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Abstract: This paper presents a workspace analysis of 3R industrial-type manipulators, 
which have geometrical simplification of general kinematic parameters. In particular, we 
have focused attention on industrial-type manipulators, which can be grouped usually as 
orthogonal and ortho-parallel manipulators. The classification regards with relative 
orientation of three directions of revolute joints’ axes. A formulation is presented based on a 
level-set reconstruction of the workspace. The proposed analysis allows for determining 
different topologies of industrial manipulators based on kinematic properties. Numerical 
examples are shown. 

1. INTRODUCTION 
 
Workspace analysis of serial manipulators is of 
great interest because of the influence of the 
workspace geometry on manipulator design, 
placement in a working environment, and 
trajectory planning.  
Nowadays the majority of manipulators for 
industrial applications are of serial type. 
They often have geometric design 
simplifications, such as intersecting joint 
axes, orthogonal or parallel joint axes. 
Moreover, most of the industrial 
manipulators are wrist-partitioned, that is 
they consist of a concatenation of a 3R 

(Revolute) arm, i.e., regional structure, and 
a spherical wrist that is attached to the 
terminal link of the arm. The workspace 
analysis of such manipulators can be 
performed by considering the positioning 
and orienting task as well as the singularities 
separately.  
 
Early studies have been developed for 3R 
manipulators for either positioning [1, 2]; or 
orienting tasks. An algebraic formulation for 
determining the workspace of 3R 
manipulators has been presented in [3] and 
then generalized for nR manipulators in [4].  
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The determination of the workspace 
boundary in Cartesian Space has been 
proposed also by [5].  
Other papers are related to the singularity of 
the Jacobian matrix that is usually expressed 
in the Joint Space. Regions that are free of 
singularities in the Joint Space have been 
named C-sheets, [6]. In C-sheets it is 
possible to determine how to change posture 
without passing through singularities [7]. 
Manipulators that can change posture 
without meeting a singularity have been 
named cuspidal manipulators in [8]. The 
analysis and characterization of geometric 
singularities of the cross-section boundary 
curve was proposed in [9, 10]. 
Several authors have grouped manipulators 
into classes, as reported in [6, 8, 11], by 
considering special architectures, such as 
cuspidal or orthogonal manipulators, which 
have simplification in the architecture. In 
this paper we present a classification of 3R 
industrial-type manipulators as based on 
kinematic properties of the workspace, but 
not only on parameters simplifications. As a 
completely new method we discuss the 
level-set belonging to the two-parameter set 
of curves, which constitutes the cross-
section of the workspace of the manipulator. 
The graph of the level-set directly linked to 
the level-set provides new and surprising 
insight in the internal structure of the 
workspace. 

 
 

2. A FORMULATION FOR WORKSPACE   
ANALYSIS 

A general 3R manipulator is sketched in Fig.1, 
in which the kinematic parameters are denoted 
by the Hartenberg and Denavit (H-D) notation. 
Without loss of generality the base frame is 
assumed to be coincident with X

1
Y

1
Z

1
 frame 

when θ
1
= 0, a

0
=0 and d

1
=0. The end-effector 

point H can be usually chosen as either the 
center of the end-effector, or the tip of a finger. 
Point H is placed on the X

3
 axis at a distance a

3
 

from O
3
, as shown in Fig.1. The general 3R 

manipulator is described by the H-D parameters 
a

1
, a

2
, d

2
, d

3
, α

1
 and α

2
, and θ

i
, for (i = 1,…,3), as 

shown in Fig.1. 
The position of point H with respect to reference 
frame X

3
Y

3
Z

3
 can be represented by the vector 

H
3
. Using the transformation matrices T

i

i+1, the 
coordinates (x,y,z) of the operation point H with 
respect to the base frame X

0
Y

0
Z

0
 are given by 

the  position vector H
0
 in the form 
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Fig. 1. A kinematic scheme for a general 3R 
manipulator. 

