
CEAI, Vol.15, No.1 pp. 22-32, 2013 Printed in Romania

Efficient Solutions for OCR Text Remote Correction in
Content Conversion Systems

Costin-Anton Boiangiu, Alexandru Topliceanu, Ion Bucur

University “Politehnica” of Bucharest, Splaiul Independenţei 313,

Bucharest, 060042, Romania
(e-mail: {costin.boiangiu,alexandru.topliceanu}@cti.pub.ro, ion.bucur@cs.pub.ro)

Abstract: This paper describes a collection of algorithms for detecting text areas in document images
using morphological operators, text clustering using geometrical text measurements and efficient image
coding for fast remote correction in automatic content conversion systems Text characteristics are
automatically discovered and used to filter out all non-text areas in the image. All the algorithms were
implemented and tested on a representative set of test images obtained by scanning newspapers, books
and magazines. The document image page clustering uses a measure of normalized text font
resemblance. The approach makes use solely of the geometrical characteristics of characters, ignoring
information regarding context or character recognition.
Keywords: automatic content conversion, image morphology, text clustering, text detection, text
extraction, text remote correction, font resemblance, OCR

1. INTRODUCTION

Content conversion systems are generally aimed at the
extraction of the informational content from various types of
media, usually printed form, and convert this information into
a digital format, with numerous advantages. Content
conversion processes generate easy-to-find, available
information from an otherwise limited starting point. For
example, a book in a library somewhere in the world is a lot
more difficult to access that its digital version published on
the Internet.

Content conversion processes involve complex operations
with a high degree of flexibility, among many other
requirements, such as computing power and large scale
storage solutions. The need for high algorithm flexibility
comes from the variability of the input, as no two input
documents are the same. Some documents may require a
special set of parameters for color conversion or other
operations (Boiangiu et al. 2009) such as page layout
detection, extraction of paragraphs, line detection etc. But
however flexible these content conversion algorithms may
be, errors will continue to appear, as only a small fraction of
documents are available for testing, and new scenarios with
specific issues appear constantly.

A complete content conversion system offers the benefit of
Quality Assurance (QA) of the processed documents. The
QA process comes in the form of a remote correction activity,
consisting of documents that have been automatically
processed being sent to another location, where human
operators ensure the correctness of the results. The QA
process however, comes with some added difficulties mainly
regarding the size of the documents to be transferred
(sometimes documents have to be sent to another continent
for verification). In order to address the problem of document
size and network bandwidth usage, the files to be sent have to

undergo a number of preparation stages. This paper deals
with the most important issues involved in the remote
correction of documents resulting from a content conversion
process, and proposes a number of solutions backed by
results obtained from testing.

There is a very high demand for automated systems of
detecting text areas in images (Harman et al. 1995), no matter
the way these images have been obtained. There are multiple
reasons for this, the one that drove our research was the
prospect of using an optimized algorithm for compression in
portions of the image that are text-only so that the OCR text
can be send to correction alongside with the target image in a
remote QA process. The challenge is to discern the text areas
from images, symbols and other printing specific non-text
glyphs. All text must be located, no matter the font type, size,
and weight. We assume that the document images are not
skewed, otherwise a deskew operation (Chen et al. 1994;
Raducanu et al. 2011) is required as a preprocessing phase.

2. TEXT RECOGNITION ALGORITHM

The proposed algorithm is based on the observation that all
the text in a document image has a limited number of
reoccurring heights, due to the use of the same dominant
fonts. As opposed to text, the composing connected elements
of an image can have various unique heights and widths. Text
characters and words fall within a certain range of heights,
given by the text type, set height and font used. The
algorithm discovers the most frequent heights in the elements
of the image and states that those elements are words,
whereas singular heights correspond to images (Chen et al.
1996; Das et Al. 2001). This gives the criteria by which to
clear the image portions of the document leaving only the
text areas where post-processing can be performed.

