always true. In short, a reliable method for the stability 
analysis of nonlinear autonomous systems via pseudo linear 
form has not yet been found in the literature.  In this paper, 
we try to tackle this issue based on the discretization of 
differential equation describing the underlying nonlinear 
system in the form of pseudo linear representation.  

One of the most difficult problems connected with the study 
of nonlinear system is the question of limit cycles emergence. 
Multi-scale limit cycles also exist in many living systems as 
complex adaptive systems; hence it is no surprise that limit 
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cycles are a topic of much interest due to the fact that 
complex adaptive systems happen to get benefit of limit 
cycles in order to survive on the edge of chaos (see 
Weisbuch, 1999 ; Pave, 2012). There are many researches 
related to the limit cycle behaviour including limit cycle 
generation, limit cycle detection, control of limit cycle (see 
Attabeigi et al., 2009 ; Kim and Robinson, 2008).  

One of the principle motivations for the work reported here is 
the application of the stability analysis fully proposed and 
developed in the paper as well as our previous qualitative 
analysis tools (Ghane and Menhaj, 2013) to tackle the 
challenging issue of limit cycle emergence in some class of 
nonlinear systems. Through the proposed qualitative analysis 
tool, a systematic procedure is provided to generate limit 
cycles with desired shapes and numbers.   

An outline of this paper is as follows.  In section 2, the 
pseudo linear form of a nonlinear system is presented and the 
concept of NEValues and NEVectors are then introduced. 
This section also presents non-uniqueness of the pseudo 
linear forms of a nonlinear system along with a systematic 
method for obtaining infinite many pseudo linear forms by 
introducing a new concept of basis set for the space of pseudo 
linear forms. The main results about the stability of the 
nonlinear system via the aforementioned infinite pseudo 
linear forms representation is fully discussed in section 3. 
The qualitative analysis of limit cycles is thoroughly 
proposed in section 4. Section 5 is devoted to present some 
illustrative examples, in two parts: one for stability analysis 
including two counterexamples of Tsiotras et al. (1996) and 
Muhammad and Van Der Woude (2009) and two for limit 
cycle emergence examples along with the phase plane 
simulations. Finally, concluding remarks and future work are 
presented in section 6. 

2. PSEUDO LINEAR SYSTEMS 

An autonomous nonlinear system is a system of nonlinear 
ordinary differential equations which does not explicitly 
depend on the independent variable. It is of the form  

( )t t=x( ) f x( )&  (1) 

where x takes values in n - dimensional Euclidian space and 
the independent variable t is usually time. Inspiring from the 
linear system theory, assuming that =f (0 ) 0  , it is possible 
to transform an autonomous system of the form (1) to a new 
form as: 

( )d t A t t
dt

=x( ) x( ) x( )  (2) 

where 
n n nA ×→: ¡ ¡ .  This form is called pseudo linear 

(PL) and it was originally introduced in Banks and Mhana 
(1992) to cope with the difficulty of designing nonlinear 
optimal control laws.  

2.1 Nonlinear Eigenvalues (NEValues) and Nonlinear 
Eigenvectors (NEVectors) 

After obtaining the PL form of (2), it would be possible to 
extend the eigenstructure concept to these systems. In other 
words, by defining λ(x)  and v(x) as nonlinear eigenvalue 

(NEValue) and its corresponding nonlinear eigenvector 
(NEVector), one can write:  

A λ=(x)v(x) (x)v(x)                                                            (3) 

Similar to the linear case, NEValues are achieved as the 
solution of the following equation: 

0nA Iλ− =(x) (x)                                                                (4) 

These NEValues and NEVectors are often functions of states 
and in every point in phase space, they take different values. 
It should be noted that there are some basic differences 
between this approach and the linearization method in which 
A (x)  may be viewed as the Jacobean matrix. In the 
linearization method, a nonlinear system is linearized near at 
the equilibrium point and the coefficient of x  is indeed the 
Jacobean matrix quantified at the equilibrium point. In fact, a 
locally equivalent of the system obtained through 
linearization, can only represents the original system around 
every equilibrium point while the PL form represents exactly 
the original system over the whole underlying region with 
different form of representation.  

2.2 Non-Uniqueness of Pseudo Linear Forms 

For a scalar system, the PL form is unique for all x ≠ 0, given 
by: 

  
( ) ( )d dx t f x t x t a x t x t

dt dt
= ⇒ =( ) ( ) ( ) ( ) ( )

 

 where ( ) ( )f x t
a x t

x t
=

( )
( )

( )
. However, for a general nonlinear 

system with order of 1n > , the PL form is not necessarily 
unique. Indeed, in the case of multivariable nonlinear 
systems, x  has n  components 1x , 2x  ,… nx . Assume 

( ) , 1, 2, ..,if i n=x  is the i th component of

[ ]1 2( ) ( ) ( ) ( ) T
nf f f=f x x x xL . Forming the PL form 

requires that each component of ( )f x  should be represented 
as a linear combination of state variables, most probably with 
state dependent coefficients in the form of: 

1
1

1

1

1

n

j j
j

n

ij j iji n n
j

n n

nj j
j

a x
f

a x af

f
a x
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×
=

=
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 
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       
  
     
 
 

∑

∑

∑

(x)
(x )

(x )f (x ) ( x) x(x)

(x )
(x )

M
M

M
M

 (5) 

It can be shown that the maximum possible number of 
distinct linear combination for if (x) becomes: 

( )1 i i
k k

im C n n= =( , )  (6) 

In this relation ik is the number of distinct terms that 
constitute the ( )if x . In addition, C n i( , ) stands for the 
combination of i  states from the n states that can form a 
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linear combination for representing if (x) . Indeed, the 
maximum possible number of PL forms, for a particular 
nonlinear system expressed by equation (1), can be given as: 

( ) 1

1 1

n

i
i i

n n k
k

i
i i

m m n n =

= =

∑
= = =∏ ∏  (7) 

It should be emphasized that for a particular system, all of 
these m pseudo-linear forms may not be possible to be 
acquired.  

However, by assigning 1 ( )A x , 2 ( )A x ,…, ( )mA x as system 
matrices for these m possible PL forms, infinite distinct PL 
forms can be obtained with system matrices of: 

1 1

1 1 2
m m

j ji i ji
i i

B A jα α
= =

= = =∑ ∑(x) (x) ; , , , ...  (8) 

Indeed,{ }1 2( ) , ( ) , , ( )mA A Ax x xL  can be considered as a basis 
set for infinite PL forms system matrices.  

