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1. INTRODUCTION 

 
The multi-agent and multi-robot systems are two 
research fields that possess certain convergence 
issues. Both refer to a distributed approach, 
often complex systems are involved and an 
important autonomy is a must. Meanwhile 
neither of the two got definite solutions, nor the 
application of software agents in Robotics had a 
great impact till now. That is why it is worth 
investigating how the current multi-agent 
systems technology can be used in multi-robot 
systems. 

As a brief definition, a multi-agent system can 
be seen as a structure composed of multiple, 
interacting agents [12]. The key issues in this 

statement are the words agent and interaction. 
As about the agent, this is the best described by 
its characteristics; the most often referred are: 
autonomy, reactivity, pro-activeness, 
communication abilities, mobility, rationality 
and social ability [3], [12], [13]. All these are to 
be related so that an agent should be able to 
interact with its environment, in a goal based 
fashion, according to a perceive, reason and act 
cycle [12], [13]. From this point the connection 
with Robotics is easy to make: a robot is a 
technical system supposed to replace a human 
operator in solving tiresome, difficult and/or 
dangerous tasks, exhibiting exactly the above 
mentioned agent characteristics and operating 
under the same before mentioned cycle. 
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Fig. 1. The flexible manufacturing system considered for experiments 

1. IRB 1400 industrial robot (R1), 2. IRB 2400 industrial robot (R2), 
3. Machine tool, 4. Computer vision system,  5. Conveyor, 6, 7. Storage devices,  

8. IRB 1400 robot controller, 9. IRB 2400 robot controller, 10. Assembly tableconcerns 

 

The difference between a robot and an agent 
mainly the appearance of the two: a robot is 
always a physical system while an agent may 
be only a software entity. From its more 
complex actuation ability it results the greater 
impact on its environment that the robot should 
be capable to produce when compared with a 
software agent. In a brief assertion, a robot can 
be always seen as an agent (the only 
exceptions are the very simple manipulators 
repeating a single sequence of actions and with 
little sensorial endowment), while an agent can 
be a robot only when possessing definite 
physical sensorial and action sub-systems.  

Another link between multi-robot and multi-
agent systems is the nowadays challenge for 
Robotics to enlarge its application area by the 
use of robot teams instead of single robots 
[15]. The term of multi-robot system concerns 
an interdisciplinary field, covering besides the 
specific Robotics issues (like path planning 
and control for collision avoidance [9]), 
subjects on robot coordination and 
communication. These last points have already 
been analysed in  

 

Distributed Artificial Intelligence, mainly into 
the framework of multi-agent systems, which 
further explains the connection made by this 
contribution. 

A significant problem for the research in multi-
robot systems is the possibility to assess the 
developed approach into a real environment. 
From this point of view, the proposed test-bed 
is shown in Fig. 1. Though the respective 
equipment can be used as a classical flexible 
manufacturing system, it can be also 
considered as a multi-robot system. This is 
justified by the following points: 

• There is a common working area of the two 
robots, above and in the vicinity of the 
assembling table (see Fig. 1), that creates the 
possibility of solving in cooperation an 
assembly goal.  
• The two robots can communicate each with 
the other. 
• They can be involved in solving common 
goals, which should suppose taking decisions 
on common resources use (e.g. the parts for 
assembly, the conveyor). 

 

2 

1 

5 

7 

3 

8 

9 

4 6 

Cell 1 

Cell 2 

10 

Common working 
area of the robots 



  CONTROL ENGINEERING AND APPLIED INFORMATICS  24 

Besides the two ABB industrial robots, type 
IRB 1400 and IRB 2400, named R1 and R2 in 
the following, the manufacturing system 
contains a machine tool, a conveyor and a 
computer vision based inspection system. The 
multi-robot solution for different assembly 
goals can vary in accordance with the way the 
raw and processed parts are present in the 
storage devices near the two robots, and the 
order the two robots are involved in assembly. 
In this way some specific coordination 
mechanisms are needed and the agent based 
approach is presented in the next paragraphs. 
After discussing a few specific elements on the 
agent based approach for a multi-robot system, 
the focus is on establishing certain 
coordination issues based on the relation 
between the time model of the agent activities 
and the structure of the goals; some aspects of 
the implementation are also presented.  

