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2. LECTURE TWO. THE LIAPUNOV 
FUNCTION AND THE ABSOLUTE 
STABILITY 
 
We shall not insist on the stability results for 
linear systems but enter directly in the subject 
by presenting the first important result 

concerning nonlinear system stability: stability 
by the first approximation. 
 
2.1 Stability by the first approximation 
 
We shall consider a system written in 
deviations with respect to a steady state  
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n,0)0(),( R∈== xfxfx&  (1) 

 
and assume that f ∈ C1

 i.e. it has continuous 
partial derivatives. Let 
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be the Jacobian matrix of f computed at the 
equilibrium point  x = 0. Defining 
 

Axxfxg −= )()(  (3) 
 
system (1) is written as 
 

)(xgAxx +=&  (4) 
 
where the linear system 
 

Azz =&  (5) 
 
is called the linearized system of (1). Starting 
from the assumption that for small deviations 
the higher order terms represented by g(x) may 
be neglected, all sciences that were based on 
linear models restricted themselves to the study 
of (5), including stability studies (see, for 
instance, the celebrated reference [1]). In fact 
(4) and (5) are two completely different 
systems and, according to a remark of 
Liapunov himself, the automatic extension on 
(4) of the properties of (5) is not rigorous. 
 
Definition 9 If the stability of (5) implies 
stability of the zero solution of (4) it is said 
that this solution is stable by the first 
approximation. 
 
The stability by the first approximation is a 
special division of Stability theory; a State of 
the Art paper in the field is [2]; we shall restrict 
ourselves to give here the best known theorem 
of stability by the first approximation, 
belonging to Liapunov himself. 
 
Theorem 1 Consider system (4) under the 
following assumptions: i) the linear system (5) 
of the first approximation is exponentially 
stable i.e.matrix A is a Hurwitz matrix     

(σ(A)) ⊂ C-); ii) g(x) is sublinear in a 

neighbourhood of the origin i.e. for sufficiently 
small γ  > 0 there exists 0)( >γβ  such that if 

β<x  then xxg γ<)( . Then the zero solution 
of (4) is exponentially stable. 
 
The proof of this theorem may be found, for 
instance, in [3]; one might consult also [2] for 
other types of proofs. We shall not insist any 
more on this topic. 
 
2.2 The theorems of the Liapunov function 
 
The method of the Liapunov function 
(sometimes called also direct method or second 
method of Liapunov) originates in Rational 
Mechanics. It is a recognized truth of this 
science that those systems, whose total energy 
(which is a nonnegative definite state function) 
is decreasing for any state except a single one 
which is an equilibrium of the system and a 
minimum of the energy, have their evolutions 
ending (asymptotically) in that equilibrium 
state. 
 
The Liapunov function has analogous 
properties but, generally speaking, it is not an 
energy function; this gives to the method of the 
Liapunov function a wider power in 
applications especially when dealing with 
systems whose energy is not easy to express. 
 
We shall give below the main mathematical 
results concerning the function of Liapunov. 
 
Theorem 2 Consider system (1) and assume 
there exists a continuous and positive definite 
in a neighbourhood of the origin 0δ<x  

function V(x), such that ))(()(* txVtV =  is 
nondecreasing along any solution of (1) 
starting in that  neighbourhood i.e. with 

0)0( δ<x . Then the zero solution of (1) is 
uniformly stable. 
 
Theorem 3 Consider system (1) and assume 
there exists a C1 and positive definite in a 
neighbourhood of the origin 0δ<x  function 

V(x), such that the function )()( xf
x
VxW

∂
∂=  

should be negative definite. Then the zero 
solution of (1) is asymptotically stable. 
 
The classical example of a Liapunov function 
is the positive definite quadratic form 
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PxxxV *)( =  
 
where P > 0 is the solution of the Matrix 
Liapunov equation 

QPAPA −=+*  
 
A being the matrix of the linear system (5). It is 
quite well known that for any positive definite 
matrix Q the above equation has a unique 
positive definite solution if and only if (5) is 
exponentially stable. Obviously QxxxW *)( −= . 
 
A simple example from Rational Mechanics 
(but not only!) is the linear second order 
system 
 

0,0,0 >>=++ βαβα xxx &&&  (6) 
 
Multiplying both sides by x&  and integrating 
from 0 to t along a solution of the equation we 
find 
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and integrating by parts 
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Denoting 

 

( )22

2
1

),( xyyxV β+=  (7) 

 
we have 
 

( ) ( ) ( )∫−=
t

dxxxVtxtxV
0

2)()0(),0()(),( ττα &&&  

 
For the mechanical system composed of an 
inertial mass, a spring and a viscous friction 
linear element - described by (5) - the function 
defined in (7) represents the total energy of the 
system. The system is obviously exponentially 
stable (it can be integrated) but the Liapunov 
function associated in a natural way - the 
energy - has its derivative only nonpositive 
definite. Such a situation occurs in many real 
cases, when the derivative of the most natural 

Liapunov function is only nonpositive definite 
while the system is nevertheless asymptotically 
stable. These cases led to a less restrictive 
theorem on asymptotic stability. 
 
