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Abstract: This paper describes constrained multi objective predictive control of nonlinear 
systems. A nonlinear model based on the Artificial Neural Networks (ANNs) is used to 
characterize the process at each operating point. The control law is provided by minimizing a 
set of control objective which is function of the future prediction output and the future control 
actions. Three aggregative methods are used to compute the control law. The first and the 
second methods are non-conventional methods based on Genetic Algorithms (GAs) and the third 
method is a conventional method which is a combination between the weighted sum method and 
the ellipsoid algorithm. The proposed control scheme is applied to a numerical example to 
illustrate the performance of the proposed predictive controller.  
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1. INTRODUCTION 
 

The Model Based Predictive Control (MBPC) is 
a general control methodology based on the 
explicit use of a model to predict the process 
output over a specified predictive horizon [1]. 
The objective of the MBPC strategy is to 
compute the future incremental control sequence 
by minimizing a given single objective 
performance criterion, under given operating 
constraints [2], [3]. 

The complexity of industrial processes makes 
difficult their representation by only one model 
[4], [5]. For a system that presents several 
modes of working different models can be built, 
which are specific to every mode of particular 
working of the system, this permits to structure 
the priori qualitative and/or quantitative 
knowledge of the studied system. 

In presence of a set of models, two approaches 
can be used to calculate the optimal control law. 
The first is the multi-model control approach 
which is based on the determination of models 
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validities and the control law is computed by the 
fusion of local controls [6], [7]. Each local 
control is obtained by minimizing a single 
criterion. Although, the closed loop 
performances of this control strategy depend on 
the precision of the estimated coefficients 
validities. The second approach is the multi 
criteria control strategy based on the 
minimization of all performance criteria at every 
sample time [8], [9]. This strategy of control 
leads to a set of optimal solutions, i.e. the Pareto 
optimal solutions or the non dominated 
solutions [10]. 
Genetic algorithms are stochastic search 
techniques used in the field of optimisation 
because they are more robust compared to 
conventional optimisation techniques [11]. The 
main difficulties of the multi-objective 
optimization methods lie in the guidance of a 
research process towards the Pareto surface and 
the maintenance of a diversity of the solutions to 
assure a good distribution on the Pareto border. 
Methods of multi-objective optimization are 
divided into two groups [10], [12]. The first 
group includes the non aggregative methods. In 
these methods, there is no fusion of the different 
objective functions, which does not lead to a 
mono-objective optimization. The second group 
includes approaches based on the transformation 
of the problem into a mono-objective one. 
In [13], a GA for multi objective optimization 
problems that appears in the design of robust 
controllers is presented. In [14], the optimal 
feedback control design is formulated as a 
multiple criteria problem. Then, the use of 
weighting matrices is avoided. The nonlinear 
predictive control using GA as optimizer has 
been studied by many authors, but the selection 
mechanisms of the GA in these applications 
work on a single valued scalar fitness function 
[3], [15]. 
In this work, we propose the constrained multi 
objective predictive control of nonlinear 
systems. The particularities of this work consist 
in (i) the use of a nonlinear model i.e. the neural 
networks model to characterize the operating 
point of the plant and (ii) the goal of the control 
system design task is thus redefined as finding a 
control input such that the set of Pareto optimal 
solutions minimizes all performance criteria 
simultaneously in tacking in account constraints 
in input signal. Since local models are 
nonlinear, the performance criterion is non 
convex in the controller parameters and can not 
be efficiently solved by conventional methods.  

In this work, three methods will be considered 
to solve the constrained multi criteria nonlinear 
predictive control. Two methods are based on 
GAs and the third method is the weighted sum 
method.  
The paper is organized as follows. The problem 
is formulated in section two where Neural 
Networks models are determined and the 
predictive control principle is given. The control 
and design are presented in section three. The 
GA optimizer used in multi criteria optimization 
is performed. The obtained results are presented 
in section four. Conclusions are given in the last 
section. 