 
 
2. SOME ASPECTS OF THE BDI AGENT 

BASED DESIGN FOR 
MANUFACTURING MULTI-ROBOT 
SYSTEMS 

 
The field of multi-agent systems is quite new 
and thus there is no general methodology for 
an agent based design approach. Instead, 
several specific schemes were developed, more 
frequently being referred: MaSE, Gaia, 
Prometheus, [2], [5], [11], [13]. When these 
are analysed in order to be used in a multi-
robot system, one may find some specific 
aspects and drawbacks. The multi-robot 
systems may vary, being composed of 
homogeneous robots or not, with various 
degrees of autonomy and sensing capabilities. 
Another aspect that can be considered the most 
important for distinguishing an agent based 
approach of the multi-robot systems refers to 
the environment characteristics. The robot 
based flexible  manufacturing systems and 
respectively the mobile robots of a robot 
soccer environment are two limit examples [8], 
[11]. Thus, when comparing these two 
situations according to a multi-agent system 
environment classification [13], one discovers 
that the first case is towards the easiest 
conditions (accessible, deterministic, static and 
discrete), while the second is almost at the 
opposite limits. The present research tries to 
mediate between the various possibilities, in 
order to get some general elements for the 

design and implementation of an agent based 
solution in multi-robot systems.  

The various agent based approaches imply 
some specific software architecture. One of the 
most used, for purposes like military, 
commerce or entertainment applications is the 
BDI (Belief-Desire-Intention) architecture 
[10], [12]; it can provide certain advantages 
when utilized in manufacturing. One important 
point is the way the BDI scheme can bring 
about the necessary bias between the proactive 
and reactive components necessary for a multi-
agent system implied in production. To clarify 
this, it is to notice how the key issues of the 
BDI architecture are carried out in such an 
application. 

Without giving all the details of the designing 
phase (see also [5], [10], [11], [12]), agents 
have to manage with several entities: beliefs, 
intentions, desires, and plans. The beliefs 
collection provides an agent certain means to 
handle the interaction with its environment 
(which includes the agent itself, the other 
agents, and the user that should provide the 
goals, too). First the sensorial information 
conducts the agent towards formulating beliefs 
on the present state of its environment. 
Moreover, a belief is supposed to be more 
flexible than the usual preconditions used in 
classical planning or the state conditions in 
finite automata, and it is expected to create 
more possibilities, as going beyond the first 
order predicate logics. For example, the agent 
corresponding to the robot R1 may believe that 
a part is on the conveyor after it was informed 
by the robot R2 that it dropped that part on the 
conveyor. By making use of this belief the 
robot R1 can include the part in its plans, 
supposing it can get the respective part after a 
corresponding action.  

Though sometimes beliefs are only related 
with the sensorial information, in the proposed 
approach they are also associated with the 
goals. For example the robot R2 may believe 
that it has to solve the goal of supplying a part, 
and it will release this belief when the 
computer vision system will provide the 
information on the presence of the respective 
part in the storage device (this can be supplied 
without the robot R2 interaction). In this way a 
more opportunistic behaviour is obtained for 
the manufacturing system. The beliefs are to 
be updated according to the sensorial 
information available to the agent (the percepts 
– see Fig. 2) and in our case according to the 
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set of goals, too; it is supposed that for a 
manufacturing system the goals are 
continuously received by the multi-agent 
system.  