Certainly, it is not possible to analyze all of these distinct 
infinite PL forms. On the other hand, each of these forms 
may give some information about the behaviour of the 
original nonlinear system. However, by an intuitive 
reasoning, it could be figured out that the information 
obtained from each PL form with system matrix of jB (x) , is a 
subset of the information gained from PL forms with system 
matrices of 1 2iA i m=(x) , , , ..., . This is inspired from the 

fact that each jB (x)  is formed by a convex linear 
combination of iA s(x)'  as a basis set of PL forms system 
matrices. Therefore, among infinite PL forms obtained from a 
particular nonlinear system, only m PL forms named as basis 
set of PL space must be considered for analysis of the 
original nonlinear system. However, for a given system, it is 
not reasonable to analyze all of these m PL forms. On the 
other hand, further studies show that the information derived 
from all of these mPL forms is not necessarily correct. This 
issue has been specially considered in (Tsiotras et al., 1996) 
as a counter example for a stability result about the PL 
systems. Indeed, we have previously shown that a PL 
representation of a nonlinear system, leads to certainly 
correct qualitative results about the behaviour of nonlinear 
system if the correspondent NEVectors are state independent 
(SI). This result has been fully proposed in the (Ghane and 
Menhaj, 2012). 

With this introduction about the PL form representation of 
nonlinear systems, in the next section, we try to derive some 
useful results specially regarding to the stability analysis of 
PL systems with the help of discretization method. Indeed, it 
is shown that the aforementioned achievements obtained 
through the qualitative analysis can be backed up with a more 
reliable proof via the discretization of the nonlinear systems.  

3. STABILITY ANALYSIS 

In this section, it is tried to investigate the stability analysis of 
nonlinear systems via the PL representation. The approach 
used here is based on the analysis of discretized model of the  

nonlinear differential equations describing the nonlinear 
systems. Based on the stability of this discrete model, some 
useful and important results about the stability of the original 
system can be derived.  

3.1 Closed Form Solution via Discretization 

In this section, it is tried to obtain a closed form solution of 
the nonlinear continuous time system with the specified 
initial states. Since there is no general method to obtain such 
closed form solution for nonlinear systems, we tackle this 
issue by the help of discretization of the nonlinear differential 
equation of the underlying system. In this regard, we first 
need to discretize the continuous time system (1). To achieve 
this, there are several different methods like Euler method 
and Runge & Kutta method. The difference between these 
methods lies on the compromise between two important 
issues in real implementation and simulation of the original 
system: discretization error and computational time. The 
decrease of error oftenly leads to an increase in 
computational time. In general, the Runge & Kutta method is 
more accurate than the Euler method in the cost of more 
computational time and losing the simplicity. However in 
every selected method, the error goes to zero as the sampling 
time gets smaller and smaller. Very small sampling time 
consequently may lead to severe difficulties in practical 
implementations. Therefore, for the purpose of 
implementation, it is necessary to take into account this 
limitation leading to a lower bounded sampling time for the 
computational power we have. However, the main goal of 
this paper is to focus merely on the theoretical issues of the 
stability analysis and hence, the above practical limitation is 
not considered. On the other hand, it is known that as the 
sampling time goes to zero, the discrete model will 
approximate the original continuous model more accurately. 
Therefore, in the sequel, we use the Euler method for its 
simplicity to obtain the discretized model of the system and 
in the analysis, we let the sampling time goes to zero.   

Now consider the original nonlinear system (1). By 
considering T as the sampling time and using the Euler 
method, we obtain the following discrete model of this 
system. 

[ ] [ ] [ ]( )( 1) , 0,1, 2,...k T kT T kT k+ = + =x x f x  (9) 

The solution of this difference equation strongly depends on 
the structure of [ ]( )kTf x . However, here we concentrate on 
the case that the structure of this function in some extent is 
known; i.e. it can be represented in the PL form. Therefore, 
we substitute the PL form of  [ ]( )kTf x  in equation (9) to 
have: 

[ ] [ ]( ) [ ]( 1) ( . )k T I T A kT kT+ = +x x x  (10) 

The important point is that when a continuous system is 
represented in the PL form with the system matrix of ( )A x , 
its discretized model obtained via the Euler method has still a 
PL form representation with the system matrix of 

[ ]( ) [ ]( ).A kT I T A kT= +x x%  (11) 
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Then, the closed form solution for the difference equation of 
(10) is obtained as: 

[ ] [ ]( ) [ ] [ ]( ) [ ]
0

( 1) 0
i m

i

m T A mT mT A iT
=

=

 
+ = =  

 
∏x x x x x% %  (12) 

This equation illustrates the crucial role of [ ]( )A iTx% , 

1, 2,...i =  on the stability feature of the solution. In the next 
subsection, stability analysis of the original nonlinear system 
based on its discretized model is fully discussed. 

3.2 Main Stability Results 

We first begin the stability analysis for the scalar case and 
then extend the results to the general n -dimensional case.  

Consider a linear scalar discrete system as: 

[ ] [ ]( 1)x k T ax kT+ =   

Fact: The solution for an initial condition of [ ]0x is 

asymptotically stable if and only if 1a < .  

This fact is apparently verified via the solution derived in 
equation (12) as: 

[ ] [ ] 1(0) lim ( 1) lim 0 | 0m
m m ax x m T a x→∞ →∞ <∀ ∈ + = =¡

  

Therefore, the condition of 1a <  makes the origin of the 
system to be the globally asymptotic stable equilibrium point. 
However, for nonlinear discrete systems, there is not such a 
highlighting remark. However, representing the nonlinear 
discrete system in the PL form makes it possible to use this 
helpful remark of linear discrete systems. For a PL form 
representation of a scalar discrete dynamical system we have: 

[ ] [ ]( ) [ ]( 1)x k T a x kT x kT+ =  
Using equation (12), the solution of this system with initial 
condition of [ ]0x  is obtained as:

 
[ ] [ ]( ) [ ]

0

( 1) 0
i m

i

x m T a x iT x
=

=

 
+ =  

 
∏

 
Because the stability consideration of this solution is our 
main objective, it is desired to have: 

[ ](0) lim ( 1) 0mx x m T→∞∀ ∈ + =¡  (13) 

Here in the following proposition, we present the sufficient 
condition of asymptotic stability of a PL form representation 
of a scalar discrete dynamical system. This proposition can 
be considered as the sufficient condition for a nonlinear 
discrete system whose map is called contraction (Hunter and 
Nachtergaele, 2001). 

PROPOSITION 3.1 Suppose a scalar autonomous discrete 
dynamical system with zero equilibrium point represented by 
the difference equation [ ] [ ]( )( 1)x k T f x kT+ = can be 
transformed to a unique PL form  as : 

 [ ] [ ]( ) [ ]( 1)x k T a x kT x kT+ =  

The origin of this system is globally asymptotically stable if   

, ( ) 1x a x∀ ∈ <¡ .  

