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Abstract: This paper describes a collection of algorithms for detecting text areas in document images 
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1. INTRODUCTION 

Content conversion systems are generally aimed at the 
extraction of the informational content from various types of 
media, usually printed form, and convert this information into 
a digital format, with numerous advantages. Content 
conversion processes generate easy-to-find, available 
information from an otherwise limited starting point. For 
example, a book in a library somewhere in the world is a lot 
more difficult to access that its digital version published on 
the Internet. 

Content conversion processes involve complex operations 
with a high degree of flexibility, among many other 
requirements, such as computing power and large scale 
storage solutions. The need for high algorithm flexibility 
comes from the variability of the input, as no two input 
documents are the same. Some documents may require a 
special set of parameters for color conversion or other 
operations (Boiangiu et al. 2009) such as page layout 
detection, extraction of paragraphs, line detection etc. But 
however flexible these content conversion algorithms may 
be, errors will continue to appear, as only a small fraction of 
documents are available for testing, and new scenarios with 
specific issues appear constantly. 

A complete content conversion system offers the benefit of 
Quality Assurance (QA) of the processed documents. The 
QA process comes in the form of a remote correction activity, 
consisting of documents that have been automatically 
processed being sent to another location, where human 
operators ensure the correctness of the results. The QA 
process however, comes with some added difficulties mainly 
regarding the size of the documents to be transferred 
(sometimes documents have to be sent to another continent 
for verification). In order to address the problem of document 
size and network bandwidth usage, the files to be sent have to 

undergo a number of preparation stages. This paper deals 
with the most important issues involved in the remote 
correction of documents resulting from a content conversion 
process, and proposes a number of solutions backed by 
results obtained from testing. 

There is a very high demand for automated systems of 
detecting text areas in images (Harman et al. 1995), no matter 
the way these images have been obtained. There are multiple 
reasons for this, the one that drove our research was the 
prospect of using an optimized algorithm for compression in 
portions of the image that are text-only so that the OCR text 
can be send to correction alongside with the target image in a 
remote QA process. The challenge is to discern the text areas 
from images, symbols and other printing specific non-text 
glyphs. All text must be located, no matter the font type, size, 
and weight. We assume that the document images are not 
skewed, otherwise a deskew operation (Chen et al. 1994; 
Raducanu et al. 2011) is required as a preprocessing phase. 

2. TEXT RECOGNITION ALGORITHM 

The proposed algorithm is based on the observation that all 
the text in a document image has a limited number of 
reoccurring heights, due to the use of the same dominant 
fonts. As opposed to text, the composing connected elements 
of an image can have various unique heights and widths. Text 
characters and words fall within a certain range of heights, 
given by the text type, set height and font used. The 
algorithm discovers the most frequent heights in the elements 
of the image and states that those elements are words, 
whereas singular heights correspond to images (Chen et al. 
1996; Das et Al. 2001). This gives the criteria by which to 
clear the image portions of the document leaving only the 
text areas where post-processing can be performed. 

The algorithm works in 7 steps. An assumption is made that 
input images are high resolution (anywhere from 2K by 2K 
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up to 10K by 10K pixels or more) image scans of documents. 
Images are binarized: text and image pixels are classified as 
foreground and as a result marked as black whilst white 
pixels are considered as background. Adapters to this format 
of input data are easy to implement, whatever the initial file 
type. 

 
Fig. 1. Initial test image from a newspaper. 

The first step consists of using morphological transforms 
(Chen et al. 1994; Thanh et al. 2007) to merge black pixels – 
fig. 2. The aim is to create as many large connected objects as 
possible and to eliminate possible rebel pixels. An opening 
transform with a horizontal line structural element combined 
with a closing transform by a small disk-shaped structural 
element is used for that purpose. The opening is done with a     /10 pixels width by 1 pixel height rectangle structural 
element which gives the result of binding letters of a word 
into a single element. Linking of words is sometimes 
obtained, due to small height fonts, but this does not change 
the result of the algorithm. The closing transform uses a     /100 pixels disk-shaped structural element (where      represents the scanning resolution measured in Dots-
Per-Inch along the X-axis) and is important because it splits 
the accidentally connected elements, especially when words 
are linked with images through narrow isthmuses. If a word 
was to be connected to an image after opening, the resulting 
element would be interpreted as an image and filtered out in 
our algorithm. In case of images, this step results in very 
large black objects. As for text areas, long parallel thick lines 
representing words and sentences are obtained. These long  

parallel lines of relative equal height that represent the text 
areas are the desired result and the rest of the algorithm 
identifies them. 

 
Fig. 2. Morphological transformations applied to the image in 
step 1. 

Steps two and three consist of labeling each connected black 
element in the image – Fig. 3, then calculating widths and 
heights for each element. These metrics are rounded so as to 
account for the slightly variable element widths resulted in 
the previous step. It is important to note that the width and 
height of the enclosing ellipse is measured for each element, 
not the actual width and height of that element. This allows 
for a better clustering of similar elements. 