Taking into account the current beliefs the 
agent is able to generate its desires. These are 
the agent’s options in achieving the goals. As 
generally known for an agent based solution 
[10], the desires must be consistent with both 
the present beliefs and intentions. After a 
further refinement step, the intentions are got 
from desires through an opportunistic filtering 
mechanism – see Fig. 2. This can be 
understood because the intentions represent the 
last phase before the agent’s action issuing. 
The intentions refer to the course of actions 
that the agent can consider and which are 
progressively refined until they correspond to 
elementary actions that it can put into practice. 
The intentions are to be obtained from desires, 
what makes the necessary connection with the 
goals. Moreover, as mentioned above the 
transformation of desires in intensions must be 
opportunistic, taking into account the changes 
in the environment.  

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Intentions are to be smoothly tuned in order to 
get the right bias between the reactive and 
proactive characteristics. Through the goal 
influence, they can determine the necessary 
proactive feature. They are part of the planning 
phase; in fact, the desire transformation in 

intentions and then their conversion in actions 
constitute the agent planning process. Besides 
offering the choice set for the action selection, 
the agent can use intentions to filter future 
planning, based on the necessity to maintain 
the consistency of its knowledge base. For 
example, the agent corresponding to the robot 
R2 while having the intention to discharge the 
conveyor, based on the belief that this is full, 
will not consider the intention to place a part 
on the conveyor. 

  
On the other hand, intentions must persist. The 
robot R2 will not leave its intention to 
assemble a product until either it succeeds to 
do this, or knows (believes) that the respective 
product was assembled in another way. It is 
clear that reactivity should influence this 
process. In the above example, the agent 
attached to the robot will drop the mentioned 
intention when it has the feedback that the 
product has been assembled by the other robot. 
Thus, an agent has to cyclically revise its 
intentions and to find the correct balance about 
this process, namely to establish a right 
frequency for the reconsideration of intentions. 
In the case of the considered manufacturing 
system intensions are to be re-computed only 
in the case of an event that is influencing a 
goal. This means that a beliefs versus goals 
comparison should determine the 
corresponding moments. It is supposed that 
such a result is quite general, i.e. it can be 
applied to any computer aided manufacturing 
system; further comments can be made after 
considering some additional theoretical issues. 

 
 
3. A POSSIBLE CONECTION BETWEEN 

THE BDI ARCHITECTURE AND THE 
BRANCHING TIME MODEL 

 
As about the logical background of the BDI 
model, the predicate logic, its extension, 
namely the modal logic and the branching time 
model are to be considered [1], [6], [10]. It is 
important to observe the practical implications 
of these theoretical aspects for manufacturing 
systems planning and controlling. Referring 
only to temporal reasoning, the branching time 
model considers a state space approach with 
the states arranged in a tree that branches into 
the future (each branch is called a world) [1], 
[6]. In this way the agent is capable to consider 
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Fig. 2. The adapted BDI agent architecture  
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several future evolutions, named possible 
worlds.  

As an example, Fig. 3 presents such a model 
for the considered system. The starting 
moment is t0 when the agent corresponding to 
the robot R1 knows that property Pc holds – a 
part is on the conveyor, according to the 
information provided by its sensorial system. 
The various paths correspond to different 
actions executed by the robot R1: a1 – picking 
up of a part from the storage device, a2 – 
picking up of a part from the conveyor, a3 – 
transfer of a part from the storage device to the 
assembly table, a4 – feeding of the machine 
tool, a5 – wait until the part is processed, a6 – 
part transfer from the machine tool to the 
assembly table, a7 – part placing on the 
conveyor, or to events independent of the 
robot: b – fall of the part from the conveyor. 
By making use of this representation the agent 
beliefs become statements possibly true – for 
example, at the moment t0 it may believe that a 
part is on the conveyor (which is indeed true, 
property Pc in Fig. 3), and may believe that 
this can still hold until some future moment, 
for example according to the path determined 
by the action a2. It is obvious from the model 
that this belief may become false in certain 
circumstances, e.g. when event b is happening.  