PROOF: For the globally asymptotically stability of the 
origin it is required that for (0)x∀ ∈ ¡ : 

[ ] [ ]( )
0

lim ( 1) lim (0) 0
i m

m m
i

x m T a iT x
=

→∞ →∞
=

 
+ = = 

 
∏ x

 

If we have , ( ) 1x a x∀ ∈ <¡ , the above conclusion is 
obvious based on the fact that the multiplication of m  terms 
with the magnitude less than unity goes to zero when m  goes 
to infinity. 

In the next proposition, we extend the previous result to the 
multivariable system. 

PROPOSITION 3.2 Suppose an n - dimensional autonomous 
discrete dynamical system with zero equilibrium point 
represented by the difference equation 

[ ] [ ]( )( 1)k T kT+ =x f x can be transformed to the following 

PL form: [ ] [ ]( ) [ ]( 1)k T A kT kT+ =x x x where n∈x ¡ and 
n nA ×∈ ¡ . The sufficient conditions for global asymptotic 

stability of the origin are: 

1. [ ]( )A kTx  is in diagonal form. 

2. Every element of [ ]( )A kTx  have a magnitude less than 

unity i.e. ( ( ) 1, 1,2,..,iia kT i n< ∀ =x . 

PROOF: By satisfying the first condition, [ ]( )A kTx is 

written as: [ ] [ ]( ) , 1,2,...,iiA iT diag a i n= =x . Therefore, 
solution of the above dynamical system is obtained as: 

[ ]

[ ]( ) [ ]

[ ]( ) [ ]

[ ]( ) [ ]

11 1
0

22 2
0

0

0

0
( 1)

0

i m

i

i m

i

i m

nn n
i

a iT x

a iT x
m T

a iT x

=

=

=

=

=

=

 
 
 
 
 + =  
 
 
 
  

∏

∏

∏

x

x
x

x

M

. 

Then, if the second condition is satisfied, based on the 
proposition 3.1, we have: 

[ ](0) | lim ( 1) 0n
m m T→∞∀ ∈ + =x x¡ . 

The proposition 3.2 illustrates the only condition in which we 
can determine the stability property of nonlinear discrete 
dynamical systems based on its PL form. Based on this 
proposition, the stability of discrete dynamical system of 
equation (10) should be tackled. 

For satisfying condition 1 of proposition 3.2, the system 
matrix [ ]( )A kTx%  should be diagonal and knowing that, 

 [ ]( ) [ ]( ).A kT I T A kT= +x x%
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the matrix [ ]( )A kTx should then be diagonal. 

The concluding result about the stability analysis of nonlinear 
system based on the PL form representation is given in the 
following proposition. 

PROPOSITION 3.3 Knowing the fact that any autonomous 
dynamical system with zero equilibrium point described by 
the differential equation ( )( ) ( )t t=x f x& can be represented by 

a PL form of ( )( ) ( ) ( )t A t t=x x x& in which n∈x ¡ and 
n nA ×∈ ¡ ,  the following conditions are sufficient for 

globally asymptotically stability of the origin. 

1. ( )( )A tx  has diagonal form. 

2. All NEValues of matrix ( )A x  satisfy the following 
criterion:  

n∀ ∈x ¡ | ( ) 0 ; 1, 2,...,i i nλ < =x . 

PROOF: See appendix. 

In the following proposition, we try to extend the previous 
result to cover a broader category of nonlinear autonomous 
systems. The following remarks are needed in advance. 

REMARK 3.1 Suppose ( )xA is a matrix valued function as 

: n n nA ×→¡ ¡  and ( )iλ x  and ( ) , 1,2,..,i i n=v x  are its 
eigenvlues and eigenvectors, respectively.  The eigenvalues 
and eigenvectors of matrix ( ) ( )nA I TA= +x x% denoted by

( ) , ( ) , 1,2,..,i i i nλ =x v x% % , are then obtained as: 

1i iTλ λ= +(x) (x)% , i i=v (x) v (x)%  1 2i n∀ = , ,...,                       

PROOF: See appendix. 

PROPOSITION 3.4: Suppose an autonomous dynamical 
system with zero equilibrium point is presented by the 
differential equation ( )( ) ( )t t=x f x& with the following PL 

form ( )( ) ( ) ( )t A t t=x x x&  where n∈x ¡ and n nA ×∈ ¡ . The 
sufficient conditions for global asymptotic stability of the 
origin are: 

1. The NEValues of matrix ( )A x  satisfy the criterion: 
n∀ ∈x ¡ | { }Re ( ) 0 ; 1,2,...,i i nλ < =x . 

2. The geometric multiplicity of every multiple NEValue 
should be equal to its corresponding algebraic multiplicity. 

3. All NEVectors of matrix ( )A x are state independent (SI) or 
constant. 

PROOF: See appendix.  

COROLLARY 3.1 Consider the system defined in 
proposition 3.4. The sufficient conditions for instability of the 
origin are:  

1. The NEValues of matrix ( )A x  satisfy the criterion: 
n∀ ∈x ¡ | { }Re ( ) 0 ; 1,2,...,i i nλ > =x . 

2. All NEVectors of matrix ( )A x are state independent (SI) or 
constant. 

PROOF: The trend of the proof here is fundamentally the 
same as that of the proposition 3.4 except that every 1−  in the 
proof should be replaced by 1+ . This replacement 
consequently leads to: 

[ ]0lim ( 1)T
m

m T→
→∞

+ → ∞x  

In addition, it can be easily seen that
[ ] [ ]| ( 1)l l T lT∀ ∈ + >x x¥ . This ends the proof.  

It is worthwhile mentioning that based on proposition 3.4, for 
having an unstable origin equilibrium point, it is suffice to 
have: 

; 1, 2, ...,i i n∃ = | { }: Re ( ) 0n
iλ∀ ∈ >x x¡ . However, the 

corollary 3.1 provides more restrictive conditions in which all 
system trajectories move away from the origin in all direction 
in the state space. This condition can be useful in the rest of 
the paper. To proceed further, the following definition is 
required. 

DEFINITION 3.1 Suppose there is an autonomous dynamical 
system with zero equilibrium point presented by the 
differential equation ( )( ) ( )t t=x f x& , in which n∈x ¡ and 

: n n→f ¡ ¡ .  

The region  n
SD ⊂ ¡  is called 0-attracting, if ( ) ,n∀ ∈x 0 ¡  all 

solution trajectories of the system move toward the origin, 
exponentially or spirally, when they are in the region 

n
SD ⊂ ¡ . Subsequently, the subspace n

UD ⊂ ¡  is called 0-
repelling, if ( ) n∀ ∈x 0 ¡ , all solution trajectories of this 
system move away from the origin, exponentially or spirally, 
when the trajectories are in n

UD ⊂ ¡ .  