The algorithm works in 7 steps. An assumption is made that
input images are high resolution (anywhere from 2K by 2K

mailto:@cti.pub.ro
mailto:ion.bucur@cs.pub.ro)

CONTROL ENGINEERING AND APPLIED INFORMATICS 23

up to 10K by 10K pixels or more) image scans of documents.
Images are binarized: text and image pixels are classified as
foreground and as a result marked as black whilst white
pixels are considered as background. Adapters to this format
of input data are easy to implement, whatever the initial file
type.

Fig. 1. Initial test image from a newspaper.

The first step consists of using morphological transforms
(Chen et al. 1994; Thanh et al. 2007) to merge black pixels –
fig. 2. The aim is to create as many large connected objects as
possible and to eliminate possible rebel pixels. An opening
transform with a horizontal line structural element combined
with a closing transform by a small disk-shaped structural
element is used for that purpose. The opening is done with a /10 pixels width by 1 pixel height rectangle structural
element which gives the result of binding letters of a word
into a single element. Linking of words is sometimes
obtained, due to small height fonts, but this does not change
the result of the algorithm. The closing transform uses a /100 pixels disk-shaped structural element (where represents the scanning resolution measured in Dots-
Per-Inch along the X-axis) and is important because it splits
the accidentally connected elements, especially when words
are linked with images through narrow isthmuses. If a word
was to be connected to an image after opening, the resulting
element would be interpreted as an image and filtered out in
our algorithm. In case of images, this step results in very
large black objects. As for text areas, long parallel thick lines
representing words and sentences are obtained. These long

parallel lines of relative equal height that represent the text
areas are the desired result and the rest of the algorithm
identifies them.

Fig. 2. Morphological transformations applied to the image in
step 1.

Steps two and three consist of labeling each connected black
element in the image – Fig. 3, then calculating widths and
heights for each element. These metrics are rounded so as to
account for the slightly variable element widths resulted in
the previous step. It is important to note that the width and
height of the enclosing ellipse is measured for each element,
not the actual width and height of that element. This allows
for a better clustering of similar elements.

Step four is where the frequency by which element heights
appear is counted. For each individual height we count all the
elements that have that approximate height. This is very
important in our algorithm as we will filter the elements with
heights of a lower rate of appearance and keep only the
elements that have a common (high rate of appearance)
height. In our research we have obtained the optimal results
when using a threshold of 5. If we found more that 5
elements with the same height we state that they correspond
to words and keep them in the resulting image. This is done
in phase 5. Phase 6 finds the connected elements that haven't
passed our predefined threshold and erases them (makes them
part of the background), leaving only the text areas colored in
black. We call this a bit mask; an example of this is in fig. 4.

24 CONTROL ENGINEERING AND APPLIED INFORMATICS

Fig. 3. Labeling of connected elements in step 2. Each
element has a different color.

Before applying the previously computed mask to the initial
image so as to return an image containing only text, we have
observed that isolated small elements have been preserved by
the filtering phase. This is due to the fact that scanned articles
are tainted with Gaussian noise. Noisy elements of equal
height can appear and might pass the previous filters. These
could be filtered out by increasing the threshold in the
previous step, but that would risk eliminating words with
special low-occurring font like titles, subtitles and footers.
The decision was to keep the threshold low and to eliminate
these unwanted elements through the use of morphological
transforms. An extra step in the algorithm has been added for
this. It was found that the best combination to eliminate them
and to preserve the form of the wanted elements (e.g. the long
thick lines representing text) is a sequence of close and
erodes transforms using the same square structural element of /30 pixels in height.

The seventh and final phase consists in applying the mask to
the initial image. Given that both the mask and the initial
image are represented as arrays of Boolean values (binary
images), a simple method of applying the mask by using the
AND logical operator between corresponding pixels in the
two images was used.

Fig. 4. Bit mask obtained in step 6. All images have been
eliminated.

2.1. Text Recognition Results

In the testing phase, it was used a relatively small set of 100
test images covering various types of scanned documents:
newspaper front-pages, newspaper articles where text is
dominant, magazine pages with high concentration of images
and small areas of text, receipts, etc. These image documents
are binary, have small degrees of noise and negligible skew.

