
CEAI, Vol. 8, No. 1, pp. 22-32, 2006 Printed in Romania

ON AGENT BASED MULTI-ROBOT COORDINATION
IN A FLEXIBLE MANUFACTURING SYSTEM

Doru Panescu, Gabriela Varvara

“Gh. Asachi” Technical University of Iasi, Faculty of Automatic Control and Computer Engineering,
Department of Automatic Control and Applied Informatics,

Bd. D. Mangeron 53A, Iasi, 700050, Romania
E-mail : dorup@ac.tuiasi.ro; gvarvara@ac.tuiasi.ro

Abstract: The fields of multi-robot and multi-agent systems represent active and topical research
themes. Their results can be important for several areas, this paper considering the industrial
application. The possibility to solve through robot cooperation an assembly process is discussed,
the proposed approach using an agent based solution. Some theoretical and practical issues on
robot coordination are presented, the architecture being tested in a flexible manufacturing system
with two industrial robots.

Keywords: multi-robot systems, multi-agent systems, planning, flexible manufacturing systems,
temporal reasoning.

1. INTRODUCTION

The multi-agent and multi-robot systems are two
research fields that possess certain convergence
issues. Both refer to a distributed approach,
often complex systems are involved and an
important autonomy is a must. Meanwhile
neither of the two got definite solutions, nor the
application of software agents in Robotics had a
great impact till now. That is why it is worth
investigating how the current multi-agent
systems technology can be used in multi-robot
systems.

As a brief definition, a multi-agent system can
be seen as a structure composed of multiple,
interacting agents [12]. The key issues in this

statement are the words agent and interaction.
As about the agent, this is the best described by
its characteristics; the most often referred are:
autonomy, reactivity, pro-activeness,
communication abilities, mobility, rationality
and social ability [3], [12], [13]. All these are to
be related so that an agent should be able to
interact with its environment, in a goal based
fashion, according to a perceive, reason and act
cycle [12], [13]. From this point the connection
with Robotics is easy to make: a robot is a
technical system supposed to replace a human
operator in solving tiresome, difficult and/or
dangerous tasks, exhibiting exactly the above
mentioned agent characteristics and operating
under the same before mentioned cycle.

 CONTROL ENGINEERING AND APPLIED INFORMATICS 23

Fig. 1. The flexible manufacturing system considered for experiments

1. IRB 1400 industrial robot (R1), 2. IRB 2400 industrial robot (R2),
3. Machine tool, 4. Computer vision system, 5. Conveyor, 6, 7. Storage devices,

8. IRB 1400 robot controller, 9. IRB 2400 robot controller, 10. Assembly tableconcerns

The difference between a robot and an agent
mainly the appearance of the two: a robot is
always a physical system while an agent may
be only a software entity. From its more
complex actuation ability it results the greater
impact on its environment that the robot should
be capable to produce when compared with a
software agent. In a brief assertion, a robot can
be always seen as an agent (the only
exceptions are the very simple manipulators
repeating a single sequence of actions and with
little sensorial endowment), while an agent can
be a robot only when possessing definite
physical sensorial and action sub-systems.

Another link between multi-robot and multi-
agent systems is the nowadays challenge for
Robotics to enlarge its application area by the
use of robot teams instead of single robots
[15]. The term of multi-robot system concerns
an interdisciplinary field, covering besides the
specific Robotics issues (like path planning
and control for collision avoidance [9]),
subjects on robot coordination and
communication. These last points have already
been analysed in

Distributed Artificial Intelligence, mainly into
the framework of multi-agent systems, which
further explains the connection made by this
contribution.

A significant problem for the research in multi-
robot systems is the possibility to assess the
developed approach into a real environment.
From this point of view, the proposed test-bed
is shown in Fig. 1. Though the respective
equipment can be used as a classical flexible
manufacturing system, it can be also
considered as a multi-robot system. This is
justified by the following points:

• There is a common working area of the two
robots, above and in the vicinity of the
assembling table (see Fig. 1), that creates the
possibility of solving in cooperation an
assembly goal.
• The two robots can communicate each with
the other.
• They can be involved in solving common
goals, which should suppose taking decisions
on common resources use (e.g. the parts for
assembly, the conveyor).