Comment 1. The aforementioned 0-attracting and 0-repelling 
regions can be considered as a generalized nonlinear version 
of stable and unstable subspaces of linear dynamical systems, 
which are defined along with the eigenvectors. Indeed, the 
indices 'S' and 'U' in the SD and UD are due to this fact. 

Comment 2. If a 0-attracting region contains the origin, it can 
be considered as the region of attraction for the origin 
equilibrium, which is indeed locally asymptotically stable.  

In general, it is not so straightforward to obtain these 0-
attracting and 0-repelling regions for nonlinear systems. 
However, for a class of nonlinear systems considered in the 
proposition 3.4 it is possible to determine these regions based 
on the sign of { }Re ( )iλ x with 1,2,...,i n= .  

Comment 3. For a nonlinear system of order n which can  

 



CONTROL ENGINEERING AND APPLIED INFORMATICS     83 

     

 
 
transformed to a PL form with SI NEVectors, if the 
geometric multiplicity of every multiple NEValue is equal to 
its corresponding algebraic multiplicity, the 0-attracting and 
0-repelling regions can be respectively determined as: 

{ }{ }Re ( ) 0 , 1,2, ,S iD i nλ= < =x x L , 

{ }{ }Re ( ) 0 , 1,2, ,U iD i nλ= > =x x L . 

COROLLARY 3.2 Suppose in proposition 3.4, the conditions 
2 and 3 are satisfied while the condition 1 is partially satisfied 
as: 

SD∀ ∈x | { }Re ( ) 0 ; 1,2,..., , n
i Si n Dλ < = ⊂x ¡ . 

where SD is a closed region including the origin. Then, local 
asymptotic stability of origin can be guaranteed. In addition, 
the region of attraction for this system is indeed the SD  
region. 

PROOF:  The trend of the proof here is fundamentally the 
same as that of the proposition 3.4, except that the solution is 
considered for (0) SD∀ ∈x . 

The propositions 3.3 and 3.4 along with the aforementioned 
corollaries provide us an analytical framework for the 
stability analysis of nonlinear systems through the PL form 
representation. As highlighted in proposition 3.4, the critical 
point ignored in the previous studies was to consider the 
impact of NEVectors on the stability property of these 
systems. Indeed, the SD NEVectors can completely change 
the results about the qualitative behaviour of nonlinear 
systems obtained thorough the NEValues analysis reported in 
the literature. This ignorance led to the investigation of some 
counterexamples about the ability of PL form in stability 
analysis of nonlinear systems (Tsiotras et al., 1996). In the 
section 5, via some illustrative examples the validity of our 
findings is highlighted. 

4. LIMIT CYCLE EMERGENCE 

A limit cycle is an isolated closed trajectory. Isolated means 
that the neighboring trajectories are not closed; they spiral 
either toward or away from the limit cycle. If all neighboring 
trajectories approach the limit cycle, we say that the limit 
cycle is stable or attracting. Otherwise, the limit cycle is 
unstable or, in exceptional cases, half stable. Stable limit 
cycles are very important in science. They model systems 
that exhibit self-sustained oscillations. Limit cycles are an 
inherently nonlinear phenomenon; they cannot occur in linear 
systems. The qualitative features of a nonlinear system 
behavior which exhibit a limit cycle can be listed as: 

a. Spiral type dynamics: by translating this feature to an 
eigenstructure terminology, we may equivalently say that 
there exists a region in the state space in which the NEValues 
are complex. 

b. Limiting center type dynamics: similar to the previous 
feature, it means that in the same region that the nonlinear 
system has complex NEValues, there should exist a closed 
curve on which the NEValues are pure imaginary. 

The above mentioned closed curve is the expected limit 
cycle. Indeed, we consider these two features as the 
qualitative translation of the limit cycle behavior.  

Based on the results reported in (Ghane and Menhaj, 2013)  

and in the previous section, it is possible to synthesize the 
desired qualitative behavior for a class of nonlinear system 
based on the NEValues analysis. Therefore, it is expected that 
by investigating these qualitative features via the NEValue 
analysis of a nonlinear system, the emerging of limit cycle 
behavior can be systematically tackled. This idea can be 
presented by the following criterion. 

CRITERION 4.1 Consider a pseudo linearizable nonlinear 
system ( )=x f x&  with n∈x ¡ and n n n×→f : ¡ ¡ . The 
sufficient conditions for emerging limit cycle are: 

a) There exists a region nD ⊂ ¡  in which the NEValus are 
complex. 

b) In the region nD ⊂ ¡ , there exists a closed orbit χ  on 
which the NEValues are purely imaginary. 

c) The imaginary parts of NEValues do not change sign.   

In some cases, the closed curve χ  is the exact boundary of 
limit cycle. However, since the eigenstructure analysis tool 
proposed here leads to qualitative results, in general, χ  does 
indeed represent the approximate boundary of the predicted 
limit cycle. The third condition is added to assure the mono 
direction spin of the spiral dynamics. In the next section, via 
some illustrative examples, the validity of this criterion is 
approved. 

5. ILLUSTRATIVE EXAMPLES 

In this section, the capabilities of PL form representation of 
nonlinear systems for stability analysis and limit cycle 
generation are investigated via some illustrative examples. 

5.1 Stability Analysis 

Examples 1 through 4 given below are devoted the stability 
analysis results of this paper. To highlight better, it is tried to 
apply the proposed results to a wide range of systems 
including the aforementioned counterexample systems.  

Example 1:  Consider the following system 
2 2x x x x= −sin ( )& . 

The origin is the equilibrium point of this system and hence 
its PL form becomes:  x a x= (x)& with 2 2x= −a(x) sin ( ) .This 
PL form is unique since the system is of order 1. The single 
NEValue equals 2 2x a x xλ = = −( ) ( ) sin ( ) . According to 
proposition 3.1, since 2 2 0x x − <sin ( ) , x∀ ∈ ¡ , this system is 
globally asymptotically stable. For this system, the results 
obtained from NEVlue analysis are the same as those 
obtained from Lyaponuv analysis and they can be easily 
validated through simulation results shown in figure 1. 
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Fig. 1. Solution of example 1 for some different initial 
conditions. 

Example 2: In this example, a second order system is 
considered with the following state equation. 

2
1 1 1 2

2 2

x x x x
x x

 − + 
=    −   

&
&

 
This is indeed the counterexample presented in (Tsiotras et 
al., 1996) and can be precisely analyzed through proposition 
3.4. Obviously, the origin is an equilibrium point. Therefore, 
the PL form representation of this system is possible. 
However, the only PL form representation of this system with 
SI NEVectors has the following system matrix: 

1 2
1

1 0
0 1

x x
A

− 
=  − 

(x) . 