The algorithm was capable of locating columns of text and
removing large images – Fig. 5. The algorithm’s many
parameters described in the above section can be easily
adapted for various cases. However, the aim of the research
was to find optimal values for these parameters that offer
acceptable results in all test cases. For that purpose, a scoring
technique was used to evaluate the results and the parameter
set with the best average score was used in the following
processing.

Due to the nature of the algorithm, words printed in fonts and
sizes that are not used everywhere else in the image are
removed. Sadly this includes parts of article's titles and
headers. Moreover when morphological transforms blend text
areas with images, the result is filtered by the algorithm and
the corresponding text does not appear in the finished image.

CONTROL ENGINEERING AND APPLIED INFORMATICS 25

This behavior can be dimmed by modifying the closing
transform’s structural element from the first phase, lowering
its width. This improves the results for some images but
worsens results for other images. Tests have revealed that the
optimal dimensions for the structural element are /10
pixels width by 1 pixels height.

Fig. 5. Bit mask applied to the initial image in step 7. Image
contains only text areas.

Image elements are successfully removed by the presented
solution, yet small debris from these images remain after the
morphological operators in the first stage. This happens
because the morphological opening transform does not
manage to blend all the pixels in an image into one connected
block. Some of these elements are eliminated by closing the
image in the first step, others are filtered in the sixth phase,
but further filtering is needed. Thus, an extra morphological
close transform was introduced on the image after the sixth
phase.

Another issue that appeared was the poor quality of the
resulted text. The text areas are located correctly, but their
width and height does not take into account that some letters
might have accents, or some letters like f, t, p and q might be
larger than the element they have been blended into. A simple
solution to this problem is to morphologically dilate the
connected elements in the bit mask resulted in phase 6. A
rounded structural element with a 10 pixels diameter was
found to be optimal, as it had to keep neighboring elements
separated.

For document images where pictures are dominant, such as
magazine front-page scans, results are generally poor.
Because of the fact that images are blended with the text in
these scans, our algorithm merges the text areas with picture
areas and then filters them all. Some text zones are
discovered but they are unintelligible and sparse. Also due to
the fact that magazines use color photos in their front pages,
the result of the binarization process is that some text may not
appear black with white background, but white with black
background. In the presented algorithm we have assumed that
all text and images are black and the background is white.

To minimize the presented inconveniences in the text
detection and extraction algorithm a text clustering scheme is
employed using the freshly obtained results (Yu 2000; Hull
1997). It is up to this clustering approach to recover text
information in a consistent manner so that different text lines
and paragraphs are segmented correctly and that the entire
text regions are extracted and/or marked in the image.

3. TEXT NORMALIZATION AND CLUSTERING
ALGORITHM

Text normalization is a process by which text is transformed
in some way to make it consistent in a way which it might
not have been before. Text normalization is often performed
before text is processed in some way, such as generating
synthesized speech, automated language translation, storage
in a database, or comparison. Several algorithms were used to
achieve this: binary image transformation (Boiangiu et al.
2011), connected components labeling, merge filter, width
filter, inside filter (Boiangiu et al. 2008a, b).

After the text normalization process the similarity detection
begins. The points of resemblance targeted are the following:
font size, font boldness, line spacing, font italics.

Image preparation is necessary in order to label the connected
components. In the end, each component is colored
differently for better a view. In fig. 6 is represented a test
image and the connected components with their initial
bounding boxes.

Fig. 6. Initial image and connected components.

3.1 Inside Filter

Scanned documents usually have noise problems, lower
quality and so on. This can generate a series of unconnected
letters, spots of color and so on. To be able to properly
analyze the text all letters must be correctly identified and as
much as possible the noise must be eliminated.

The “inside filter” checks whether a component is inside
another. In fig. 7 are presented some results of this filter
execution applied onto a common set of “non-ideal” scanned
characters.

26 CONTROL ENGINEERING AND APPLIED INFORMATICS

All filters make use of the component's bounding box (the
enclosing rectangle). The edges are tested to check for
coverage.

Fig. 7. Corrupted letters, initial connected components and
connected components after inside filter.