Theorem 4 (Barbashin-Krasovskii) If V (x) 
satisfies the assumptions of Theorem 3 with 

0)( ≤xW and the set { }0)( == xWxG  does not 
contain other trajectories than the zero 
solution, this zero solution is asymptotically 
stable. 
 
It can be easily seen that for equation (6) and 
the Liapunov function (7) the assumptions of 
Theorem 4 hold. Further development, due to 
J.P. La Salle, allowed important extensions of 
Theorem 4 (see, for instance, [3]). 
 
Remark also the character of sufficient (not 
necessary) conditions for stability of the above 
theorems. Therefore, the choice of the 
Liapunov function can have various issues in 
evaluating stability . We shall illustrate this by 
an example. Consider the equation 
 

0,0)( >=+++ αθβθϕθαθ &&&&  (8) 
 
which may describe a simplified model for 
ship stabilization. The function ϕ : R → R of 

(8) verifies 
 

00)(,0)( =⇔=> σσϕσϕσ  
 
In order to construct a Liapunov function we 
shall proceed as previously: we multiply both 
sides of (8) by θβθ &+  and integrate, obtaining 
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After some integration by parts we obtain 
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We remark that the quadratic form 
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(9
) 

 
satisfies the requirements of a Liapunov 
function provided 1>αβ ; this inequality 
together with 0>α can be considered as a 
sufficient condition for asymptotic stability. 
 
Multiply now (8) by θβθ &&& +  and integrate from 
0 to t. We shall have, in the same way as above 
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where θβθσ &+= . The function quadratic form 
plus integral of the nonlinearity 
 

∫
Ω+

+Ω+=Ω
βθ

λλϕαβθ
0

2 )()1(
2
1),( dV  (10) 

 
satisfies the requirements of a Liapunov 
function if 0>β ; together with 0>α this is a 
sufficient condition for stability. 
 
 
 
 
 
 
 
 
 
 

Fig. 1. Parameter plane stability region 
 
The diagram of Fig. 1 shows that while the 
Liapunov function (9) prescribes as stability 
region the area above the hyperbola, the 
function defined by (10) prescribes the entire 
positive quadrant i.e. the stability region 
includes some area under the hyperbola too. 
This is a simple example of the way a suitable 
Liapunov function may improve the stability 
region. 
 
 
 
 

2.3 The problem of the absolute stability 
 
Consider the feedback control system of Fig. 2 
with constant reference signal (stabilization 
system). 
 
 
 
 
 

 
Fig. 2. Stabilization feedback system with a 

nonlinear element 
 
The system includes two linear blocks, one of 
the controlled system (S) and one of the 
compensator (Sc) and also a static block 
described by a monotonic nonlinear (possibly 
globally Lipschitz) function. The two linear 
blocks, (S) being strict proper and (Sc) at most 
proper, may be specified either by their 
transfer functions or by state representations. 
In any case the following state equations can 
be written 
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)( cuu ψ=  

(11) 

 
After eliminating some intermediate variables 
the following state equations are obtained 
 

rccccc
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c
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From here we deduce the equations of the 

operating point (steady state) as prescribed by 
the reference yr 

 

 
Supposing that matrices A and Ac are 

nonsingular we can eliminate ẑ  and cẑ  
obtaining the basic steady state equation 
 

rcccc yHuHHu )0()ˆ()0()0(ˆ =+ ψ  (14) 
 

rccccc

rcccc

c

ygzfzcgu
ybzAzcb

ubzA

++−=
=++−

=+

ˆˆˆ
0ˆ

0)ˆ(ˆ

**

*
ψ

 (13) 

α 

β 

αβ > 1 

Sc ψ(⋅) S 

u 
uc ε yr 

- 

y 



56  CONTROL ENGINEERING AND APPLIED INFORMATICS 
 

with ccccc bAsIfgsH 1* )()( −−+=  and 

bAsIcsH 1* )()( −−=  being the tranfer 
functions of (Sc) and (S) respectively. 
If cû , the solution of the above nonlinear 
equation, is known, then ẑ and cẑ  can be 
determined from two linear systems. We then 
introduce the deviations 
 

ccc zzxzzx ˆ,ˆ −=−=  
 

which verify the system 
 

[ ]
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Introducing the new nonlinear function 
 

)ˆ()ˆ()( σψψσϕ −−= cc uu  (15) 
 
the following system is obtained 
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From the monotonicity of ψ we obtain the 
condition 0)( >σσϕ ; if, additionally, ψ is 
globally Lipschitz, then the sector condition 
holds 
 

k<<
σ
σϕ )(0  (17) 

 
System (16) may be given a vector-matrix 
form 
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what corresponds to the general form 
 

)( *xcbAxx ϕ−=&  (19) 
 
(with some abuse of notations). 
 