2

1

5

7

3

8

9

4 6

Cell 1

Cell 2

10

Common working
area of the robots

 CONTROL ENGINEERING AND APPLIED INFORMATICS 24

Besides the two ABB industrial robots, type
IRB 1400 and IRB 2400, named R1 and R2 in
the following, the manufacturing system
contains a machine tool, a conveyor and a
computer vision based inspection system. The
multi-robot solution for different assembly
goals can vary in accordance with the way the
raw and processed parts are present in the
storage devices near the two robots, and the
order the two robots are involved in assembly.
In this way some specific coordination
mechanisms are needed and the agent based
approach is presented in the next paragraphs.
After discussing a few specific elements on the
agent based approach for a multi-robot system,
the focus is on establishing certain
coordination issues based on the relation
between the time model of the agent activities
and the structure of the goals; some aspects of
the implementation are also presented.

2. SOME ASPECTS OF THE BDI AGENT

BASED DESIGN FOR
MANUFACTURING MULTI-ROBOT
SYSTEMS

The field of multi-agent systems is quite new
and thus there is no general methodology for
an agent based design approach. Instead,
several specific schemes were developed, more
frequently being referred: MaSE, Gaia,
Prometheus, [2], [5], [11], [13]. When these
are analysed in order to be used in a multi-
robot system, one may find some specific
aspects and drawbacks. The multi-robot
systems may vary, being composed of
homogeneous robots or not, with various
degrees of autonomy and sensing capabilities.
Another aspect that can be considered the most
important for distinguishing an agent based
approach of the multi-robot systems refers to
the environment characteristics. The robot
based flexible manufacturing systems and
respectively the mobile robots of a robot
soccer environment are two limit examples [8],
[11]. Thus, when comparing these two
situations according to a multi-agent system
environment classification [13], one discovers
that the first case is towards the easiest
conditions (accessible, deterministic, static and
discrete), while the second is almost at the
opposite limits. The present research tries to
mediate between the various possibilities, in
order to get some general elements for the

design and implementation of an agent based
solution in multi-robot systems.

The various agent based approaches imply
some specific software architecture. One of the
most used, for purposes like military,
commerce or entertainment applications is the
BDI (Belief-Desire-Intention) architecture
[10], [12]; it can provide certain advantages
when utilized in manufacturing. One important
point is the way the BDI scheme can bring
about the necessary bias between the proactive
and reactive components necessary for a multi-
agent system implied in production. To clarify
this, it is to notice how the key issues of the
BDI architecture are carried out in such an
application.

Without giving all the details of the designing
phase (see also [5], [10], [11], [12]), agents
have to manage with several entities: beliefs,
intentions, desires, and plans. The beliefs
collection provides an agent certain means to
handle the interaction with its environment
(which includes the agent itself, the other
agents, and the user that should provide the
goals, too). First the sensorial information
conducts the agent towards formulating beliefs
on the present state of its environment.
Moreover, a belief is supposed to be more
flexible than the usual preconditions used in
classical planning or the state conditions in
finite automata, and it is expected to create
more possibilities, as going beyond the first
order predicate logics. For example, the agent
corresponding to the robot R1 may believe that
a part is on the conveyor after it was informed
by the robot R2 that it dropped that part on the
conveyor. By making use of this belief the
robot R1 can include the part in its plans,
supposing it can get the respective part after a
corresponding action.