3.2. Merge Filter

An improvement was made by applying the inside filter, but
the letters still aren't completely defined. Merge filter checks
if two or more components are connected vertically. In our
example, the letter C is split in 3 components divided
vertically.

The algorithm makes use of the average letter height. A
margin of 10% of that average is used to merge the
components together.

Fig. 8. Components after “merge filter”.

3.3 Width Filter

Noise cancellation is another important step in normalization.
The bounding box of each component is computed. If the
width to height ratio is higher than 80% the component is
removed as noise. Punctuation marks are often removed as
well as a result. Once all bounding boxes have been
computed, components extracted text analysis can begin.

3.4 Similarity Measure between Texts: Font Size

In order to determine the font size in a text, a histogram of
the heights of connected components within the document is
created. For the resulting histogram, is counted the number of
peaks. According to this count, some conclusions can be
drawn:

• If the histogram contains less than two peaks, it
follows that the text is written in capital letters (font
capital letters are usually all the same height).

• Otherwise, the text is written in mixed capital and
lower case letters. Histogram peaks represent:
capital letters, lower case letters and punctuation.
Normally, a mixed-case text will contain
proportionally more lower case letters than higher

case letters, thus, the histogram’s highest peak will
belong to lower case letters.

3.5. Similarity Measure between Texts: Font Boldness

Two font boldness detection methods have been
implemented, both generating robust results.

The first of these computes the ratio between the number of
pixels that belong to the contour of a connected component
and the total number of pixels belonging to the connected
component. Using these percentages, a histogram is created
and the most frequent item is selected.

The second implemented method that test for font boldness is
the “crosshair” method. This method actually measures the
width of each letter. For each black pixel inside the bounding
box for each connected component, is measured the vertical
and horizontal segments that pass through (and intersect each
other in) this pixel. In order to measure the length of the
vertical segment for the pixel, we check the color of the pixel
directly above it. If black, we increment the length counter
and check the next pixel above. This continues until we
encounter a white pixel. The horizontal segment is measured
in a similar manner. Of the two resulting segments, the
shorter one is chosen. With these values a histogram is built
for each connected component, finally obtaining the width for
this letter (the most frequent item in the histogram). Finally,
we create a histogram of pen widths for each letter in the
document and select the one with the highest frequency.

After applying this algorithm for two documents, the higher
resulting value marks the document with the bolder text.

3.6. Similarity Measure between Texts: Font Italics

Determining the italics characteristics of font can be made
using two main algorithms: width and chain. The choice was
the width method due to the importance of the bounding box.

Typically italic font has an inclination degree of 16. For this
reason we measure the width of the letter after applying a
rotation of 16 and -16 degrees. Italic characters are wider
than non-italic one, so those letters that are thinner after the
rotation can be categorized as italic. The chain algorithm
compares the longest vertical line in the original character
and in the rotated one. If the length is smaller after the
rotation, then the character was italic.

Fig. 9. Results of italic measurements: computed percentages
of 100% (upper) and respectively 53% (lower).

CONTROL ENGINEERING AND APPLIED INFORMATICS 27

3.7. Line Spacing

Spacing between two lines was measured by averaging the
distance between entities found on consecutive lines and
approximately on the same column (one beneath the other).

Initially, the average height of connected components within
the document was computed, and using this average, the line
to which each component belongs was determined.

Next, the connected components were sorted in increasing
order of the size of their bounding box’s lower side. If the
vertical distance between two bounding box bottom segments
is greater than the computed average height, we have passed
on to another line of text.

Connected component coordinates on each line of text are
kept in the lines of a matrix. Components are tested if they
are approximately on the same column by parsing the matrix
lines two by two and checking the x axis coordinates of their
bounding boxes. If these are not approximately on the same
column, the distance is discounted when computing the
average distance.

3.8. The Font Resemblance Algorithm

The bounding box coordinates are computed for each
connected component in every image.

Next, for each image is performed a count of the number of
peaks in the height histogram and decide whether the text is
written in all upper case or mixed upper case and lower case,
determine the height of a lower case letter and/or of a upper
case letter and line spacing.