The SI NEVectors of this PL form are: [ ]1( ) 1 0 T
=v x and 

[ ]2 ( ) 0 1 T=v x . Consequently, merely the PL form with this 
system matrix, which satisfies the condition of  SI NEVectors 
of the proposition 3.4, can be used in the stability analysis. 
Since the first NEValue of this matrix, 1 1 2( ) 1x xλ = −x , does 
not satisfy the condition of 1( ) 0λ <x , n∀ ∈x ¡ , the globally 
asymptotic stability of the origin fails. 

However, in (Tsiotras et al., 1996), asymptotic stability of the 
origin was concluded through NEValues of PL form with 

system matrix 
2

1
2

1
0 1

xA
 −

=  − 
(x) , while the claim was not 

supported with the simulation; this reflects the vital 
importance of considering the SI NEVectors to correctly 
determine the stability of nonlinear systems. Indeed, this 
wrong result is originated from the state dependent NEVecors 
of matrix 2A (x) . This state dependency is the important 
ignorant point which has led to the wrong result. 

Example 3: In this example the counterexample proposed by 
(Muhammad and Van Der Woude, 2009) is investigated. The 
state equations of this system are: 

1 1 2 2

2 1 2 1

( )
( )

x ax bx c x
x bx ax c x

+ +   
=   − + −   

x
x

&
&  

where ,a b ∈¡  and 2:c →¡ ¡ is a scalar smooth function. 
For this system, four distinct PL forms with the following 
system matrices constitute the basis set of PL forms.  

1

a b c
A

b c a
+ 

=  − − 

(x)
(x)

(x)
, 2

12

ca x b
xA

b c a

 + =  
 − − 

(x)
(x)

(x)

 

2
1

3

1
2

ca x b
xA cb a x

x

 + 
=  

 − −
  

(x)

(x) (x)   

and 

4
1

2

a b c
A cb a x

x

+ 
 =  − −
  

(x)
(x) (x)

 
Of course, in the above derivation, it is supposed that ( )c x is 
analytical with respect to each of its arguments. However, 
none of these PL forms has SI NEVectors. Therefore, these 
PL forms are of no use for the stability of the nonlinear 
system based on proposition 3.4. 

Example 4: In this example, we apply proposition 3.4 in the 
control design for a 3rd order nonlinear system as given 
below. 

1 2 11 1
2

2 22 3
2

3 33 1

sin( ) 2

cos ( )

x x xx u
x ux x
x ux x

−    
    = +    
        

&
&
&

 

The objective is to design a stabilizer controller for this 
system. Here, we suppose that all states are accessible.  

We first obtain the PL form of this system with SI 
NEVectors. It can then be shown that the following is indeed 
the only PL form with SI NEVectors:  

1 1 1

2 2 2

3 3 3

( )
x x u
x A x u
x x u

     
     = +     
          

x
&
&
&  

Where { }2 2
2 3 2( ) sin( ) 2 , , cos ( )A diag x x x= −x  

The NEValues and NEVectors of this PL form are: 

[ ]
[ ]
[ ]

11 2
2

2 3 2
2

3 2 3

( ) 1 0 0( ) sin( ) 2
( ) , ( ) 0 1 0

( ) cos ( ) ( ) 0 0 1

T

T

T

x
x

x

λ
λ

λ

 == −  = = 
 = =

v xx
x v x

x v x

 

This system is not asymptotically stable due to 2( ) 0λ ≥x and

3( ) 0 nλ ≥ ∀ ∈x x ¡ . Here, we are not really interested in 
designing a proper state feedback controller; however, it is 
very straightforward to stabilize the origin of this system 
using proposition 3.4 by selecting properly the control signals 
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1u , 2u and 3u . Indeed, due to 1( ) 0 , nλ < ∀ ∈x x ¡ , we only 
need to determine 2u and 3u such that both ( )2 ( ) 0CLλ <x  and 
( )3 ( ) 0, n

CLλ < ∀ ∈x x ¡ are satisfied. The sub-index CL is 
referring to the closed loop system. This object is satisfied 
with the following controls: 

1
2

2 2 3

3 3

( ) 0
( ) 2

( ) 3

u
u x x

u x

=
 = −
 = −

x
x

x
. With these controls, the closed loop PL 

form system can be achieved as ( )CLA=x x x&  with: 

{ }2 2
2 3 2( ) sin( ) 2 , 2 , cos ( ) 3CLA diag x x x= − − −x . 

This closed loop system is obviously globally asymptotically 
stable. The closed loop solution of the system depicted in 
figure 2 for some initial states better highlights the 
effectiveness of the stabilizing control design.  

 
Fig. 2. Solution for closed loop system of example 4; 

1 (0) 5x = , 2 (0) 3x =  and 3 (0) 4x = − . 

5.1 Limit Cycle Emergence 

The examples of this subsection are focused on the limit 
cycle emergence. It is tried to show the capability of the 
proposed approach to generate limit cycles with desired 
shapes and numbers. In addition, in the first example of this 
subsection, the detection problem of limit cycle is also 
slightly considered. 

Example 5: This example is devoted to a 2nd order nonlinear 
system with a more complex dynamic behaviour. The system 
is of the following form: 

  1 1 2

2 1 2

x x cx
x cx x

α
β

−   
=   +   

(x)
(x)

&
&

                                         

where c ∈ ¡  and 
2 2 2

1 2
2 2 2

1 2

a x x
a

b x x
α
β

 = − − ∈
= − −

(x)
,

(x)
¡  and b ∈¡

. The origin is the equilibrium point of this system. Therefore, 
the PL form representation of this system can be achieved. 
The following PL form in the basis set is the only one which 
meets the SI NEVectors condition of proposition 3.4. 

1 1

2 2

x xc
x xc

α
β
−    

=    
    

(x)
(x)

&
&  

The NEValues of this PL form can be obtained as: 

Case1: for 2 2 2a b c− ≥ , 

2 2
2 2 2 2 2 2

1 2 1 2
1

4
2 2

a b
x x a b cλ

+
= − − ± − −, (x) ( ) ( )

 
Case 2: for 2 2 2a b c− < , 

2 2
2 2 2 2 2 2

1 2 1 2
1

4
2 2

a b
x x j c a bλ

+
= − − ± − −, (x) ( ) ( )

 
First, the real NEValues are considered by assigning the 
parameters as 3a = , 5b = and 5c = , which meets the 
condition of case 1. By this assignment, the NEValues and 
NEVectors are obtained as: 

2 2
2 2 1 2

1 2 1 2 2 2
1 2

10 75
17 6 25

23 25
x x

x x
x x

λ
 − −= − − ± = 

− −
,

.
(x) ( ) .