 

 

 

 

 

 

 
 

For a manufacturing system the agent desires 
can be also considered statements possible 
true, but unlike the beliefs they strictly refer to 
future moments and to properties that can be 
determined by the agent activity. In the case of 
the proposed environment, the robot R1 may 
have several desires: to feed the storage 
device, to feed the machine tool, to unload the 
storage. It is clear that some desires can be in 
conflict each other or with some of the agent 
beliefs.  

 
From the planning point of view, desires can 
be considered potential inputs for the agent 

plans and actions. The link between the desires 
and the agent actual actions is provided by its 
intentions. In the case of a manufacturing 
system, where the robots are supposed to 
cooperate, the goals are the elements to 
determine the desires of the agents; that is why 
the next paragraph is dedicated to further 
considerations on goal driven agent based 
systems. Intentions should provide the means 
for a goal solving. For example, if the robot R1 
has been provided the goal to obtain a 
processed part of a certain type, and the robot 
has the belief that a raw part is present in the 
nearby storage device, then it reaches the 
intention to feed the machine tool in order to 
obtain the necessary processed part. The way 
the intentions are obtained from the agent 
desires and beliefs can be something similar to 
conventional planning [1], [6] or to the use of 
certain a-priori devised planning schemes [5], 
and the branching time model supports both 
approaches. 

 
 
4. ON THE GOAL ASSIGNMENT AND 
THE RELATED AGENT 
COORDINATION MECHANISM 
 
The starting point for the multi-robot as well as 
multi-agent system design should be an 
analysing phase, when the system goals are to 
be considered first. Various approaches 
attempt to solve the goal identification step by 
means of use cases or scenarios, and roles or 
functionalities [2], [5], [11]. It is to notice that 
for an agent based multi-robot system the 
following issues should be discovered: 
 
• The goal hierarchy – the way the goals are 
related to each other and their internal 
structure. In the case of a multi-robot based 
assembly (as the one in the environment 
described in Fig. 1) all the sub-goals are 
derived from assembly goals. The sub-goals 
can be classified in two categories: the ones to 
be achieved by a robot and respectively others 
to be solved by another device. According to 
Fig. 4, the manipulation for assembling, the 
machine tool/inspection system feeding/un-
feeding and some auxiliary manipulation sub-
goals can be assigned to a robot, namely some 
of them to both robots and others only to one 
robot. In the considered case the auxiliary 
manipulation sub-goals refer to supplying and 
unloading of the storage devices and conveyor. 
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With respect to a multi-robot system approach, 
it is worth to further analyse these goals, 
because they may create a bottleneck for the 
whole system operation – at a certain instant a 
robot may be involved in a single goal 
achievement. When the goals and beliefs are 
analysed in accordance with the dependence 
they create on the agents of a multi-agent 
system [13], one discovers that all the possible 
situations can happen: 
 
   a) independence – the robot R1 can solve the 
goal to feed the machine tool independently of 
the robot R2 when the necessary raw part is 
present in the storage device near the robot R1. 
   b) unilateral – the robot R1 depends on the 
robot R2 in order to fulfil the goal of feeding 
the machine tool when the necessary raw part 
is not present in the storage device near the 
robot R1, but that raw part can be provided by 
the robot R2. 
   c) mutual – the robots depend on each other 
with respect to solving an assembling goal, 
when each of them possesses one of the two 
parts that must be assembled. 
   d) reciprocal – the robot R1 depends on the 
robot R2 with respect to obtaining the 
necessary raw part to be processed on the 

machine tool, while the robot R2 depends on 
the robot R1 with respect to getting a 
processed part, that can be the same with the 
one implied by the current goal of the robot R1 
(in fact this case satisfies the definition of 
mutual goals), or can be a different one. 
 