 

2. PROBLEM FORMULATION  

2.1. Modeling of non linear systems 
 
We consider a Single Input Single Output 
(SISO) nonlinear system that presents (n) 
modes of working. The system is characterized 
by the following relation: 
 

( )1 2( ) ( 1),..., ( ), ( 1),..., ( )iy k g y k y k m u k u k m= − − − −  (1)          
 
where gi (i=1, …, n) are unknown nonlinear 
functions, y(k) and u(k) represent, respectively, 
the output and the input of the plant. Integers 
m1 and m2 define the range of delays in the 
output and the input signals, respectively. 
Artificial Neural Networks are an efficient tool 
used to characterize non linear systems [16], 
[17], [18]. In this work, the multilayer 
perceptron is used to approximate nonlinear 
functions gi (i=1, …, n). 
For each operating point of the system, an 
(ANNs) local model is determined, which 
output is given as follows: 
 

)()( iim NNky θ=  (2) 
 
where iθ  (i=1, …., n) represent the neural 
network model parameters (weights), and n is 
the number of neural network models. 

2.2. Performance criterion 
 
The Model Based Predictive Control (MBPC) 
is a general control methodology based on the 
explicit use of a model to predict the process 
output over a specified predictive horizon [2]. 
The objective of the MBPC strategy is to 
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compute the future incremental control 
sequence [ ]()... ( 1)uU u k u k N∆ = ∆ ∆ + −  (Nu is the 
control horizon) by minimizing a given 
objective performance criterion, under given 
operating constraints [2]: 
 

( ) ( )
2 2

1 1
( ) ( / ) ( 1)

N Ny u
i c mi

j j
J y k j y k j k u k jλ

= =
= + − + + ∆ + −∑ ∑  (3) 

 
where Ny is the prediction horizon, Nu is the 
control horizon (Nu≤Ny), λ is the control 
weighting factor, yc(k) is the reference signal 
and ( / )miy k j k+  is the j-step ahead predictor 
computed with the local model ( )iNN θ , 

)1( −+∆ jku  is the future control increments 
sequence and ,0)( =+∆ jku if uj N≥ . 
Constraints, which limit the range of the control 
signal and the gradient of the control signal, are 
defined as follows [2]: 
 

m i n m a x

m i n m a x

( ) ,

( ) ,

0, . . . . . . . , 1 .u

u u k j u

u u k j u

j N

≤ + ≤
 ∆ ≤ ∆ + ≤ ∆
 ∀ = −

 (4) 

 
These constraints can be reformulated as 
follows: 
 

{ }/ ( ) 0jU f UΩ = ∆ ∆ ≤ , 1,...,4 uj N=  (5) 
 
where [ ]( ),..., ( 1)uU u k u k N∆ = ∆ ∆ + −  is a Nu 
dimensional vector of parameter. 

2.3. Multi objective predictive control 
 
The multi objective problem seeks to minimize 
n objectives Ji, i=1, …, n, where each objective 
depends on U∆ . The multi criteria optimization 
problem can be described in most cases under 
the following formulation [10]. 
 

1 2min( , ,..., )nU
J J J

∆ ∈Ω
 (6) 

 
where Ω  is the set of constraints given by 
relation (5).  

The multi criteria controller structure is given 
by figure 1. The Neural Networks Models 
NN(θi) are used to predict the system output 
over the prediction horizon. The Neural 
Networks Models are applied for the recursive 
prediction of the future process outputs as given 

in figure 2. The control law sequence is 
computed by minimizing the multi performance 
criteria. Since local models are non linear, the 
criterion iJ  is non convex in the controller 
parameters and can not be efficiently solved by 
conventional methods. 

The multi objective optimization leads to a set 
of solutions, i.e: the Pareto set, so the problem 
is which solution can be applied to the process. 
Consider a two performance criteria, 

1 2( ) min( , )
U

J U J J
∆ ∈Ω

∆ = and a set 

{ }1 2 3 4 5, , , ,U U U U UΩ = ∆ ∆ ∆ ∆ ∆  whose function 
values are shown in figure 3. The vectors 

1 2 3, ,U U U∆ ∆ ∆  and 4U∆  are Pareto optimal 
because no solution in Ω  dominates them. 
However, 5U∆  is dominated by 3U∆  because 

1 3 1 5( ) ( )J U J U∆ < ∆  and 2 3 2 5( ) ( )J U J U∆ < ∆ . 
For each solution, we can compute the 
following norm: 
 

( ) ( )2 2

1( ) ... ( )i i n id J U J U= ∆ + + ∆  (7) 
 
The best solution, from the non dominated 
solutions of the Pareto set, is the solution that 
gives the minimal norm di. Consequently, the 
optimal control is selected based on the norms 
di of all elements of the Pareto set. 
 