.
 

[ ]1( ) 1 2.85 T
= −v x  and [ ]2( ) 2.85 1T

= −v x . 

Since the condition of SI NEVectors is satisfied, we can use 
both proposition 3.4 and corollary 3.1 for stability analysis of 
this system, In the region 2 2

1 2: 10.75UD x x+ < , both 
NEValues are real and positive, and therefore, this is a 0-
repelling for this system. This means that all solution 
trajectories initiating from this region, (0) UD∀ ∈x , move 
away from the origin. On the other hand, the 0-attracting 
region of this system is obtained as 2 2

1 2: 23.25SD x x+ > , 
in which both NEValues are real and negative. This in turn 
means that every solution trajectories with initial state

(0) SD∀ ∈x , moves toward the origin. These two statements 
say that, a solution trajectory, as long as the trajectory is in 
the region UD , goes away from the origin and as long as is 
in region SD move toward the origin. The validity of this 
stability analysis results, can be illustratively highlighted in 
the figure 3. In this figure, the NEVectors are shown with the 
yellow lines. Based on the criterion 4.1, in the case 2 it is 
expected to have a limit cycle in the phase plane.  

 
Fig. 3. Phase plane simulation of example 5; 
 Case 1: 1 10 75.r =  and 2 23 25.r =  



86                                                                                                                    CONTROL ENGINEERING AND APPLIED INFORMATICS 
 

Therefore, by assigning the parameters of this example as 
5a = , 5b = and 10c = , the condition of case 1 is satisfied. 

By this assignment, NEValues and NEVectors are obtained 

as: 2 2
1 2 1 225 10x x jλ = − − ±,(x) ( )  and 

1 2

1

j
=

±

 
  

,
v(x)  . 

 In this case, the condition of SI NEVectors is satisfied and 
therefore like in case 1, based on the proposition 3.4 and 
comment 3, the 0-attracting and 0-repelling regions of the 
nonlinear system can be obtained respectively as 

2 2
1 2: 25SD x x+ >  and 2 2

1 2: 25UD x x+ < . The phase 
plane simulation of the system with parameters satisfying 
case 2, is shown in figure 4, which easily verifies this 
stability analysis. 

 
Fig. 4. Phase plane simulation of example 5; Case 2: 5r =   

In this figure, the yellow lines are the real part and imaginary 
parts of NEVectors. Since in the phase plane simulation, the 
states are to be real and hence only vectors with real 
component should be shown, the imaginary and real parts of 
NEVectors are taken as independent eigenvectors.  

As is illustrated in figure 4, the system possesses a limit cycle 
in this case. We expect that the limit cycle is exactly the same 
as the boundary between 0-attracting and 0-repelling regions, 
i.e. 2 2

1 2 25x x+ = , and this is the case in the figure 4. 

 

Table 1. NEValue analysis of example 6. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Example 6: In this example, by utilizing the criterion 4.1, we 
show the possiblity to generate multiple limit cycle with 
desired boundaries. For example if it is desired to have 3 
limit cycles with boundaries of 1( ) 0α =x , 2 ( ) 0α =x and 

3 ( ) 0α =x , the synthesized system can be something like:

1 2 3 1 21

1 1 2 3 22

x xx
x xx

α α α ω
ω α α α

−  
=    +   

(x) (x) (x)
(x) (x) (x)

&
&

whose unique PL form 

with SI NEVectors is obtained as: 

 

1 2 31 1

1 2 3 22 2

x x
xx x

α α α ω
ω α α α

−    
=     +    

(x) (x) (x)
(x) (x) (x)

&
&  

The NEValues of these PL form become: 

1 2 1 2 3 jλ α α α ω= ±,(x) (x) (x) (x)  
By the assumptions that: 

1. There is no intersection between 0 1 2 3i iα = =(x) ; , , . 

2. For i j< , the curve 0iα =(x) is entirely in the region 
enclosed by the curve 0jα =(x)  in the phase plane, or 

equivalently i jα α<(x) (x)  2∀ ∈x ¡ . Without loss of 
generality, a proper choice for these boundaries is: 

2 2 2
1 1 2 1( ) x x aα = + −x , 2 2 2

2 1 2 2( ) x x aα = + −x  and 

 3 1 2 3( ) x x aα = + −x  with 1 2 3a a a< < .  

Therefore, the qualitative analysis of the synthesized 
nonlinear system based on NEValues analysis is illustrated in 
table 1.  

Based on the qualitative analysis proposed in this paper and 
criterion 4.1, it can be concluded that this system has three 
limit cycles, two unstable and one stable. The phase plane 
simulation in the figure 5, highlights the validity of these 
qualitative results.  

In the above examples, we tried to cover a wide range of 
nonlinear system behaviours to emphasize the ability and 
validity of our findings. 

 

 

 

 

 

 

 

Behavior type Sign of 
{ }2λRe (x)  

Sign of 
{ }1λRe (x)  

Complex, Real 
or Imaginary 

Reign 

Unstable Spiral + + Complex 2 2
1 2 1x x a+ <  

Center ND ND Imaginary 2 2
1 2 1x x a+ =  

Stable Spiral - - Complex 2 2
1 1 2 2a x x a< + <  

Center ND ND Imaginary 2 2
1 2 2x x a+ =  

Unstable Spiral + + Complex { } { }2 2
1 2 2 1 2 3x x a x x a+ > ∩ + <  

Center ND ND Imaginary 
1 2 3x x a+ =  

Stable Spiral - - Complex 
1 2 3x x a+ >  
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Fig. 5. Phase plane simulation of example 6. 

1 2a = ,  2 4a = , 3 8a =  and 100ω =  

6. CONCLUSIONS AND REMARKS 

In this paper, the stability analysis of nonlinear autonomous 
systems through the PL form representation was thoroughly 
investigated. Based on the discretized model of the system, 
the closed form solution of the nonlinear system for every set 
of initial state was obtained. In the analysis level, to have 
zero error between discretized model and the original 
nonlinear system, in the solution, we let the sampling time go 
to zero. Then, the stability of the nonlinear system trajectories 
was analyzed based on the stability of closed form solution of 
the discretized model. Through this approach, the crucial 
effect of SI NEVectors in the stability analysis based on the 
NEValues was highlighted as the important fact ignored in 
the previous studies which had been led to some incorrect 
results about the stability of nonlinear systems.  