 
The workspace of a general 3R manipulator can 
be expressed in the form of radial and axial 
reaches, r and z respectively, with respect to the 
base frame. r is the radial distance of point H 
from the Z

1
-axis and z is the axial reach; both 

can be expressed as function of H-D parameters. 
Reaches r and z can be evaluated as function of 
coordinates if the position vectors in the form 
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which can be equivalently expressed in the form  
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1Hz =           (3) 

 
Equation (3) represents a 2-parameter family of 
curves, which gives the cross-section workspace 
in a cross-section plane [1, 3] as function of the 
H-D parameters through H

1

x, H
1

y and H
1

z 
coefficients. 
 
 
3. LEVEL-SET ANALYSIS FOR 3R 

MANIPULATORS 
 
In the following this two-parameter set is 
interpreted as a level-set [12]. The level-set of a 
differentiable function ℜ→ℜn:f  
corresponding to a real value c is the set of 
points  
 

( ) ( ){ }cx,x:x,x n1
n

n1 =ℜ∈ KK   (4) 
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The potentiality of the level-set method is now 
applied to the workspace analysis of 3R 
manipulators. In particular, the level-set 
reconstruction for a serial manipulator can be 
obtained by using the 2 parameter-family of 
curves in Eq.(3).  
The level-sets belonging to constant values of θ

3
 

are curves in the RZ-plane. Therefore, this one 
parameter set of curves can be viewed as the 
contour map of a surface S, which conveniently 
can be used to analyze the workspace of the 
manipulator. The surface S is defined via the 
functions  

 

22 rX =  zY =  






 θ
=

2
tanZ 3          (5) 

 
By performing the half-tangent substitution v = 
tan (θ

2
/2) in Eq.(5) and eliminating the v 

parameter one can obtain an implicit equation of 
the surface S.  
 
S: F(X,Y,Z) = 0            (6) 

 
Equation (6) describes an algebraic surface 
which is of degree 20. It splits into two parts  
 
F(X,Y,Z) = S

1
(Z) S

2
(X,Y,Z)           (7) 

 
S

1
 represents four double planes parallel to XY 

plane, in which the height depends on the H-D 
parameters.  
S

2
 is the graph of the level-set function. The 

parameter lines on this surface belong to θ
2
 = 

const or θ
3
 = const. Geometrically S is generated 

by taking a cross-section of the workspace that 
is parameterized by θ

2
 and θ

3
 and explode the 

overlapping level-set curves in the direction of 
the Z-axis.  
The major advantage of this procedure is that on 
S one can see clearly the number of solutions of 
the Inverse Kinematics (IK) belonging to one 
point of the workspace cross-section.  
In Fig.2 this is shown for a general design. In 
Fig.2a) the level-set curves are shown. It should 
be noted that in the displayed cross-section of 
the workspace in fact two different one-
parameter sets of level-curves are displayed. The 
blue one belongs to θ

3
 = const and the grey one 

belongs to θ
2
 = const.  

In the following we only discuss the blue set of 
curves. A discussion of the other set would lead 
to similar results.  
On Fig.2b) and following 3D plots, a 
topologically equivalent surface to S is 

displayed, it is obtained by considering θ
3
 on the 

Z-axis. Geometrically the level-set curves of 
Fig.2a) are the orthogonal projections of , the 
intersection curves with planes Z = const and the 
surface S onto the XY-plane. The blue level-set 
curves in Fig.2a) are therefore a contour map of 
the surface S. Additionally we have displayed in 
Fig.1b) a line parallel to the Z-axis. This line 
shows clearly four intersection points with the 
surface S. Therefore, the corresponding point in 
the level-set plane in Fig.2a) corresponds to a 
four fold solution of the IK. On the surface S

2
 

the θ
3
 curves keep their closed curve nature and 

θ
2
 ones are taken apart.  