 

 
Fig. 1. Multi criteria controller structure. 
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Fig. 2. The neural network predictor. 
 

 

 
 

Fig. 3. The Pareto optimal set. 

 

3. CONTROL AND DESIGN 
 
In our work, we compare three methods to 
solve a constrained multi objective nonlinear 
predictive control. Two methods based on GAs 
and a method based on the hybridization 
between the weighted sum method and a 
numerical algorithm of optimization such that 
the ellipsoid algorithm. 

3.1. Weighted sum method 
 
It is one of the first methods used for the 
generation of Pareto optimal solutions [10]. It is 
based on the principle of combination of the 
various performance criteria in a single 
criterion. The single criterion is obtained by the 
sum of the weighted criteria. The n objective 
functions are aggregated into one criterion, as 
follows [10]: 
 

1

, 0 1
n

i i i
i

J w J w
=

= ≤ ≤∑  (8) 

 
where the weights are such that: 
 

1

1
n

i
i

w
=

=∑  (9) 

 
At each sample time, a set of weights (w1, …, 
wn) that respect the constraint given by relation 
(9) is generated. For every set of weights, the 
performance criterion given by relation (8) is 
minimized in taking in account constraints on 
input signal as given by relation (4). The 
optimal solution is computed by using a 
numeric method i.g. the ellipsoid method [19], 
[20]. The set of weights is modified and the 
procedure is repeated. Consequently, the points 
of the Pareto set are determined. The size of the 
Pareto set depends on the number of time that 
the procedure is executed. The steps of the 
algorithm which allows the determination of the 
Pareto set are given below. 
 
1- Give Ny, Nu andλ . Put k=1. 
2- Compute the system output,   
3- Introduce the weights (w1, …, wn) that 
respect the relation (9),  
4- Compute the solution of the constraints 
problem by using for example the ellipsoid 
method. 
5- Compute the norms di using relation (7). 
6- Return to step 3, 
7- Take the best vector U∆  of the future 
control increments which assures the minimal 
norm di, 
8- Compute the control from the first element 
of the vector U∆ . Increment the sample time k 
and return to step 2. 

3.2. GAs solution technique 
 
The genetic algorithm is a method which may 
be used to solve a system of non linear 
equations, their most important application is in 
the field of optimization because of their ability 
to search efficiently in search spaces, which 
makes them more robust compared to the 
conventional optimization techniques. 
 
3.2.1. Genetic algorithms: 
 
Genetic algorithms (GAs) are stochastic search 
techniques inspired by the principles of natural 
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selection and natural genetics [11]. In genetic 
algorithms, each parameter is represented by a 
string structure. This is similar to the 
chromosome structure in natural genes. A 
group of strings are called population. It should 
be notice that GAs evaluate a set of solutions in 
the population at each iteration step. The Real 
Coded Genetic Algorithm (RCGA) is based on 
the same operators as binary coded GA. 
However, the individuals in RCGA are 
represented with real code. It has been also 
demonstrated that the (RCGA) worked well for 
optimisation functions compared to binary 
coding [21], [22]. In this work, we propose the 
RCGA to find the optimal control law. A 
number of genetic operators are available to 
generate new individuals in next generation. 
 
- Selection: the selection operator produces 
copies of elements from actual population 
according to the selection probability of each 
element. In this work, we have considered the 
roulette wheel to select individuals for the new 
population [11]. 
 
- Crossover: The crossover includes the 
goodness of the parents for generating the 
offspring based on the crossover probability 
(cp). The new elements can be computed by 
several crossover mechanisms, we note flat 
crossover, a simple crossover, arithmetical 
crossover and BLX-a crossover [23]. With the 
crossover operation, genetic algorithms are able 
to acquire more information with the generated 
individuals. The genetic search space is thus 
extended and more complete. 
 
- Mutation: The mutation consists to modify 
some alleles of each element with the mutation 
probability (mp).  
 