• The way the goals are assigned to the robots 
of the multi-robot system – this aspect can be 
handled as with the usual goal allocation to the 
agents of the multi-agent systems, based on an 
established coordination mechanism. The 
contract net protocol was used in the 
considered system [4], [7]. This is an 
interaction protocol for cooperative problem 
solving with agents. The goals are distributed 
based on a negotiation and communication 
procedure. In our system either the software 
agent which directly interacts with the user or 
an agent corresponding to a robot becomes a 
manager when having a goal that cannot be 
managed by itself. This is supposed to 
broadcast a message in the multi-agent system 
for the goal announcement, and then, through a 
negotiation mechanism, the goal fulfilment 
will be appointed to a contractor, namely the 
agent having the best capabilities to solve the 
goal. Some elements specific for the multi-
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robot systems still exist referring to the 
constraints robots exhibit regarding their 
interaction with the environment (e.g. a robot 
cannot solve a goal that implies a movement 
beyond its working area). Furthermore, the 
goal decomposition should be made till the 
actions to be achieved by individual agents, 
which means the robot actions in this case. In 
the proposed approach the goal division is 
made both by the manager and by the 
contractor, which is possible in the contract net 
mechanism (a contractor can further become a 
manager for some sub-goals [7]).  
 
• The goal solution must assure the 
consistency and completeness – these 
conditions can be checked as with the 
centralized systems (for example, as in the 
case of nonlinear planning [1]), but when using 
robots for industrial applications this tests can 
be simplified. Indeed, instead of trying to 
obtain a plan to solve a goal from scratch 
certain a-priori devised plan schemes may be 
considered and combined to solve a complex 
initial goal. This can be facilitated by a multi-
agent approach that makes use of a BDI 
architecture.  

A further discussion on the goals assignment 
can be useful in understanding the considered 
application. Often a manufacturing problem 
can determine several goals and/or a goal is 
divided in more sub-goals, which have to be 
solved in a distributed manner in the 
manufacturing system. Meanwhile, for a 
production process some scenarios suppose the 
necessity of a decision mechanism. A goal 
dependency analysis can guide the agent based 
solution with respect to the coordination and 
communication aspects. Thus one can take into 
account the following definition. Two goals 
can be considered independent if and only if 
the order in which the goals are solved does 
not matter for the problem they are derived 
from, and the solutions for the two goals does 
not imply the use of common resources. In 
such a case the agents solving the two goals do 
not need to exchange further information 
besides that on the goal fulfilment. Based on 
this definition an independence relation can be 
defined on the set of goals attached to a multi-
robot system and this relation possesses the 
properties of symmetry and non-transitivity 
[6].  

When two goals are not independent these are 
to be considered from two points of view: their 

temporal and resource dependence. From the 
agent planning point of view it is easy to 
demonstrate that a resource dependence can be 
reduced to a temporal one. Namely, the typical 
case is when two or more agents depend on 
(have to use) the same resource and the 
situation is solved by establishing an order for 
their access to the respective resource.  

When analysing the temporal dependence, two 
cases can be identified as being important for 
the agent communication mechanism. The 
simplest case is when two goals depend on 
each other, but so that no time overlap or 
interleaving exists between the actions solving 
the two goals. This means, for example, that 
the actions working out the first goal end 
before the first action of the second goal 
solution has to start. Such a situation is 
presented in Fig. 5; the goal of assembling a 
product determines two sub-goals: transferring 
of a part of type A to the assembly table and 
transferring & fixing of a part of type B. The 
first sub-goal can be assigned to the robot R1 
(by the manager agent, which is a software 
agent, through the above mentioned contract 
net protocol), while the other should be solved 
by the agent corresponding to the robot R2. As 
the first sub-goal must be solved first, by only 
one agent – robot R1, and then the other sub-
goal can be entirely solved by the agent 
corresponding to robot R2, just a vertical 
message exchange is implied; the manager is 
awarding a contract to an agent and then the 
result of the goal fulfilment is sent from the 
contractor to the manager, as indicated by the 
arrows of the Fig. 5 – the number attached to 
the arrows indicates the message order. 
 