Through four propositions, the globally asymptotically 
stability conditions of nonlinear autonomous systems, which 
can be represented in PL form with SI NEVectors, were fully 
derived and in addition, via some comments and corollaries, 
the conditions for local asymptotically stability of these 
nonlinear systems were presented. The illustrative examples 
have shown that it is possible to have a global insight about 
the stability property of the nonlinear system, by 
transforming it to a PL form with SI NEVectors. By applying 
the results of the proposed stability analysis and our previous 
qualitative analysis method for PL systems, some sufficient 
conditions for limit cycle emergence were proposed. 
Although the stability consideration of nonlinear systems is a 
significantly important, however, by utilizing the results of 
this paper, our qualitative analysis of nonlinear systems 
reported in our previous paper was completed. Then, the limit 
cycle emergence as one of the challenging issues in nonlinear 
system theory was tackled. In this regard, first, the qualitative 
conditions for limit cycle emergence was presented through 
one criterion and then by satisfying these conditions via the 
proposed qualitative analysis tool, limit cycles with desired 
shape and numbers were generated. Simulation results at the 
end of the paper easily verify the correctness of these 
theoretical results. 

As future work, some challenging issues in nonlinear control  
theory like controllability, observability, non-minimum phase 
system determination can be systematically approached via 
the proposed analysis tool. In addition, the case in which no 

PL form with SI NEvector can be obtained still remaines as 
an open problem and may be the subject of future studies. We 
are currently working on these issues and the results will be 
reported soon. 
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APPENDIX A 

PROOF of PROPOSITION 3.3: 

From the equation (11), the discretized model of this 
nonlinear system can be obtained as: 
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 [ ] [ ]( ) [ ]( 1)k T A kT kT+ =x x x%
 

Due to condition 1, [ ]( )A kTx%  has diagonal form with the 
following elements: 

[ ]( ) [ ]( )ii n n
A kT a kT

×
 =  x x% % and [ ]( ) [ ]( )ii n n

A kT a kT
×

 =  x x , 

in which 1ii iia a= +% . Furthermore, the NEValues can be 
determined as: 

( ( )) ( ( )) , 1, 2,..,i iit a t i nλ = =x x . 
Therefore, the solution of the discretized system can be 
rewritten as: 

[ ]

[ ]( )( ) [ ]

[ ]( )( ) [ ]

[ ]( )( ) [ ]

[ ]( )( ) [ ]

[ ]( )( ) [ ]

[ ]( )( ) [ ]

11 1 1 1
0 0

22 2 2 2
0 0

0 0

0 1 0

0 1 0
( 1)

0 1 0

i m i m

i i

i m i m

i i

i m i m

nn n n n
i i

a iT x T iT x

a iT x T iT x
m T

a iT x T iT x

λ

λ

λ

= =

= =

= =

= =

= =

= =

   
+   

   
   

+   + = =   
   
   
   +      

∏ ∏

∏ ∏

∏ ∏

x x

x x
x

x x

%

%

M M

%

 As stated, if the sampling time T goes to zero, the 
approximate derivative used in Euler discritazation method 
goes to the actual derivative and the error between the 
discrete model and the original continuous system vanishes. 
To be more precise, we compute the solution when T goes to 
zero. Based on the proposition 3.2 it is known that for the 
resulting discretized system, the globally asymptotically 
stability of the origin is guaranteed if all elements of 

[ ]( ) [ ]( )ii n n
A kT a kT

×
 =  x x% % have magnitude less than unity. 

This is so as shown below due to condition 2. 

 
[ ]

[ ]( )( ) [ ]

[ ]( )( ) [ ]

[ ]( )( ) [ ]

0 1 1
0

0 2 2
00

0
0

lim 1 0

lim 1 0
lim ( 1)

lim 1 0

i m

T
m i

i m

T
m iT

m

i m

T n n
m i

T iT x

T iT x
m T

T iT x

λ

λ

λ

=

→
→∞ =

=

→
→∞ =→

→∞

=

→
→∞ =

 
+ 

 
 

+ + =  
 
 
 +  

∏

∏

∏

x

x
x

x

M

   (14.A) 

 in which 0T >  and [ ]( ) 0 ; 1,2,...,i iT i nλ < =x . In 

addition, since [ ]( )i iT sλ x  are analytical functions of [ ]kTx , 
they have in worst case an exponential growth rate, say iα . 
By making the decay rate γ  of the sampling time 0T >   

exponentially fast with  { }max iγ α> , we can have 

[ ]0lim 1 ( ) 1 | 1,2, ..,T iT kT i nλ −
→ + = ∀ =x

 
The above condition is satisfied for every k ∈¥ . 

Substitution of the above limit in equation (14) yields: 

[ ]( )

( ) [ ]

( ) [ ]

( ) [ ]

1
0

2
00

0

1 0

1 0
lim lim ( 1) lim

1 0

i m

i

i m

im T m

i m

n
i

x

x
m T

x

=
−

=

=
−

=→∞ → → ∞

=
−

=

 
 
 
 
 + = = 
 
 
 
  

∏

∏

∏

x 0
M

 

On the other hand,  

[ ]( )

[ ]( )( ) [ ]

[ ]( )( ) [ ]

[ ]( )( ) [ ]

( ) [ ]

( ) [ ]

( ) [ ]

1 1
0

2 2
00 0

0

1
0

2
0

0

1 0

1 0
lim lim ( 1) lim

1 0

1 0

1 0

1 0

i

iT m T

n n
i

i

i

n
i

T iT x

T iT x
m T

T iT x

x

x

x

λ

λ

λ

∞

=

∞

=→ →∞ →

∞

=

∞
−

=

∞
−

=

∞
−

=

+

+
+ =

+

 
 
 
 
 
 
 
 
 
 

 
 
 
 
 = = 
 
 
 
  

∏

∏

∏

∏

∏

∏

x

x
x

x

0

M

M

 

This completes the proof. 

PROOF of Remark 3.1: 

The eigenvectors of ( )A x and ( )A x%  are determined as: 

0nA I
A

λ
λ





− =

=

(x ) (x)
(x )v(x ) (x )v(x )

 and 0nA I

A

λ

λ





− =

=

(x ) (x )

(x )v(x ) (x )v(x )

% %

% %% %
. 

Substitute (11) in the above equation to obtain: 

0 1 0

1 10

1

n n n

n

TA I I TA I

A I
T T

T

λ λ

λ λ λ

λ λ

 
  
 

+ − = ⇒ − − =

− −⇒ − = ⇒ =

⇒ = +

(x) (x) (x) ( (x) )

(x) (x)(x) (x)

(x) (x)

% %

% %

%

 

and, 

1nA T A I T
T A T

λ λ
λ

= ⇒ + = +
⇒ = ⇒ =
(x)v(x) (x)v(x) ( (x) )v(x) ( (x) )v(x)

(x)v(x) (x)v(x) v(x) v(x)
% %% % % %

% % %
 
PROOF of PROPOSITION 3.4: 
Consider equation (10), which is the discretized model of the 
original nonlinear system:  

[ ] [ ]( ) [ ]( 1)k T A kT kT+ =x x x%                                   

Based on the remark 3.1 we can write: 

[ ]( ) [ ]( ) 1i ikT T kTλ λ= +x x%     and  

[ ]( ) [ ]( )i ikT kT=v x v x%    1 2i n∀ = , , ..., . 