The genetic algorithm has been correctly 
implemented if the population has been 
evolving over successive generations so that the 
fitness of the best and the average in each 
generation increase towards the global 
optimum.  
With GAs, constraints have been handled 
mainly in two ways. The first way consists of 
using additive penalty functions which are 
known to be very problem dependent and, thus, 
difficult to set [24]. The second way is found in 
embedding constraints in the coding of the 
chromosomes [15]. The idea is based on 
tacking the population individuals while 

respecting constraints. First, the set of possible 
changes of the gradient of the control is defined 
in tacking in account the relation (4), as follows 
[15]: 
 









=∀

∆−−+=∆

∆−+−=∆

.,.......,1

],)2(min[)(

]),2(min[)(

minmininf

maxmaxsup

uNj

uujkuju

ujkuuju

 (10) 

 
Second, the set of possible changes of the 
gradient of the control is discredited in (2h) 
values as given by the following relations: 
 

inf inf ( ) , 0,1,..., 1
h i

S u j i h
h
− = ∆ = − 

 
. (11) 

 

sup sup ( ) , 0,1,..., 1
h i

S u j i h
h
− = ∆ = − 

 
.    (12) 

 
The initial population of the genetic algorithm 
is then formed by (Nu, 2h+1) values: 
 

{ }inf sup,0,P S S= . (13) 

 
Genetic algorithm operators are also defined so 
that the new individuals respect constraints in 
input signal. The new individuals (ind1, ind2) of 
the RCGA crossover are computed from the 
selected parents (p1, p2) using the arithmetic 
crossover [23]: 
 

1 1 2(1 ) ,ind p pα α= + −  (14) 
 

2 1 2(1 ) ,ind p pα α= − +  0<α<1. (15) 
 
The result of real coded mutation is given by 
the following relation: 
 

( ),i m iind indα=  i=1, 2 and 0<αm<1.  (16) 
 
In order to reduce the error in permanent mode 
between the process output and the predicted 
output, we use the following relation [3]: 
 

)1()1()()( −−+= kkk δϕϕεδ  (17) 
 
where ( ) ( ) ( )mik y k y kε = −  and  ]1,0[∈ϕ . 
The filtered discrepancy ( )kδ  is then used for 
the correction of the predictions of the model. 
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3.2.2. The Non Dominated Sorting Genetic 
Algorithm (NSGA):  
 
Genetic algorithms are adapted very well to the 
treatment of a multiobjective optimization 
problem [25]. The NSGA algorithm is based on 
the classification of the individuals in 
categories according to the concept of Pareto 
set dominance [26]. All non dominated 
individuals of the population are assigned on 
rank 1. The remaining individuals are classified 
and non dominated points are assigned on rank 
2. The procedure of classification is finished 
when all individuals are assigned [10]. 
The efficiency (efi) is calculated by the 
following relations: 
 

),(
1

jih

F
ef

rn

j

i

∑
=

=

 (18) 

 








σ<





σ

−=

otherwise

)j,i(dif)j,i(d
)j,i(h

0

1
2

 (19) 

 
where nr is the number of individuals in the 
considered category, σ  is an initial Euclidean 
distance, d is the euclidean distance between 
individuals i and j and F is the inverse of every 
individual rank. 
 
3.2.3. The Weighted Average Ranking Genetic 
Algorithm (WARGA): 
 
This method ensues from the method “Multiple 
Objective Genetic Algorithm”. The main 
difference lies in the way the relation of 
dominance is established between two 
solutions. With the WARGA, the relation of 
dominance is given as explained by the 
following example. Consider n objective 
functions to minimize { }1 ,..., nJ J and a discrete 
search set { }1 ,..., mU UΩ = ∆ ∆ . Let B is a vector 
formed by the values of the objective functions 
at the solution 1U∆  and S is a matrix that 
regroups the values of the objective functions at 
solutions 2 ,..., mU U∆ ∆ . 
 

{ } { }1 1 1 1( ),..., ( ) ,...,n nB J U J U b b= ∆ ∆ =  (20) 
 

1 2 2

1

( ) . . . ( )

...
( )... ( )

n

m n m

J U J U

S
J U J U

∆ ∆ 
 =  
 ∆ ∆ 

 (21) 

 
The following procedure permits the 
computation of the rank of each solution.  
 