In order to determine the algebraic degree of S
2
 

one has to homogenize and intersect with the 
plane at infinity. The resulting intersection is 
completely independent of the H-D parameters. 
It consists of an eight fold line Z = 0 and two 
complex double lines. Thus, the surface is of 
algebraic degree 12. 
Manipulators having singularities on the surface 
S can be considered as an algebraically closed 
set. Indeed, a small perturbation on H-D 
parameters will change the behavior of the 
manipulator. Singularities of the surface S can 
be found by considering the implicit equation of 
S, together with its partial derivatives with 
respect to X, Y, and Z, respectively [13]. All 
these four functions have to vanish for a point 
on the surface being singular. Singularity 
conditions can be expressed as functions of H-D 
dimensional parameters. 
There is an important observation that can be 
made. Considering just the one parameter set of 
level-set curves in the plane of parameters r and 
z, one can observe singular points on the 
envelop curve of the set. These singular points 
have been discussed in the literature quite a lot.  
An enumeration of all possible types of ring 
void has been presented in [9, 14] by analyzing 
the internal branch of the cross-section boundary 
envelope curve. The internal branch of the 
boundary envelope curve in the cross section R-
Z shows generally 3 loops. The middle loop 
delimits a ring void and it is a part of the 
boundary curve; the others are related to 4-
solution regions for the IK problem. By 
considering a formulation for the cross-section 
workspace boundary of 3R manipulators as 
proposed in [10] it is possible to determine the 
singularities on the inner boundary curve, which 
is a part of the enveloping curve. These 
singularities can be either double points or 
acnodes or cusps of the cross-section boundary 
curve [14]. 
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a)    b) 

 
Fig. 2. A numerical example for a general 3R 
manipulator: a) workspace cross-section; b) a 

topologically equivalent surface to S. 
 
The graph S of the level-set function reveals a 
very different nature of these highly interesting 
singular points. Some of them arise just from the 
projection of S into the level-set plane and some 
of them come from singularities of the surface S. 
The geometrical interpretation for the 
singularities of the graph of the level-set 
function is that there is a value of θ

3
 for which 

the operation point H lies on Z
2
 axis. Therefore, 

there is a permanent singularity that causes a 
free motion about Z

2
 axis, which is completely 

independent by θ
2
 angle. In this paper we have 

focused our analysis on this kind of singularities 
for the 3R industrial type manipulators, which 
have been grouped in orthogonal and ortho-
parallel manipulators. 
 
A  A Formulation for Orthogonal Manipulator 
 
Orthogonal manipulators are characterized by 
having three revolute joint axes, which are 
orthogonal to each other. Therefore, kinematic 
parameters can be identified as a1, a2, a3, d2, d3, 
twist angles �1 and �2 are set equal to -90 and 
90 deg. Joint variables are identified as �1, �2 
and �3, respectively, and they will be assumed 
unlimited in this work. A kinematic scheme is 
displayed in Fig. 3. The surface S of  Eq.(6) has 
to be studied. In particular, the factors S1 and S2 
of S can be analyzed separately.  
For orthogonal manipulators the surface S1 can 
be expressed in the form  

 
0

2
2

4
41 kZkZkS ++=  ,                      (8) 

 
where the coefficients ki depend on a2, a3 and d3 

only. They can be expressed in the form 
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In general the equation for S1 can have real 
solutions. The necessary and sufficient condition 
for having real solutions is: d3 = 0 and a3 >a2. 
Other singularities can be found by analyzing 
surface S2. Zeros of the set of equations S2 = 0; 
S2X =0; S2Y =0; and S2Z =0, yield the geometric 
singularities of the surface S2.  
Singularities of S2 surface can be can expressed 
by the product of two polynomials in the form 

 
( )2
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2
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( ) 2
3

2
2
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3

2
3

2
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The zeros of the set of equations: S2 = 0; S2X =0; 
S2Y =0; and S2Z =0, yield the geometric 
singularities of S2.  
 
 

 
 

Fig. 3. A kinematic scheme for an orthogonal 3R 
manipulator. 