Though sometimes beliefs are only related
with the sensorial information, in the proposed
approach they are also associated with the
goals. For example the robot R2 may believe
that it has to solve the goal of supplying a part,
and it will release this belief when the
computer vision system will provide the
information on the presence of the respective
part in the storage device (this can be supplied
without the robot R2 interaction). In this way a
more opportunistic behaviour is obtained for
the manufacturing system. The beliefs are to
be updated according to the sensorial
information available to the agent (the percepts
– see Fig. 2) and in our case according to the

 CONTROL ENGINEERING AND APPLIED INFORMATICS 25

set of goals, too; it is supposed that for a
manufacturing system the goals are
continuously received by the multi-agent
system.

Taking into account the current beliefs the
agent is able to generate its desires. These are
the agent’s options in achieving the goals. As
generally known for an agent based solution
[10], the desires must be consistent with both
the present beliefs and intentions. After a
further refinement step, the intentions are got
from desires through an opportunistic filtering
mechanism – see Fig. 2. This can be
understood because the intentions represent the
last phase before the agent’s action issuing.
The intentions refer to the course of actions
that the agent can consider and which are
progressively refined until they correspond to
elementary actions that it can put into practice.
The intentions are to be obtained from desires,
what makes the necessary connection with the
goals. Moreover, as mentioned above the
transformation of desires in intensions must be
opportunistic, taking into account the changes
in the environment.

Intentions are to be smoothly tuned in order to
get the right bias between the reactive and
proactive characteristics. Through the goal
influence, they can determine the necessary
proactive feature. They are part of the planning
phase; in fact, the desire transformation in

intentions and then their conversion in actions
constitute the agent planning process. Besides
offering the choice set for the action selection,
the agent can use intentions to filter future
planning, based on the necessity to maintain
the consistency of its knowledge base. For
example, the agent corresponding to the robot
R2 while having the intention to discharge the
conveyor, based on the belief that this is full,
will not consider the intention to place a part
on the conveyor.

On the other hand, intentions must persist. The
robot R2 will not leave its intention to
assemble a product until either it succeeds to
do this, or knows (believes) that the respective
product was assembled in another way. It is
clear that reactivity should influence this
process. In the above example, the agent
attached to the robot will drop the mentioned
intention when it has the feedback that the
product has been assembled by the other robot.
Thus, an agent has to cyclically revise its
intentions and to find the correct balance about
this process, namely to establish a right
frequency for the reconsideration of intentions.
In the case of the considered manufacturing
system intensions are to be re-computed only
in the case of an event that is influencing a
goal. This means that a beliefs versus goals
comparison should determine the
corresponding moments. It is supposed that
such a result is quite general, i.e. it can be
applied to any computer aided manufacturing
system; further comments can be made after
considering some additional theoretical issues.

3. A POSSIBLE CONECTION BETWEEN

THE BDI ARCHITECTURE AND THE
BRANCHING TIME MODEL

As about the logical background of the BDI
model, the predicate logic, its extension,
namely the modal logic and the branching time
model are to be considered [1], [6], [10]. It is
important to observe the practical implications
of these theoretical aspects for manufacturing
systems planning and controlling. Referring
only to temporal reasoning, the branching time
model considers a state space approach with
the states arranged in a tree that branches into
the future (each branch is called a world) [1],
[6]. In this way the agent is capable to consider

Beliefs

Percepts Goals

Desires

Opportunistic
Filter

Intentions
(Plan schemes)

Actions

Fig. 2. The adapted BDI agent architecture

 CONTROL ENGINEERING AND APPLIED INFORMATICS 26

several future evolutions, named possible
worlds.

As an example, Fig. 3 presents such a model
for the considered system. The starting
moment is t0 when the agent corresponding to
the robot R1 knows that property Pc holds – a
part is on the conveyor, according to the
information provided by its sensorial system.
The various paths correspond to different
actions executed by the robot R1: a1 – picking
up of a part from the storage device, a2 –
picking up of a part from the conveyor, a3 –
transfer of a part from the storage device to the
assembly table, a4 – feeding of the machine
tool, a5 – wait until the part is processed, a6 –
part transfer from the machine tool to the
assembly table, a7 – part placing on the
conveyor, or to events independent of the
robot: b – fall of the part from the conveyor.
By making use of this representation the agent
beliefs become statements possibly true – for
example, at the moment t0 it may believe that a
part is on the conveyor (which is indeed true,
property Pc in Fig. 3), and may believe that
this can still hold until some future moment,
for example according to the path determined
by the action a2. It is obvious from the model
that this belief may become false in certain
circumstances, e.g. when event b is happening.