The nonlinear system (19) can be considered 
as an autonomous (without exogeneous 
signals)  feedback structure (Fig.3) 
 
The linear block contains the system's 
dynamics 

 

xcy
buAxx
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+=&

 

 
while the nonlinear block is static  
 

)( 22 uy ϕ=  
 

To this we have to add the feedback equations 
 

1221 , yuyu =−=  
 

 
 
 
 
 
 

Fig.3 Feedback structure associated to the problem 
of absolute stability 

 
For system (19) a usual Liapunov stability 
problem of the zero solution can be 
formulated. This was exactly the case of the 
pioneering paper [4]; in that paper the stability 
result occurs as valid for any nonlinear 
function satisfying 0)( >σσϕ . This fact led to 
the validity of the property for an entire class 
of nonlinear functions hence for an entire class 
of systems. Further, the advancement of the 
understanding of the basic aspects led to the 
statement of the problem as stability of those 
systems with poor information on the 
nonlinearity. Using the contemporary language 
this signifies a robust stability with respect to 
nonlinear function uncertainty. Indeed this may 
be seen from problem statement. 
 

Absolute stability problem Given system 
(19) where )(σϕ may be any function satisfying 
(17), find conditions on (A, b, c, k) or, 
equivalently, on (H(s), k), where     

bAsIcsH 1* )()( −−=  is the transfer function of 
the linear part, in order that the trivial solution 
should be globally asymptotically stable for all 
nonlinear functions satisfying (17). 
 
For this problem which is almost half-century 
old there exists a long list of references. We 
send to [3], [5], [6] and in the following we 
shall deal only with some basic aspects. 
 
Remark first that (8) belongs to the class 
defined by (19); the Liapunov function, either 

L 

N 

y1 u1 

y2 u2 
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(9) or (10) is of the type quadratic form of the 
state variables or quadratic form plus integral 
of the nonlinear function. This type of 
Liapunov function occurs in most of the papers 
on absolute stability (see [5], [6]). 
In the general case it is a function of the form 
          

*

*

0

( ) ( )
c x

V x x Px s dsϕ= + ∫  (20) 

               
where P and β have to be determined in order 
that (20) and its derivative along system's 
solutions should have the property required by 
the fundamental theorems. A quite simple 
computation will give the following derivative 
function 
 

( ) ( )
( ))()(

)()()(
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and it can be easily seen that W can be viewed 
as a quadratic form on x, ϕ 
 

( ) 


























+−




 +−

+−+









=

=

ϕββ

β

ϕ
x

bccbcAPb

cAPbPAPA
x

xW

**
*

*

**
*

2
1

2
1

2
1

)(

 

(22) 
 

It is obvious that the variables x, ϕ are not 
quite independent but V > 0, W ≤ 0 will be 
sufficient conditions for stability. The working 
experience in the field showed that in many 
cases an easier problem is to judge the sign of 
the modified quadratic form 
 

( )ϕϕϕϕ −+= xkcxWxS *),(),(  (23) 
 

The explanation is the following: the 
variables x, ϕ  verify the cone-type restriction 
 

( ) 0* ≥−ϕϕ xkc  
 

a direct consequence of (17). The sign analysis 
for a quadratic form in a cone is a quite 
difficult problem; for this reason the "trick" 
 

( )ϕϕϕϕ −−= xkcxSxW *),(),(  
 
reduces this problem to the sign analysis of the 
form S(x, ϕ) on the entire space; because the 
second term is negative in the cone the 

conditions on S are sufficient for W ≤ 0. 
Moreover, a result of V.A.Yakubovich [7] 
shows that these conditions are necessary and 
sufficient i.e. the above algorithm called         
S-procedure does not restrict the class of the 
absolutely stable systems that a direct 
procedure (without S-procedure) could point 
out. 

 
By explicitely writing S(x, ϕ) we find 
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where we denoted 
 

( )
( ) 1

2
1

2
1

**
4

*
2

*
1

−+−=

++−=

+=

bccbS

cAkcPbS

PAPAS

β

β  

 
The fact that S(x, ϕ) ≤ 0 means existence of a 
scalar γ  and of a n-dimensional vector w such 
that 
 

2*),( xwxS +−−= γϕϕ  (25) 

 
Therefore we may write 
 

( )ϕϕγϕϕ −−+−−= xkcxwxW *2*),(  

 
where W(x, ϕ ) is that of (21). Taking x = x(t),  

( ))(* txcϕϕ =  where x(t) is a solution of (19), 
and integrating from 0 to t we find 
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∫
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(26) 

 
where V (x) is that of (20). The equality (26) 
represents a generalization of the equalities 
obtained for the linear and nonlinear second 
order systems considered previously. 
 
Summarizing, it is clear that the problem of 
finding a Liapunov function quadratic form 
plus integral for the absolute stability can be 
reduced finally to the finding a triple (γ, w, P) 
such that the following equalities hold 
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These are called the equations of A.I.Lurie . 
The fulfillment of (27) ensures that the 
derivative of the Liapunov function is at least 
nonpositive definite. Additional conditions 
may ensure the positive sign of the Liapunov 
function and the asymptotic stability. In this 
way the problem of the absolute stability is 
solved by a Liapunov function of the type (20). 
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