A similarity ratio is computed between the two images
according to results computed thus far. If this ratio is greater
than 50%, then the two boldness tests are applied: based on
the contour of each connected component and crosshair;
otherwise it is determined that the two fonts are too different
and no further tests are applied.

Fig. 10. Input texts for comparison (Test 1).

Table 1. The algorithm applied on an image with bold
text and a image with normal text.

 Text
Up

Text
Down Conclusions

Number of
peaks 3 4 Low caps &

high caps
Low caps

& high caps
Low Caps

(pixels) 21 24

 Text
Up

Text
Down Conclusions

High Caps
(pixels) 28 30

Line Spacing
(pixels) 33 30

Font size
match 90.58%

Boldness
contour (%) 100 70 Image 2 has bold text

Boldness
crosshair
(pixels)

2 2

Fig. 11. Input texts for comparison (Test 2).

Table 2. The algorithm applied on an image written only
with high caps and an image with low and high caps.

 Text
Up

Text
Down Conclusions

Number of
peaks 1 2

High
caps
only

Low caps
& high
caps

Low Caps
(pixels) 0 27

High Caps
(pixels) 36 33

Line Spacing
(pixels) 23 30

Font size
match 56.11%

Boldness
contour (%) - -

Boldness
crosshair
(pixels)

- -

4. ONLY-TEXT IMAGE COMPRESSION METHODS

A highly effective solution to reduce the size of image data
for remote correction purposes is to use a well-established
format that has a compression profile suited for the task at
hand. In the following section, the most relevant image
compression formats will be detailed, compared and also
combined with some image configurations that will improve
compression.

28 CONTROL ENGINEERING AND APPLIED INFORMATICS

At this point in the presented research using the text
extraction algorithm that was presented, some text areas can
be extracted. In order to fully format the text and reject the
unwanted data, the text extracted is clustered using the
algorithm presented in the second stage.

As a result, after the two presented approaches are run, valid
cluster of texts are found on the image. An OCR engine is run
using the selected areas and in order to reach our initial goal
(i.e. to remote correct the OCR-engine output) is needed that
the content conversion remote operator to receive fast and
accurate both the OCR result and the original text found in
the image. The image text should be readable and should be
transferred very fast because the remote correction is a time-
critical process. This is why the entire document (which may
contain huge collections of scanned pages at 10K x 10K
points or more per each page) cannot be sent remote, instead,
a lower resolution image which contains only the text
information is sent instead. The problem that arises now is
how to compress (eventually preprocess) the image so that it
is still readable remote, it transfers fast and decompresses
almost instantaneously so that the remote operator can be
productive in his/her text correction task.

In order to compare results obtained by different compression
approaches, there have been considered the size of the image
after compression (“compressed size”), and the time the
image takes to load/decompress (“load time”).

In order to determine best compression settings, the input
images have been chosen to be of 3 types: true-color 24-BPP,
grayscale 8-BPP and black & white 2-BPP. The image
content is significant to our purpose, extracted from various
British Library books and newspapers. Several tests were
performed with the original images cropped to the union of
the bounding rectangles of the text areas and with the
background erased to a dominant color:
• Color images:

o CompuServe GIF : no extra settings
o JPEG : at “normal” compression
o PNG : at “best” compression
o TIFF : LZW
o 256 and 16 Color PNG : reduce number of

colors to 256 and 16 and compress using PNG
o 256 Color JPEG Lossless: reduce number of

colors to 256 and compress using JPEG
Lossless

o 16 Color GIF : reduce number of colors to 16
and compress using GIF

• Grayscale images:
o GIF
o JPEG
o TIFF LZW
o 16 Color PNG
o 16 Color GIF
o 16 Color JPEG

• Black & White images:
o GIF
o PNG/TIFF Group Fax 4
o TIFF LZW

o JBIG2 (just as a compression ratio reference)

Unfortunately, the JPEG 2000 format (which for sure would
have proved to be the most space efficient for a desired
quality by all of the image compression formats) has not been
included between candidates. The reason for this is that JPEG
2000 despite the fact that it is a very modern and extremely
strong image compression algorithm; it is also a very slow
one. The compression is very time consuming but what
bothers most in this case is that the decompression time is
unacceptable high for a system that should ensure fast OCR
remote correction.