For a manufacturing system the agent desires
can be also considered statements possible
true, but unlike the beliefs they strictly refer to
future moments and to properties that can be
determined by the agent activity. In the case of
the proposed environment, the robot R1 may
have several desires: to feed the storage
device, to feed the machine tool, to unload the
storage. It is clear that some desires can be in
conflict each other or with some of the agent
beliefs.

From the planning point of view, desires can
be considered potential inputs for the agent

plans and actions. The link between the desires
and the agent actual actions is provided by its
intentions. In the case of a manufacturing
system, where the robots are supposed to
cooperate, the goals are the elements to
determine the desires of the agents; that is why
the next paragraph is dedicated to further
considerations on goal driven agent based
systems. Intentions should provide the means
for a goal solving. For example, if the robot R1
has been provided the goal to obtain a
processed part of a certain type, and the robot
has the belief that a raw part is present in the
nearby storage device, then it reaches the
intention to feed the machine tool in order to
obtain the necessary processed part. The way
the intentions are obtained from the agent
desires and beliefs can be something similar to
conventional planning [1], [6] or to the use of
certain a-priori devised planning schemes [5],
and the branching time model supports both
approaches.

4. ON THE GOAL ASSIGNMENT AND
THE RELATED AGENT
COORDINATION MECHANISM

The starting point for the multi-robot as well as
multi-agent system design should be an
analysing phase, when the system goals are to
be considered first. Various approaches
attempt to solve the goal identification step by
means of use cases or scenarios, and roles or
functionalities [2], [5], [11]. It is to notice that
for an agent based multi-robot system the
following issues should be discovered:

• The goal hierarchy – the way the goals are
related to each other and their internal
structure. In the case of a multi-robot based
assembly (as the one in the environment
described in Fig. 1) all the sub-goals are
derived from assembly goals. The sub-goals
can be classified in two categories: the ones to
be achieved by a robot and respectively others
to be solved by another device. According to
Fig. 4, the manipulation for assembling, the
machine tool/inspection system feeding/un-
feeding and some auxiliary manipulation sub-
goals can be assigned to a robot, namely some
of them to both robots and others only to one
robot. In the considered case the auxiliary
manipulation sub-goals refer to supplying and
unloading of the storage devices and conveyor.

Pc

a1

a1

a2

b

a3

a4

a6

Fig. 3. An example on the
branching time model

t0

a7

a5

 CONTROL ENGINEERING AND APPLIED INFORMATICS 27

With respect to a multi-robot system approach,
it is worth to further analyse these goals,
because they may create a bottleneck for the
whole system operation – at a certain instant a
robot may be involved in a single goal
achievement. When the goals and beliefs are
analysed in accordance with the dependence
they create on the agents of a multi-agent
system [13], one discovers that all the possible
situations can happen:

 a) independence – the robot R1 can solve the
goal to feed the machine tool independently of
the robot R2 when the necessary raw part is
present in the storage device near the robot R1.
 b) unilateral – the robot R1 depends on the
robot R2 in order to fulfil the goal of feeding
the machine tool when the necessary raw part
is not present in the storage device near the
robot R1, but that raw part can be provided by
the robot R2.
 c) mutual – the robots depend on each other
with respect to solving an assembling goal,
when each of them possesses one of the two
parts that must be assembled.
 d) reciprocal – the robot R1 depends on the
robot R2 with respect to obtaining the
necessary raw part to be processed on the

machine tool, while the robot R2 depends on
the robot R1 with respect to getting a
processed part, that can be the same with the
one implied by the current goal of the robot R1
(in fact this case satisfies the definition of
mutual goals), or can be a different one.