 
A classification is considered in order to obtain 
groups of manipulators having similar kinematic 
properties.  The following classes can be 
identified for orthogonal manipulators. 
This classification allows obtaining design 
information related to workspace properties. 
Geometrically, when �2 is equal to 90 deg then 
a member of the �3 parameter set of curves 
belonging to different values of a3 can intersect 
the Z2 axis iff d3 is equal to zero. In this case, the 
�3 parameter set of curves is in a plane 
containing Z2 axis. In particular, each possible 
intersection of a �3 curve represents a 
singularity of the level-set graph. Only three 
cases can arise: no intersection, two distinct 
intersections and two coincident intersections. 
The three cases represent the three classes of 
industrial-type manipulators. 
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B  A Formulation for Ortho-Parallel 
Manipulators 
 
Ortho-parallel manipulators are characterized by 
having the first two revolute joint axes 
orthogonal to each other, and the last revolute 
joint axis is parallel to the second one. 
Therefore, kinematic parameters can be 
identified as a1, a2, a3, d2, d3, and twist angles �1 
and �2 are set equal to -90 and 0 deg. Joint 
variables are identified as �1, �2 and �3, 
respectively, and they will be assumed unlimited 
in this work. A kinematic scheme is displayed in 
Fig. 4. The factors S1 and S2 of S  are analyzed 
separately. S1 can be expressed in the form 
 

0
2

21 kZkS += ,          (11) 
 

in which ki coefficients depend on a2 and a3 
only. They can be expressed in the form 

 
( )2

232 aak −= ; ( )2
230 aak +=         (12) 

 
According to Decartes rule of signs a necessary 
and sufficient condition for having real solutions 
is iff there are changes in the signs of 
coefficients ki. In particular, the number of real 
roots is equal to the number of changes of sign 
in the ki coefficients. Therefore, S1 has not real 
solutions. Other singularities can be found by 
analyzing surface S2. Zeros of the set of 
equations S2 = 0; S2X =0; S2Y =0; and S2Z =0, 
yield the geometric singularities of the surface 
S2. Singularities of S2 surface are given in the 
form 

 
( )2

231 aaP −=                       (13) 
 
Geometrically, when �2 is equal to 0 deg then 
the �3 parameter set of curves can intersect the 
Z2 axis iff a2 is equal to a3. For this case, a �3 
curve is in a plane, which is orthogonal to Z2 
axis. Only two cases can arise: no intersection 
and two coincident intersections. These two 
cases yield two different classes of industrial-
type manipulators. For the case under study the 
2-parameter set of curves lies on a plane which 
is orthogonal to Z2 and Z3 axes. 
 

 

 
 

Fig. 4. A kinematic scheme for an ortho-parallel 
manipulator. 

 
 
4.  A CLASSIFICATION FOR 3R 

INDUSTRIAL-TYPE 
MANIPULATORS  

 
According to the results that have been obtained 
for industrial-type manipulators, a classification 
can be proposed. The following groups contain 
all possible topologies of orthogonal and ortho-
parallel manipulators, which can be 
characterized by the presence of singularities on 
the surface S. Furthermore, if the surface has 
real singularities then they also correspond to 
singularities of the cross-section of the boundary 
curve.  

A.  Class A: A General Industrial-Type 
Manipulator 
 
A manipulator that belongs to the Class A has 
no (real) singularities on the surface S. It may 
have either a changing posture behavior or it can 
present a void within the workspace. A 
characteristic shape with corresponding cross-
section Fig.s is reported in the examples of Figs. 
5 and 6 for orthogonal manipulators, and Figs. 
11 and 12 for ortho-parallel manipulators. Such 
general manipulators are characterized to have 
no singularities on the graph of the level-set. In 
addition, it can be observed that in general 
cuspidality behavior is not strictly related to 
special designs. 
 

B.  Class B Industrial-Type Manipulator 
 
A manipulator that belongs to the Class B has 
only one singularity on the surface S. Class B 
manipulators can be characterized by the 
presence of 4-solution regions for the IK. The 
cross-section boundary curve for type B 
manipulators contains one acnode (hermit point) 
as singular point [14]. A Class B orthogonal 
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manipulator is characterized by having a2 = a3; 
AND d3 = 0. If a2 ≤ a3, the operation point H can 
meet the second joint axis whenever �3 = ± 
arccos(-a2/a3), which was found also by [11].  