CONTROL ENGINEERING AND APPLIED INFORMATICS 29

Below are presented results for significant images of the 3
types and the corresponding compressions.

4.1. True-Color Remarks

• The compression time for PNG is the largest of all
methods.

• PNG and GIF work a lot better on images with a reduced
number of colors, but still easily readable.

• The worst results are obtained using TIFF-LZW.
• The best results, both in loading time and disk space

came from the preprocessed images, using color
reduction. As it can be seen in the graphs, the results
from 16-Color PNG and 256-Color JPEG Lossless are
the best for Color images, but images in 256-Colors are
of slightly higher quality. The 16-Color PNG has the
lowest deflate time of all methods, and can be used if
speed is more important than quality.

• Depending on the need, a choice can be made between
16-Color PNG, 256-Color JPEG lossless and 16-Color
GIF, according to the graphs.

4.2. Grayscale Remarks:

• In the case of grayscale images, the color reduction does
not improve the compression and speed capabilities of
other formats beyond those of the standard JPEG.

• The PNG compression time for files of size similar to the
tested images (around 60-70 MPixels) is very high, and
so the unprocessed PNG compression method has not
been included in this comparison.

• The worst results are those of TIFF-LZW and GIF
formats.

• The best overall results are obtained using standard
JPEG compression. Again, PNG has the fastest load
time, but occupies more disk space. Reducing colors to
16 and compressing by JPEG does not improve

30 CONTROL ENGINEERING AND APPLIED INFORMATICS

performance, and so the best options are standard JPEG
and 16-Color PNG.

4.3. Black & White Remarks

• Because JBIG2 is quite an uncommon format, the
computation of the loading time is not available for this
format.

• The worst results are obtained using GIF.
• If the compatibility of the JBIG2 is not a problem, this

format is the most space-effective. Unfortunately, the
compression and decompression time is much higher
than any of the other candidates, fact that is making
JBIG2 only a reference of compression ratio but
unusable in fast remote correction in content conversion
projects. The alternative is to use PNG, as it has a fast
loading speed and also the lowest size from the
remaining candidates. So, the best results for B&W are
JBIG2 and PNG.

Overall, on our small test benchmark comprised of about 100
images from all kind of publications a gain of about 65% in
compressed size when comparing the proposed approach with
the full image coding using JPEG standard with average
quality (current digitization industry standard). This may
depend in a real-life scenario of the average document area
occupied by illustrations, text compactness (compact text
may result in smaller areas to be sent) and contrast (the better
the contrast, the fewer colors may be used in palletized
conversions).

5. CONCLUSIONS AND FUTURE WORK

The algorithms presented in this paper offers a solution to
isolate text from scanned document images, a measure for
classification and clustering of text lines and a proposal for a
simple and efficient compression scheme that enables fast
and reliable remote correction of OCR-resulted text. After all
the steps of the algorithm are executed it may result in a
significant reduction (almost two thirds in our benchmark
test) of the data size to be sent in the remote OCR correction,
with virtually indistinguishable processing time penalty.

The primary intent of the text selection algorithm is to
eliminate images and other non-text areas in the printed
document. This specification is accomplished but at the cost
of sometimes eliminating some areas of text, especially
headers, titles and footers. Isolated words are also sometimes
filtered out. Some of this problems and misclassifications
may be solved in the future by employing an improved font
resemblance and clustering scheme.

ACKNOWLEDGMENTS

The work presented in this paper was funded by the Sectorial
Operational Programme Human Resources Development
2007-2013 of the Romanian Ministry of Labour, Family and
Social Protection through the financial agreement
POSDRU/89/1.5/S/62557.

REFERENCES

Boiangiu, C.A., Spataru A.C., Dvornic, A.I. and Cananau
D.C. (2008). Normalized Text Font Resemblance

Method Aimed at Document Image Page Clustering”.
WSEAS Transactions on Computers, Issue 7, Volume 7,
pp. 1091–1100, ISSN: 1109-2750.