 

 

 

 

 

 

 

 

 

The other case corresponds to goals with a 
solution supposing an action overlapping 
or/and interleaving. Such a situation is 
presented in Fig. 6, when the goal of feeding 
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the machine tool is decomposed in several sub-
goals by a software agent and the solution 
involves several agents with an action 
interleaving; for example, the conveyor actions 
referring to part transfer from one cell to the 
other (see Fig. 1) are interleaved with the 
actions of other agents. Even in this case the 
same message exchange scheme as above is 
still possible, with the manager agent receiving 
the messages on each sub-goal fulfilment and 
so being able to announce the next agent in the 
solution sequence. However, a better 
efficiency is obtained by combining vertical 
and horizontal message exchange mechanisms. 
As Fig. 6 shows the starting point is a message 
sent by the manager to the agent supposing to 
solve the first sub-goal in the sequence, and 
then the messages are sent only between the 
contractor agents, until the last sub-goal is 
solved and a corresponding message is issued 
towards the manager. The only complication of 
this approach is the necessity for each agent to 
be informed on which will be the next agent in 

the sequence, so that it should know to whom 
is supposed to send the message after solving 
the assigned goal. In the proposed 
implementation this information is provided by 
the manager, when assigning the contracts to 
various agents (this phase is marked by the 
arrows with the number 0 in Fig. 6). 
 

5. SOME ASPECTS OF THE PROPOSED 
ARCHITECTURE IMPLEMENTATION 

 
The previously presented theoretical and 
practical elements were used in the 
development of an agent based planning and 
control architecture for the manufacturing 
system of Fig. 1. As already mentioned, a 
software agent is attached to each device, 
namely to the two robots, and also to the 
machine tool, computer vision based 
inspection system and conveyor. Besides these, 
a pure software agent is located on a central 
computer station that is in charge with the user 
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information exchange. This is the manager 
agent in the first goal decomposition phase, as 
being the one that receives the production 
goals from the user interface.  

 
When a goal is received by an agent a 
decomposition is achieved based on some a 
priori knowledge schemes (e.g. assembling, 
machine tool processing goal decomposition 
procedures). It is to mention that in the 
considered approach these are simple and easy 
to store plans because they contain only a first 
level decomposition; the further decomposition 
is accomplished by the contract net protocol 
mechanism. As an example, the case presented 
in Fig. 6 is a possibility of solving a goal for 
feeding the machine tool, when the raw part to 
be used is not identified. The various sub-goals 
are considered in accordance with the 
previously discussed goal classification 
scheme. This supposes that they get time tags 
enabling their order. Moreover the goal for 
part identification gets a further 
decomposition. Namely the agent 
corresponding to the robot R2 can solve only 
certain parts of the necessary plan scheme, the 
ones referring to the part transferring 
operations. The respective agent got the whole 
solution by applying the contract net protocol; 
it was the manager in this case, and it got a 
positive answer for the goal of proper part 
identification from the computer vision system 
(another possibility could be that the part was 
identified by the user). As the agent of robot 
R2 is the manager of this goal, it is the one 
responsible for the solution synchronization 
with the other agents (arrows 3 and 6 in Fig.6). 

 
Some tests were made using an agent oriented 
software, namely Jack development 
environment [14]. This is fully integrated with 
the Java programming language, including all 
the Java development components as well as 
the specific extensions for agents. A Jack agent 
is built to support the BDI architecture that is 
an advantage for the proposed approach. An 
instance of the Jack Agent class waits until it is 
given a goal to achieve or experiences an event 
that it must respond to. If the agent thinks that 
the goal has already been achieved or the event 
has already been treated, it does nothing. 
Otherwise, it looks for a plan suitable to the 
current request. If this plan fails, it looks for 
another one that might apply until it succeeds 
or all the alternatives are exhausted. The 

source code of a Jack application contains 
classes for entities like agents, agent beliefs, 
capabilities, plans, events. As an example, the 
next code is part of the plan that an agent 
attached to a robot will execute when it is 
awarded a contract for a part of type A transfer 
(this is the event launching the plan – Fig. 5).  