For distinct NEValues the Jordan form of [ ]( )A kTx% can be 
obtained as: 

[ ]( ) [ ]( )( ) [ ]( ) [ ]( )( )1
kT Q kT A kT Q kT

−
Λ =x x x x%%         (15.A) 

in which  
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[ ]( ) [ ]( ) [ ]( ) [ ]( )1 2 nQ k T kT k T k T =  x v x v x v xL  
is the so-called modal matrix. Then, the Jordan form 
becomes: 

[ ]( ) [ ]( ) [ ]( ) [ ]( ){ }1 2, , , nkT diag kT kT kTλ λ λΛ =x x x x% % %% L
 

If the condition 2 of the proposition is held, the above Jordan 
form is also obtained even in the case of existing non distinct 
NEValues. From (15.A) it is clear that  

[ ]( ) [ ]( )( ) [ ]( ) [ ]( )( ) 1
A kT Q kT kT Q kT

−
= Λx x x x% %          (16.A) 

By substituting (16.A) into equation (12) which is the 
solution of discrete system of equation (10), we have: 

[ ] [ ]( ) [ ]

[ ]( )( ) [ ]( ) [ ]( )( ) [ ]

0

1

0

( 1) 0

0

i m

i

i m

i

m T A iT

Q iT iT Q iT

=

=

= −

=

 
+ =  

 
 = Λ 
 

∏

∏

x x x

x x x x

%

%

(17.A) 

Proposition 3.3 cannot be applied to check the stability of 
(17.A) because the system is not in diagonal form.  However, 
to elaborate more, we rewrite (17.A) as: 

[ ]
[ ]( )( ) [ ]( ) [ ]( )( ) [ ]( )( ) [ ]( ) [ ]( )( )

[ ]( )( ) [ ]( ) [ ]( )( ) [ ]

1 1

1

( 1)

0 0 0

0

m T

Q Q Q T T Q T

Q mT mT Q mT

− −

−

+ =

Λ Λ

Λ

x

x x x x x x

x x x x

% % L

%L

(18.A) 

Easily observed that if the condition 3 of the proposition is 
satisfied, i.e., [ ]( ) [ ]( ) [ ]( )0Q Q T Q kT Q= = = =x x xL , we 
have: 

[ ] [ ]( )( ) [ ]( ) [ ]( )( ) [ ]

[ ]( ) [ ]

1

0

1

0

( 1) 0 0

0

i m

i

i m

i

m T Q iT Q iT

Q iT Q

= −

=

=
−

=

+ = Λ

 
= Λ 

 

∏

∏

x x x x x

x x

%

%

        (19.A) 

Use remark 3.1 and write: 

[ ]

[ ]( ) [ ]( ) [ ]( ) [ ]

[ ]( )( )
[ ]( )( )

[ ]( )( )

[ ]

1
1 2

0 0 0

1
0

12
0

0

( 1)

, , , 0

1 0 0

0 1 0 0
0

0 0 0 1

i m i m i m

n
i i i

i m

i i m

i

i m

n
i

m T

Q diag iT iT iT Q

T iT

T iTQ Q

T iT

λ λ λ

λ

λ

λ

= = =
−

= = =

=

= =

−

=

=

=

+ =

  
  
  

 
+ 

 
 +=  
 
 +
  

∏ ∏ ∏

∏
∏

∏

x

x x x x

x

x x

x

% % %L

L

L
M M O

   

                                                                                        (20.A) 

Now, we first consider the case in which the NEVlaues of 
original continuous systems are real. This case is qualitatively 
similar to the case of proposition 3.3. The constant matrix Q 
and its inverse do not impact on the qualitative behaviour of 
the system especially its stability properties as stated below. 

[ ]

( ) ( ) ( ) [ ]

[ ] [ ]

0

1

0 0 0

1

lim ( 1)

lim 1 , 1 , ..., 1 0

0

T
m

i m i m i m

m
i i i

n n

m T

Q diag Q

Q Q

→
→ ∞

= = =
− − − −

→ ∞
= = =

−
×

+ =

  
  
  

= =

∏ ∏ ∏

x

x

0 x 0

 

In the second case we consider the complex NEValues. 

For this case, we need to show that  

[ ]( )( )0
0

lim 1 0,
i m

n
T
m i

T iTλ
=

→
→ ∞ =

+ = ∀ ∈∏ x x ¡                    (21.A) 

where  

[ ]( ) [ ]( ) [ ]( )kT a kT jb kTλ = − ±x x x                                 (22.A) 

and [ ]( ) 0a kT >x  .  

  To prove this, we use (22.A) in (21.A) and write the left 
hand side of (21.A) as 

[ ]( ) [ ]( )( )0
0

lim 1
i m

T
m i

Ta iT jTb iT
=

→
→∞ =

− ±∏ x x                      (23.A). 

Knowing that 

[ ]( ) [ ]( )( )
[ ]( )( ) [ ]( )( )( )

0

1/ 22 22
0

lim 1

lim 1

T

T

Ta iT jTb iT

Ta iT T b iT

→

→

− ±

= − +

x x

x x
 

and [ ]( )a iTx  and [ ]( )b iTx are finite valued functions for 

every n∈x ¡ and 0T > , the two terms [ ]( )
0

lim
T

Ta iT
→

x and 

[ ]( )
0

lim
T

Tb iT
→

x are in the same order and without loss of 
generality we can have: 

[ ]( )
[ ]( )

0

0

lim

lim ; 0 1
T

T

Ta iT

Tb iT α

→

→

∆

∆ < ∆

x

x

∼

∼ =
 

where α ∈ ¡ is the constant proportional factor and  

[ ]( )( ) [ ]( )( )( )1/ 22 22
0lim 1T Ta iT T b iT→ − +x x  

( )( )
1/221/22 2 2 11 1 2 (1 )

2
α

α
  +

− ∆ + ∆ = − ∆ − ∆     
∼  

Since 

 2

2,
1

α
α

∀ ∃ ∆ <
+

 such that 
21 1

2
α +

∆ < 
 

, the limit 

becomes: 

[ ]( )( ) [ ]( )( )( ) ( )
1/22 2 1/ 22

0lim 1 1 0 1T Ta iT T b iT + −
→ − + − =x x ∼

Therefore, in (21.A), each diagonal element, which contains 
complex NEValues, will reduce to multiplication of m 1− s; 
consequently, it goes to zero as m goes to infinity. This ends 
the proof. 