Boiangiu, C.A., Spataru, A.C., Dvornic, A.I., and Cananau,
D.C. (2008). Automatic Text Clustering and
Classification Based on Font Geometrical
Characteristics, Proceedings of the 9th WSEAS
International Conference on Automation and
Information, WSEAS Press, pp. 468 – 473, Bucharest,
Romania, ISBN 978-960-6766-77-0, ISSN 1790-5117

Boiangiu, C.A. and Cananau, D.C. (2009). Combined
Approaches in Automatic Page Clustering for Content
Conversion, chapter in DAAAM International Scientific
Book 2009, pp. 289-304, ISSN 1726-9687, ISBN 978-3-
901509-69-8 Editor: Brako Katalinic, Vienna.

Boiangiu, C.A., Olteanu, A., Stefanescu, A., Rosner, D.,
Tapus, N. and Andreica, M. (2011), Local Thresholding
Algorithm Based on Variable Window Size Statistics,
Proceedings CSCS-18, The 18-th International
Conference on Control Systems and Computer Science,
Bucharest, Romania, Volume 2, pp. 647-652, Politehnica
Press, ISSN: 2066-4451.

Chen, F.R., Bloomberg, D.S. and Wilcox, L.D. (1996).
Detection and Location of Multi-Character Sequences in
Lines of Imaged Text. Journal of Electronic Imaging,
Vol. 5, pp. 37-49.

Chen, S. and Haralick R.M. (1994), An Automatic Algorithm
for Text Skew Estimation in Document Images Using
Recursive Morphological Transforms, Image Processing,
1994. Proceedings ICIP-94., IEEE International
Conference, Vol. 1, pp. 139 – 143.

Das, A.K. and Chanda B. (2001). A fast algorithm for skew
detection of document images using morphology, The
International Journal on Document Analysis and
Recognition, Springer-Verlag.

Harman, D., Buckley, C., Callan, J., Dumais, S., Lewis, D.,
Robertson, S., Smeaton, A., Jones, K.S., Tong, R.,
Salton, G. and Damashek, M. (1995). Performance of
Text Retrieval Systems. Science, pp. 1417-1420.

Hull, J.J. and Cullen, J.F. (1997). Document Image Similarity
and Equivalence Detection. Proceedings 4th
International Conference on Document Analysis and
Recognition, ICDAR'97, Ulm, Germany, Vol. 1, pp. 308-
312.

Raducanu, B., Boiangiu, C.A., Olteanu, A., Ștefănescu, A.,
Pop, F. and Bucur, I. (2011) Skew Detection Using the
Radon Transform. Proceedings CSCS-18, The 18-th
International Conference on Control Systems and
Computer Science, Bucharest, Romania, Volume 2, pp.
653-657, Politehnica Press, ISSN: 2066-4451.

Thanh, N.D., Binh, V.D., Mi, N.T.T., and Giang, N.T.
 (2007). A Robust Document Skew Estimation
Algorithm Using Mathematical Morphology. The 19th
IEEE International Conference on Tools with Artificial
Intelligence, ICTAI ’07, pp. 496-503.

Yu, Z. (2000). Similarity measure of text images, M.Sc
Thesis, School of Computing, National University of
Singapore.

CONTROL ENGINEERING AND APPLIED INFORMATICS 31

Appendix A. True-Color Image Compression Results.

Image
Name

Color
Space Format Uncompressed

size
Compression

method
Deflate
time (s)

Compressed
size (MB)