• The way the goals are assigned to the robots
of the multi-robot system – this aspect can be
handled as with the usual goal allocation to the
agents of the multi-agent systems, based on an
established coordination mechanism. The
contract net protocol was used in the
considered system [4], [7]. This is an
interaction protocol for cooperative problem
solving with agents. The goals are distributed
based on a negotiation and communication
procedure. In our system either the software
agent which directly interacts with the user or
an agent corresponding to a robot becomes a
manager when having a goal that cannot be
managed by itself. This is supposed to
broadcast a message in the multi-agent system
for the goal announcement, and then, through a
negotiation mechanism, the goal fulfilment
will be appointed to a contractor, namely the
agent having the best capabilities to solve the
goal. Some elements specific for the multi-

Assembly goals

Robot based
goals

Machine tool
feeding/un-feeding

sub-goals

Manipulation for
assembly sub-goals

Auxiliary
manipulation sub-

goals

Part processing
sub-goals

Inspection sub-
goals

Non-robot
goals

R1
R2

R1
R2

R1

Inspection system
feeding/un-feeding

sub-goals
R2

Fig. 4. A multi-robot goal decomposition example

Cell transfer sub-
goals

 CONTROL ENGINEERING AND APPLIED INFORMATICS 28

robot systems still exist referring to the
constraints robots exhibit regarding their
interaction with the environment (e.g. a robot
cannot solve a goal that implies a movement
beyond its working area). Furthermore, the
goal decomposition should be made till the
actions to be achieved by individual agents,
which means the robot actions in this case. In
the proposed approach the goal division is
made both by the manager and by the
contractor, which is possible in the contract net
mechanism (a contractor can further become a
manager for some sub-goals [7]).

• The goal solution must assure the
consistency and completeness – these
conditions can be checked as with the
centralized systems (for example, as in the
case of nonlinear planning [1]), but when using
robots for industrial applications this tests can
be simplified. Indeed, instead of trying to
obtain a plan to solve a goal from scratch
certain a-priori devised plan schemes may be
considered and combined to solve a complex
initial goal. This can be facilitated by a multi-
agent approach that makes use of a BDI
architecture.

A further discussion on the goals assignment
can be useful in understanding the considered
application. Often a manufacturing problem
can determine several goals and/or a goal is
divided in more sub-goals, which have to be
solved in a distributed manner in the
manufacturing system. Meanwhile, for a
production process some scenarios suppose the
necessity of a decision mechanism. A goal
dependency analysis can guide the agent based
solution with respect to the coordination and
communication aspects. Thus one can take into
account the following definition. Two goals
can be considered independent if and only if
the order in which the goals are solved does
not matter for the problem they are derived
from, and the solutions for the two goals does
not imply the use of common resources. In
such a case the agents solving the two goals do
not need to exchange further information
besides that on the goal fulfilment. Based on
this definition an independence relation can be
defined on the set of goals attached to a multi-
robot system and this relation possesses the
properties of symmetry and non-transitivity
[6].

When two goals are not independent these are
to be considered from two points of view: their

temporal and resource dependence. From the
agent planning point of view it is easy to
demonstrate that a resource dependence can be
reduced to a temporal one. Namely, the typical
case is when two or more agents depend on
(have to use) the same resource and the
situation is solved by establishing an order for
their access to the respective resource.