Characteristic shapes with corresponding 
cross-sections for orthogonal manipulators are 
reported in the examples of Figs. 7 and 8. For 
class B orthogonal manipulators S1 expression 
vanishes and singularities can be found by 
checking the singularities of S2 polynomial 
expression. Type B orthogonal manipulators are 
characterized to have two coincident singular 
configurations that depend on �3 parameter 
only. A Class B ortho-parallel manipulator is 
characterized by having a2 = a3. Characteristic 
shapes with corresponding cross-sections for 
orthogonal manipulators are reported in the 
examples of Figs. 13 and 14. 

 

C.  Class C Industrial-Type Manipulator 
 
This class of manipulators is characterized by 
having two distinct singularities on the surface S 
and in general 4-solution regions for the IK. 
Class C orthogonal manipulators have a3 > a2 
AND d3=0. The meaning of a singularity is that 
for a �3 value there exist a line passing through 
the operation point H and intersecting one of the 
manipulator axes. If d3 is not equal to zero then 
the generating curve (�3) has not real solutions, 
OR if a3 is less than a2 than no singularities are 
on S surface. A characteristic shape and 
corresponding cross-sections are reported in the 
examples of Figs. 9 and 10. 
Type C manipulators can have a void iff the 
projections of the singularities of the S surface 
belong to the workspace boundary too. In the 
two singularities point H meets the second joint 
axis and the manipulator has infinite IK 
solutions [10]. It has been found that ortho-
parallel manipulators cannot have two distinct 
singularities. It can be verified both from the 
geometrical interpretation and formulation. 

5.   NUMERICAL EXAMPLES  

In this Section numerical examples are 
presented for orthogonal and ortho-parallel 
manipulators in Figs. 5 to 14. In particular, Fig.s 
5 and 6 show two examples for Class A 
manipulators, for which the surface S has not 
singularities. The corresponding cross-section 
boundary curve can have only cusps and/or 
double points, as it is shown in the two 
examples. In particular, in Fig. 5c) a Cartesian 

representation of the two-parameter family of 
curves is shown and a �3-curve is shown in red.  
Fig. 7 shows a numerical example for Class B 
manipulators. The manipulator has only one 
singularity of the S surface. It is worth noting 
that the singularity arises for a value of the �3 
angle and geometrically it corresponds to the 
configuration in which the operation point H lies 
on the Z2 axis. The geometrical interpretation of 
the singular configuration is that a �3-curve is 
tangent to the Z2 axis, as shown in Fig. 7c). 
Fig. 8 shows a numerical example for a Class B 
orthogonal manipulator. The manipulator has 
only one singularity for the S surface, as shown 
in Fig. 8b). The inner part of the cross-section 
boundary curve is characterized by the presence 
of one acnode and two cusps as singularities of 
the curve.  
 
 
 
 

    

 
a)   b)  c) 

Fig. 5. A numerical example of Class A orthogonal 
manipulators with void, a1=6.17, a2=10.90, a3=3.49, 

d2=8.80, d3=2.52; a) workspace cross-section; b) 
topologically equivalent surface to S; c) a 

representation in Cartesian space of the two-
parameter family of curves in Eq.(3) (a �3-curve is 

represented in red). 
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a)    b) 

Fig. 6. A numerical example of Class A orthogonal 
manipulators without void, a1=2.61, a2=0.97, 

a3=3.12, d2=7.21, d3=6.92; a) workspace cross-
section; b) topologically equivalent surface. (u is unit 

length and angles are in radians) 
    

 
a)   b)  c) 

Fig. 7. A numerical example of Class B orthogonal 
manipulators, a1=6.00, a2=a3=2.51, d2=8.22; a) 

workspace cross-section; b) topologically equivalent 
surface to S; c) a representation in Cartesian space of 
the two-parameter family of curves in Eq.(3) (a �3 -

curve is represented in red). 
 

    
a)    b) 

Fig. 8. A numerical example of Class B orthogonal 
manipulators, a1=3.52, a2=a3=9.19, d2=0.393; 

workspace cross-section; b) topologically equivalent 
surface to S. 