Compression
ratio

colorA

(1)
Color

24BPP
3328 x
4992 47.53 MB GIF 0.328 2 4%

 JPEG 0.609 0.736 2%

 PNG 1.641 4.78 10%

 TIFF LZW 0.672 17.09 35%

 256 Color PNG 0.172 1.49 3%

 16 Color PNG 0.125 0.587 1%

 256 Color JPEG 0.625 0.486 1%

 16 Color GIF 0.297 0.748 2%
colorB

(1)
Color

24BPP
1505 x
2500 10.77 MB GIF 0.188 1.26 10%

 JPEG 0.156 0.222 2%

 PNG 0.656 4.52 50%

 TIFF LZW 0.406 9.11 84%

 256 Color PNG 0.063 1.12 10%

 16 Color PNG 0.046 0.405 3%

 256 Color JPEG 0.25 0.232 2%

 16 Color GIF 0.078 0.461 4%
colorA

(15)
Color

24BPP
3328 x
4992 47.53 MB GIF 0.438 3.31 6%

 JPEG 0.766 1 2%

 PNG 1.907 7.8 16%

 TIFF LZW 0.891 28.3 59%

 256 Color PNG 0.313 2.5 5%

 16 Color PNG 0.094 0.939 2%

 256 Color JPEG 0.703 0.737 1.50%

 16 Color GIF 0.485 1.11 2%
colorB

(6)
Color

24BPP
1691 x
2555 12.37 MB GIF 0.109 0.88 20%

 JPEG 0.187 0.258 2%

 PNG 0.391 2.75 22%

 TIFF LZW 0.328 6.11 49%

 256 Color PNG 0.047 0.757 6%

 16 Color PNG 0.031 0.244 2%

 256 Color JPEG 0.188 0.259 2.00%

 16 Color GIF 0.062 0.252 2%
colorA

(18)
Color

24BPP
3328 x
4992 47.53 MB GIF 0.344 1.15 2%

 JPEG 0.688 0.591 1%

 PNG 1.39 2.71 5%

 TIFF LZW 0.875 10.42 21%

 256 Color PNG 0.235 0.889 2%

 16 Color PNG 0.109 0.274 < 1%

32 CONTROL ENGINEERING AND APPLIED INFORMATICS

Image
Name

Color
Space Format Uncompressed

size
Compression

method
Deflate
time (s)

Compressed
size (MB)

Compression
ratio

 256 Color JPEG 0.609 0.353 < 1%

 16 Color GIF 0.406 0.401 1%

Appendix B. Grayscale Image Compression Results.

Image
Name

Color
Space Format Uncompressed

size
Compression

method
Deflate
time (s)

Compressed
size (MB)

Compression
ratio

gray (1) Grayscale
8BPP

7130 x
8765 59.6 MB GIF 4.343 42.77 70%

 JPEG 2.531 4.04 6%

 TIFF LZW 3.422 59.6 100%

 16 Color PNG 0.625 6.44 10%

 16 Color GIF 1.938 7.16 12%

 16 Color JPEG 2.391 4.2 7%

gray (2) Grayscale
8BPP

7204 x
8744 60 MB GIF 4.297 45.29 75%

 JPEG 2.656 4.25 7%

 TIFF LZW 2.109 45.34 75%

 16 Color PNG 0.672 7.27 12%

 16 Color GIF 2.016 8.03 13%

 16 Color JPEG 2.656 4.55 7%

gray (5) Grayscale
8BPP

7164 x
8797 60 MB GIF 4.265 45.73 76%

 JPEG 2.703 4.25 7%

 TIFF LZW 1.906 45.82 76%

 16 Color PNG 0.75 7.75 13%

 16 Color GIF 2.109 8.54 14%

 16 Color JPEG 2.547 4.59 7%

Appendix C. Binary Image Compression Results.

Image
Name

Color
Space Format Uncompressed

size
Compression

method
Deflate
time (s)

Compressed
size (MB)

Compression
ratio

bw (1) BW

2BPP
4634 x
6461 3.57 GIF 0.734 1.29 36%

 PNG 0.156 0.919 25%

 TIFF LZW 0.141 1.19 33%

 JBIG2 N/A 0.456 12%

bw (2) BW
2BPP

3504 x
4960 2.08 GIF 0.313 0.534 25%

 PNG 0.063 0.381 18%

 TIFF LZW 0.047 0.511 24%

 JBIG2 N/A 0.183 8%

bw (8) BW
2BPP

4944 x
6249 3.69 GIF 0.766 0.844 22%

 PNG 0.062 0.597 16%

 TIFF LZW 0.078 0.796 20%

 JBIG2 N/A 0.281 7%