When analysing the temporal dependence, two
cases can be identified as being important for
the agent communication mechanism. The
simplest case is when two goals depend on
each other, but so that no time overlap or
interleaving exists between the actions solving
the two goals. This means, for example, that
the actions working out the first goal end
before the first action of the second goal
solution has to start. Such a situation is
presented in Fig. 5; the goal of assembling a
product determines two sub-goals: transferring
of a part of type A to the assembly table and
transferring & fixing of a part of type B. The
first sub-goal can be assigned to the robot R1
(by the manager agent, which is a software
agent, through the above mentioned contract
net protocol), while the other should be solved
by the agent corresponding to the robot R2. As
the first sub-goal must be solved first, by only
one agent – robot R1, and then the other sub-
goal can be entirely solved by the agent
corresponding to robot R2, just a vertical
message exchange is implied; the manager is
awarding a contract to an agent and then the
result of the goal fulfilment is sent from the
contractor to the manager, as indicated by the
arrows of the Fig. 5 – the number attached to
the arrows indicates the message order.

The other case corresponds to goals with a
solution supposing an action overlapping
or/and interleaving. Such a situation is
presented in Fig. 6, when the goal of feeding

Assemble a product
of type 1

Transfer a part of
type A

Transfer and fix a
part of type B

1

2

3

4

Fig. 5. An example of non-overlapping goals

R1 R2

Software
agent

 CONTROL ENGINEERING AND APPLIED INFORMATICS 29

the machine tool is decomposed in several sub-
goals by a software agent and the solution
involves several agents with an action
interleaving; for example, the conveyor actions
referring to part transfer from one cell to the
other (see Fig. 1) are interleaved with the
actions of other agents. Even in this case the
same message exchange scheme as above is
still possible, with the manager agent receiving
the messages on each sub-goal fulfilment and
so being able to announce the next agent in the
solution sequence. However, a better
efficiency is obtained by combining vertical
and horizontal message exchange mechanisms.
As Fig. 6 shows the starting point is a message
sent by the manager to the agent supposing to
solve the first sub-goal in the sequence, and
then the messages are sent only between the
contractor agents, until the last sub-goal is
solved and a corresponding message is issued
towards the manager. The only complication of
this approach is the necessity for each agent to
be informed on which will be the next agent in

the sequence, so that it should know to whom
is supposed to send the message after solving
the assigned goal. In the proposed
implementation this information is provided by
the manager, when assigning the contracts to
various agents (this phase is marked by the
arrows with the number 0 in Fig. 6).

5. SOME ASPECTS OF THE PROPOSED
ARCHITECTURE IMPLEMENTATION

The previously presented theoretical and
practical elements were used in the
development of an agent based planning and
control architecture for the manufacturing
system of Fig. 1. As already mentioned, a
software agent is attached to each device,
namely to the two robots, and also to the
machine tool, computer vision based
inspection system and conveyor. Besides these,
a pure software agent is located on a central
computer station that is in charge with the user

Feeding of the
machine tool

2

Fig. 6. An example of goals with overlapping actions

Software
agent

R1

0 Load a raw part on
the conveyor

0

R1

7

Load the machine
tool Conveyor

R2

Transfer the part to
the CVS

Identify the raw part

0

5
Transfer the part to

the conveyor

6

4

R2

Computer vision system (CSV)

Part transfer

0

R2

3

Part transfer

Conveyor

R2

Part identification
goal

0

1

 CONTROL ENGINEERING AND APPLIED INFORMATICS 30

information exchange. This is the manager
agent in the first goal decomposition phase, as
being the one that receives the production
goals from the user interface.

When a goal is received by an agent a
decomposition is achieved based on some a
priori knowledge schemes (e.g. assembling,
machine tool processing goal decomposition
procedures). It is to mention that in the
considered approach these are simple and easy
to store plans because they contain only a first
level decomposition; the further decomposition
is accomplished by the contract net protocol
mechanism. As an example, the case presented
in Fig. 6 is a possibility of solving a goal for
feeding the machine tool, when the raw part to
be used is not identified. The various sub-goals
are considered in accordance with the
previously discussed goal classification
scheme. This supposes that they get time tags
enabling their order. Moreover the goal for
part identification gets a further
decomposition. Namely the agent
corresponding to the robot R2 can solve only
certain parts of the necessary plan scheme, the
ones referring to the part transferring
operations. The respective agent got the whole
solution by applying the contract net protocol;
it was the manager in this case, and it got a
positive answer for the goal of proper part
identification from the computer vision system
(another possibility could be that the part was
identified by the user). As the agent of robot
R2 is the manager of this goal, it is the one
responsible for the solution synchronization
with the other agents (arrows 3 and 6 in Fig.6).