 
 
 

 
 
 
 
 

    

 
a)    b) 

Fig. 9. A numerical example of Class C orthogonal 
manipulators with void, a1=7.29, a2=0.203, a3=3.943, 
d2=5.70: a) workspace cross-section; b) topologically 

equivalent surface to S; c) a representation in 
Cartesian space of the two-parameter family of 

curves in Eq.(3) (a �3-curve is represented in red).  
 
 
 
 

 

   
a)    b) 

Fig. 10. A numerical example of Class C orthogonal 
manipulators, a1=5.77, a2=19.20, a3=21.45, d2=6.31: 

a) workspace cross-section; b) topologically 
equivalent surface to S. (u is unit length and angles 

are in radians) 
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a)  b)  c) 

Fig. 11. A numerical example for Class A ortho-
parallel manipulators without void, a1=6.39, 

a2=12.60, a3=6.98, d2=4.04, d3=0.957; a) workspace 
cross-section; b) topologically equivalent surface; c) 

a representation in Cartesian space of the two-
parameter family of curves in Eq.(3) 

 

    
a)    b) 

Fig. 12. A numerical example for Class A ortho-
parallel manipulators with void, a1=3.28, 
a2=10.50, a3=2.20, d2=1.69, d3=0.492; a) 
workspace cross-section; b) topologically 

equivalent surface to S. 
 

 

      
a)    b) 

Fig. 13. A numerical example for Class B ortho-
parallel manipulators, a1=4.04, a2=a3=6.98, d2=0.957, 

d3=4.64; a) workspace cross-section; 
b) topologically equivalent surface to S. 

 

  

 
a)     b) 

Fig. 14. A numerical example for Class B ortho-
parallel manipulators, a1=9.99, a2=a3=0.875, 

d2=0.938, d3=1.54; a) workspace cross-section; b) 
topologically equivalent surface to S; c) a 

representation in Cartesian space of the two-
parameter family of curves in Eq.(3) (a �3 curve is 

represented in red). 
 
 

Fig. 9 shows a numerical example for Class C 
manipulators. It is worth noting that there are 
two distinct singularities for the graph of the 
level set, as shown in Fig. 9b) and the cross-
section boundary curve has 2 acnodes. The 
manipulator has 2 and 4 solution regions for the 
IKP. Acnodes that appear in the cross-section 
boundary curve can be identified as singularities 
of the S surface. The geometrical interpretation 
is shown in Fig. 9c) in which it is possible to 
note that a �3 -curve (in red) intersects the Z2 
axis into two distinct points.  

Fig. 10 shows a numerical example for the Class 
C manipulators in which one of the singularities 
of the S surface is a double point for the cross-
section boundary curve. 
Fig.s 11 and 12 show numerical examples for 
Class A ortho-parallel manipulators, with and 
without void. 

Fig.s 13 and 14 show numerical examples for 
Class B ortho-parallel manipulators, which have 
only one singularity on the S surface. In 
Fig.14c) the �3-curve (in red) is tangent to the 
Z2 axis. This configuration gives the singularity 
of the S surface, as shown in Fig. 14b), and 
acnode in the workspace cross section boundary 
curve. 
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6. CONCLUSION 
 
This paper presents a novel analysis of the 
workspace for industrial-type manipulators 
based on the level-set reconstruction of the 
workspace. The method allows to determine 
useful information for characterization of the 
workspace in Cartesian Space. Singularities on 
the graph S of the level-set are singular 
configurations in which there is a value of �3 
angle for which the manipulator encounters a 
permanent singularity. Geometrical 
interpretations for the singularites are given. 
Futhermore, the proposed formulation allows to 
avoid design conditions having this type of 
singularities. 
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