Step 1) - Initialize the counter of individuals, 

i=1. 
Step 2) -Repeat 

- Initialize the counter of functions, j=1. 
Step 3) Repeat  

- Take the j th element bj of the vector B. 
- Determine the number of solutions (NSj) 
of the jth column of S better than bj. 
- Incrementation of j (j=j+1 ). 
Until j>n. 

Step 4) - Compute the rank of iU∆ : 
 

 
1

n

i j
j

rank NS
=

= ∑  (22) 

 
Step 5) - Permutation between B and the ith row 

of S. 
Step 6) - Incrementation of i (i=i+1). 

Until i>m. 
 
After the determination of the rank of each 
individual, we compute the efficiency 
according to the following relation: 
 

11i ief rank
m

= −  (23) 

 
The GAs approach is resumed by the following 
steps [27]: 
 
Step 1) - Create an initial population according 

to the relation (13), 
Step 2) - Evaluation of objective functions, 
Step 3) - Assigned a rank for every individual 

in the population, 
Step 4) - Compute the individual efficiency 

(efi), 
Step 5)  

Repeat 
- selection proportional to the efficiency, 
- crossover, 
- mutation, 
- evaluation of objective functions, 
- assigned a rank for every individual,                    
- calculate the individual efficiency (efi). 

Until a termination condition is reached. 
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The termination condition is used to stop the 
genetic algorithm runs. There are some criteria 
which can be used to terminate calculations. In 
this work, the termination condition is the pre-
assigned number of generations to be 
considered. 
 

 

4. SIMULATION RESULTS 

In order to evaluate closed loop performances 
obtained by the proposed approach for non 
linear multi objective predictive control, we 
consider a SISO plant with two operating 
points. In the first operating point, the plant is 
described by the following relation [28]:
  
 

2 2

( 1) ( 2) ( 3) ( 2)( ( 3) 1)
( )

1 ( 1) ( 3)
y k y k y k u k y k

y k
y k y k

− − − − − −
=

+ − + −

2 2

( 1)
, 0 400

1 ( 1) ( 3)
u k

k
y k y k

−
+ ≤ ≤

+ − + −
 (24) 

 
In the second operating point, the plant is 
characterized by the following non linear model 
[29]: 
     

( )
( )

( )

( ) 0.2 ( 1) ( 1) 1 1.2 ( 1)

0.4sin 0.5 ( 1) 0.5 ( 2) .

cos 0.5 ( 1) 0.5 ( 2) , 400

y k y k y k u k

y k y k

y k y k k

= − − + + −

+ − + −

− + − >

 (25) 

 
We suppose that the process is described by the 
relation (24) in the 400 first iterations then the 
behaviour of the process changes and it will be 
described by the relation (25) for remaining 
iterations. 

4.1. Identification 
 
Some practical problems have to be solved for 
training the NN models. First of all, the training 
patterns have to be carefully selected [17]. The 
size and the structure of the NN are also of 
practical importance. Large networks consume 
a great deal of computing power. Small nets 
are, in some cases, unable to provide enough 
approximation capabilities, producing large 
approximation errors. Trial and error is 
normally necessary to fix the structure of the 
NN model. A set of tests have been carried out 
with 1000 samples and 100 epochs, in order to 
fix the number of hidden layer neurons and the 
number of inputs of the NN model. We have 

found that neural networks model formed by 
one hidden layer with 10 neurons and five  
inputs {y(k-1), y(k-2), y(k-3), u(k-1), u(k -2)} 
assures a low performance criterion in the 
training phase. The activation function is the 
tangent sigmoid function. The training rate of 
the back propagation algorithm is equal to 0.08. 
In Figure 4 is shown the evolution of the 
training criterion versus the number of the 
neural networks inputs.  

4.2. Control 
 
The control signal is limited between 0 and 1. 
The gradient of the control minu∆  and maxu∆  are 
taken respectively equal to -0.01 and 0.01. The 
prediction horizon Ny, the control horizon Nu, 
and the control weighting factor λ are fixed, 
respectively, to 5, 2 and 0.  
 