plan PartA_transfer extends Plan{ 
#handles event Contract_Part_A_Transfer 
trans_A; 
static Boolean relevant 
(Contract_Part_A_Transfer trans_A)  {return 
((trans_A.StorageDevice==NOT_EMPTY && 
trans_A.StorageTypePart == A) || 
(trans_A.Conveyor == NOT_EMPTY && 
trans_A.ConveyorTypePart == A) ||  
trans_A.Subcotract_Part_A == ACCEPTED)} 
#posts event Agent_Busy; 
#sends event AccomplishedPartA_transfer; 
#uses agent implementing MovementInterface 
robot_movement; 
   body() 
    {. . .  
robot_movement.movePart 
(trans_A.initialPosition, 
trans_A.FinalPosition, trans_A.Trajectory); 
. . .  } } 

 
The presented code includes Java instructions 
and Jack declarations (source lines starting 
with # and identifying the relationship between 
classes). The plan defined by the 
PartA_transfer class will be used according to 
the definition of the parent class Plan. 
#handles declaration identifies the event which 
the plan will respond to. The method relevant() 
belongs to the Plan class and specifies for each 
subclass the conditions to start a plan. This 
method is performed by all the agents and its 
return determines the start of an appropriate 
plan. In our case the test for the plan feasibility 
refers to either the presence of an A type part 
in the storage device or on the conveyor, or to 
the case that the part supplying goal was 
accepted by another agent. If proper definitions 
are included, a plan can launch events towards 
all the other agents (the #posts declaration used 
in our case to announce that the agent is busy) 
or only to certain of them (the #sends 
declaration used when the manager is to be 
informed about the goal achievement). #uses 
represents a constraining declaration referring 
to the agents that can use the actual plan. The 
body() method is the top reasoning method for 
a plan. It belongs to the Plan class and must 
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always appear with specific elements for each 
plan subclass. This may contain several 
routines; in our case, the routine movePart() 
includes elements specific to the planning and 
controlling method used for the respective 
industrial robot and it implies the execution 
transfer together with certain parameters 
towards the robot controller. 

 

6. CONCLUSION 

The presented results refer to an ongoing 
research about the application of multi-agent 
systems in manufacturing. The target is to 
enhance the possibility of the present industrial 
robots to be used in a complex environment 
and to solve problems in cooperation. Though 
the common industrial robot applications still 
consider robots as operating by themselves in 
serving certain processes (machine tool 
tending, welding, etc.), some new 
opportunities may be obtained when they 
collaborate in the so called multi-robot 
systems. One such example is the case of robot 
assembly, as it was considered in this 
contribution. A greater flexibility is obtained 
when the agents attached to the robots can get 
the assembly solution on-line, by making use 
of the multi-agent system negotiation and 
communication procedures. 

The coupling between a flexible manufacturing 
system provided with two industrial robots and 
an agent based software proved to be a 
valuable test-bed. The already made 
experiments determined promising results. The 
industrial robot programming systems have 
certain limitations, as resulting from their 
classical procedural programming scheme. By 
adding a decision software, namely an agent 
based one, the robot actions can be determined 
according to a distributed and negotiation 
based approach. The new architecture allowed 
more scenarios to be tested and the multi-robot 
system got solutions for numerous situations 
regarding the contents of the storage devices, 
the order schemes for the assembling 
operations and the availability of various 
devices. Some open problems still remain, like 
the find of an industrial secure connection 
between an agent based software and the 
manufacturing devices, the adjustment of all 
the manufacturing phases to the specificity of 
the agent based approach, and the 
establishment of the right interaction between 

the human operators and the multi-agent 
system. 
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