Some tests were made using an agent oriented
software, namely Jack development
environment [14]. This is fully integrated with
the Java programming language, including all
the Java development components as well as
the specific extensions for agents. A Jack agent
is built to support the BDI architecture that is
an advantage for the proposed approach. An
instance of the Jack Agent class waits until it is
given a goal to achieve or experiences an event
that it must respond to. If the agent thinks that
the goal has already been achieved or the event
has already been treated, it does nothing.
Otherwise, it looks for a plan suitable to the
current request. If this plan fails, it looks for
another one that might apply until it succeeds
or all the alternatives are exhausted. The

source code of a Jack application contains
classes for entities like agents, agent beliefs,
capabilities, plans, events. As an example, the
next code is part of the plan that an agent
attached to a robot will execute when it is
awarded a contract for a part of type A transfer
(this is the event launching the plan – Fig. 5).

plan PartA_transfer extends Plan{
#handles event Contract_Part_A_Transfer
trans_A;
static Boolean relevant
(Contract_Part_A_Transfer trans_A) {return
((trans_A.StorageDevice==NOT_EMPTY &&
trans_A.StorageTypePart == A) ||
(trans_A.Conveyor == NOT_EMPTY &&
trans_A.ConveyorTypePart == A) ||
trans_A.Subcotract_Part_A == ACCEPTED)}
#posts event Agent_Busy;
#sends event AccomplishedPartA_transfer;
#uses agent implementing MovementInterface
robot_movement;
 body()
 {. . .
robot_movement.movePart
(trans_A.initialPosition,
trans_A.FinalPosition, trans_A.Trajectory);
. . . } }

The presented code includes Java instructions
and Jack declarations (source lines starting
with # and identifying the relationship between
classes). The plan defined by the
PartA_transfer class will be used according to
the definition of the parent class Plan.
#handles declaration identifies the event which
the plan will respond to. The method relevant()
belongs to the Plan class and specifies for each
subclass the conditions to start a plan. This
method is performed by all the agents and its
return determines the start of an appropriate
plan. In our case the test for the plan feasibility
refers to either the presence of an A type part
in the storage device or on the conveyor, or to
the case that the part supplying goal was
accepted by another agent. If proper definitions
are included, a plan can launch events towards
all the other agents (the #posts declaration used
in our case to announce that the agent is busy)
or only to certain of them (the #sends
declaration used when the manager is to be
informed about the goal achievement). #uses
represents a constraining declaration referring
to the agents that can use the actual plan. The
body() method is the top reasoning method for
a plan. It belongs to the Plan class and must

 CONTROL ENGINEERING AND APPLIED INFORMATICS 31

always appear with specific elements for each
plan subclass. This may contain several
routines; in our case, the routine movePart()
includes elements specific to the planning and
controlling method used for the respective
industrial robot and it implies the execution
transfer together with certain parameters
towards the robot controller.

6. CONCLUSION

The presented results refer to an ongoing
research about the application of multi-agent
systems in manufacturing. The target is to
enhance the possibility of the present industrial
robots to be used in a complex environment
and to solve problems in cooperation. Though
the common industrial robot applications still
consider robots as operating by themselves in
serving certain processes (machine tool
tending, welding, etc.), some new
opportunities may be obtained when they
collaborate in the so called multi-robot
systems. One such example is the case of robot
assembly, as it was considered in this
contribution. A greater flexibility is obtained
when the agents attached to the robots can get
the assembly solution on-line, by making use
of the multi-agent system negotiation and
communication procedures.