4.2.1. Nonlinear predictive control based on 
weighted sum method: 
 
Figure 5 presents the evolutions of the output, 
the set point and the control signals. The first 
model is considered for the first 400 iterations 
and the second model is considered for the 
iterations that remain. In this simulation, the 
ellipsoid method is used with an initial ellipse 

10 0
0 10

A
 

=  
 

 and an initial vector [ ]0.020.02U∆ = . 

The stopping criterion of the algorithm is 
510ε −= . It can be observed from this figure that 

the controller provides the suitable control 
signal allowing the output to track the set point 
in spite of the change of the plant operating 
point after the iteration 400. 
The Pareto surface obtained with the weighted 
sum method is shown in Figure 6. We note 
from this figure that the solutions are not 
uniformly distributed on the Pareto surface 
because the performance criteria are non 
convex. 
 
4.2.2. Nonlinear predictive control based on 
GA: 
 
The choice of h=15 in relations (11) and (12), 
leads to a GA population size equal to 31; the 
crossover probability and the mutation 
probability are fixed respectively to cp=0.7; and 
mp=0.8. The Euclidean distance σ  in the NSGA 
is fixed to 0.2. 
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Fig. 4. Evolution of the training criterion versus 

neural network inputs 
 

 
Fig. 5. Evolution of the set point, output and the  

control 
 

 
Fig. 6. Pareto surface after 100 measures 

 
In order to compare the Pareto surface obtained 
by the NSGA and the WARGA, we have 
considered a population with 10 individuals. 
The Pareto surfaces obtained by the NSGA and 
the WARGA with only one generation are 
shown respectively in figures 7 and 8. The 
Pareto surfaces obtained by the NSGA and the 
WARGA with 10, 30, 50 and 100 generations 
are shown respectively in figures 9 and 10. It’s 
clear from these figures that non dominated 
solutions are not uniformly distributed on this 

surface because the performance criteria J1 and 
J2 are non convex.  
It can be observed, from figures 7 and 8, that the 
GA approach can leads to a low performance 
criteria by using only one generation. The 
increase of the maximal number of generations, 
at each simple time, leads to the closeness of the 
solutions to the ideal solution. Therefore, many 
points in the Pareto optimal set are replicated. 
Evolution of the set point, the output and the 
control signals obtained with the NSGA and the 
WARGA are shown respectively in figure 11 
and 12. In these cases, thirty generations are 
used at each sampling period time to carry out 
the optimal control.  
The Number of non dominated solutions versus 
generations obtained with the NSGA and the 
WARGA is given in figure 13. It can be 
observed that the number of non dominated 
solutions increases as the number of 
generations increases. One can see also from 
figure 13, that the WARGA method has out 
performed the NSGA method in terms of the 
number of non dominated solutions at each 
generation. 
 

 

5. CONCLUSION 
 
This paper described the predictive control of 
nonlinear systems. The system is represented 
by a set of non linear models, where each 
model corresponds to a possible operating point 
of the system. The control law is computed by 
optimizing a set of performance criteria. Each 
criterion is given in taking into account the 
local ANNs model and the input constraints. 
The comparative study of three methods used to 
optimize the multi objective problem, has 
demonstrated the superiority of the WARGA 
method. Indeed, non dominated solutions 
located in concave regions of the trade-off 
surface cannot be obtained by the weighted sum 
method, because their cost is sub-optimal, and 
the NSGA method can be particularly sensitive 
to the setting of the σ  parameter, which 
depends on the problem.  The WARGA method 
can be easily implemented and it can find non 
dominated solutions in a single run. Moreover, 
one can use a non standard cost function 
because the GA optimizers don’t require the 
calculation of the derivative of the performance 
criteria. 
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Fig. 7. Pareto surface obtained by the NSGA  
 

 
Fig. 8. Pareto surface obtained by the WARGA  

 

 
Fig. 9. Pareto surface obtained by the (NSGA) 

 
Fig. 10. Pareto surface obtained by the (WARGA) 

 
 

Fig. 11. Evolution of the set point, output and the 
control (NSGA) 

 

 
Fig. 12. Evolution of the set point, output and the 

control (WARGA) 
 

 
Fig. 13. Number of non dominated solutions versus 

generations 
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