The coupling between a flexible manufacturing
system provided with two industrial robots and
an agent based software proved to be a
valuable test-bed. The already made
experiments determined promising results. The
industrial robot programming systems have
certain limitations, as resulting from their
classical procedural programming scheme. By
adding a decision software, namely an agent
based one, the robot actions can be determined
according to a distributed and negotiation
based approach. The new architecture allowed
more scenarios to be tested and the multi-robot
system got solutions for numerous situations
regarding the contents of the storage devices,
the order schemes for the assembling
operations and the availability of various
devices. Some open problems still remain, like
the find of an industrial secure connection
between an agent based software and the
manufacturing devices, the adjustment of all
the manufacturing phases to the specificity of
the agent based approach, and the
establishment of the right interaction between

the human operators and the multi-agent
system.

REFERENCES

[1] Allen, J., Kautz, H., Pelavin, R.,
Tenenberg, J., Reasoning About Plans,
Morgan Kaufmann Publ., San Mateo, pp.
128 – 201, 1991.

[2] DeLoach, S. A., Wood, M. F., Sparkman,
C. H., Multiagent systems engineering,
Internat. Journal of Software Engineering
and Knowledge Engineering, 11(3), pp.
231 – 258, 2001.

[3] D’Inverno, M., Luck, M., Understanding
Agent Systems, Springer-Verlag, Berlin,
pp. 15 -33, 2001.

[4] Huhns, M., Stephens, L., Multiagent
Systems and Societies of Agents. In:
Multiagent Systems. A Modern Approach
to Distributed Artificial Intelligence (Ed.
Weiss, G.), MIT Press, Cambridge,
pp.99–103, 2001.

[5] Padgham, L., Winikoff, M., Developing
Intelligent Agent Systems, John Wiley &
Sons, Chichester, pp. 5 – 52, 2004.

[6] Panescu, D., An Artificial Intelligence and
Automatic Control Approach Toward
Reactive Robotic Systems, Proceed. of
TAINN’95, Gebze, Turkey, pp. 305 – 315,
1995.

[7] Panescu, D., Miron, S., On CLIPS
Multiagent System Implementation for a
Multi-Robot Application, Proceedings of
SINTES 12, Craiova, pp. 308 – 313, 2005.

[8] Rogojanu, R., Panescu, D., A Soccer
Mobile Robot Simulator – Path Planning
Issues, Proceedings of MechRob 2004,
Aachen, Vol. 2, pp. 367 – 372, 2004.

[9] Sheu, P., Xue, Q., Intelligent Robotic
Planning Systems, World Scientific,
Singapore, pp. 134 -169, 1993.

[10] Singh, M., Rao, A., Georgeff, M., Formal
Methods in DAI: Logic-Based
Representation and Reasoning. In:
Multiagent Systems. A Modern Approach
to Distributed Artificial Intelligence (Ed.
Weiss, G.), MIT Press, Cambridge, pp.
342 – 355, 2001.

[11] Varvara, G., Panescu, D., On the Design
of a Multi-Agent Architecture for a
Flexible Manufacturing Cell, Proceedings
of RAAD05, Bucharest, pp. 424 – 429,
2005.

[12] Wooldridge, M., Intelligent agents. In:
Multiagent Systems. A Modern Approach

 CONTROL ENGINEERING AND APPLIED INFORMATICS 32

to Distributed Artificial Intelligence (Ed.
Weiss, G.), MIT Press, Cambridge, pp.
27– 78, 2001.

[13] Wooldridge, M., An Introduction to
Multiagent Systems, John Wiley & Sons,
Baffins Lane, pp. 17 – 42, 125 – 236,
2002.

[14] * * * JACK Intelligent Agents. Agent
Manual, Agent oriented Software Pty.
Ltd., Release 5.0, Carlton South, Victoria,
Australia, www.agent-software.com.

[15] * * * The European Robotics Research
Network of Excellence (EURON),
EURON Research Roadmaps,
www.euron.org, 2005.