Step four is where the frequency by which element heights 
appear is counted. For each individual height we count all the 
elements that have that approximate height. This is very 
important in our algorithm as we will filter the elements with 
heights of a lower rate of appearance and keep only the 
elements that have a common (high rate of appearance) 
height. In our research we have obtained the optimal results 
when using a threshold of 5. If we found more that 5 
elements with the same height we state that they correspond 
to words and keep them in the resulting image. This is done 
in phase 5. Phase 6 finds the connected elements that haven't 
passed our predefined threshold and erases them (makes them 
part of the background), leaving only the text areas colored in 
black. We call this a bit mask; an example of this is in fig. 4. 
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Fig. 3. Labeling of connected elements in step 2. Each 
element has a different color. 

Before applying the previously computed mask to the initial 
image so as to return an image containing only text, we have 
observed that isolated small elements have been preserved by 
the filtering phase. This is due to the fact that scanned articles 
are tainted with Gaussian noise. Noisy elements of equal 
height can appear and might pass the previous filters. These 
could be filtered out by increasing the threshold in the 
previous step, but that would risk eliminating words with 
special low-occurring font like titles, subtitles and footers. 
The decision was to keep the threshold low and to eliminate 
these unwanted elements through the use of morphological 
transforms. An extra step in the algorithm has been added for 
this. It was found that the best combination to eliminate them 
and to preserve the form of the wanted elements (e.g. the long 
thick lines representing text) is a sequence of close and 
erodes transforms using the same square structural element of     /30 pixels in height. 

The seventh and final phase consists in applying the mask to 
the initial image. Given that both the mask and the initial 
image are represented as arrays of Boolean values (binary 
images), a simple method of applying the mask by using the 
AND logical operator between corresponding pixels in the 
two images was used. 

 
Fig. 4. Bit mask obtained in step 6. All images have been 
eliminated. 

2.1. Text Recognition Results 

In the testing phase, it was used a relatively small set of 100 
test images covering various types of scanned documents: 
newspaper front-pages, newspaper articles where text is 
dominant, magazine pages with high concentration of images 
and small areas of text, receipts, etc. These image documents 
are binary, have small degrees of noise and negligible skew. 

The algorithm was capable of locating columns of text and 
removing large images – Fig. 5. The algorithm’s many 
parameters described in the above section can be easily 
adapted for various cases. However, the aim of the research 
was to find optimal values for these parameters that offer 
acceptable results in all test cases. For that purpose, a scoring 
technique was used to evaluate the results and the parameter 
set with the best average score was used in the following 
processing. 

Due to the nature of the algorithm, words printed in fonts and 
sizes that are not used everywhere else in the image are 
removed. Sadly this includes parts of article's titles and 
headers. Moreover when morphological transforms blend text 
areas with images, the result is filtered by the algorithm and 
the corresponding text does not appear in the finished image.  
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This behavior can be dimmed by modifying the closing 
transform’s structural element from the first phase, lowering 
its width. This improves the results for some images but 
worsens results for other images. Tests have revealed that the 
optimal dimensions for the structural element are     /10 
pixels width by 1 pixels height. 

 
Fig. 5. Bit mask applied to the initial image in step 7. Image 
contains only text areas. 

Image elements are successfully removed by the presented 
solution, yet small debris from these images remain after the 
morphological operators in the first stage. This happens 
because the morphological opening transform does not 
manage to blend all the pixels in an image into one connected 
block. Some of these elements are eliminated by closing the 
image in the first step, others are filtered in the sixth phase, 
but further filtering is needed. Thus, an extra morphological 
close transform was introduced on the image after the sixth 
phase. 

Another issue that appeared was the poor quality of the 
resulted text. The text areas are located correctly, but their 
width and height does not take into account that some letters 
might have accents, or some letters like f, t, p and q might be 
larger than the element they have been blended into. A simple 
solution to this problem is to morphologically dilate the 
connected elements in the bit mask resulted in phase 6. A 
rounded structural element with a 10 pixels diameter was 
found to be optimal, as it had to keep neighboring elements 
separated. 

For document images where pictures are dominant, such as 
magazine front-page scans, results are generally poor. 
Because of the fact that images are blended with the text in 
these scans, our algorithm merges the text areas with picture 
areas and then filters them all. Some text zones are 
discovered but they are unintelligible and sparse. Also due to 
the fact that magazines use color photos in their front pages, 
the result of the binarization process is that some text may not 
appear black with white background, but white with black 
background. In the presented algorithm we have assumed that 
all text and images are black and the background is white. 

To minimize the presented inconveniences in the text 
detection and extraction algorithm a text clustering scheme is 
employed using the freshly obtained results (Yu 2000; Hull 
1997). It is up to this clustering approach to recover text 
information in a consistent manner so that different text lines 
and paragraphs are segmented correctly and that the entire 
text regions are extracted and/or marked in the image. 

3. TEXT NORMALIZATION AND CLUSTERING 
ALGORITHM 

Text normalization is a process by which text is transformed 
in some way to make it consistent in a way which it might 
not have been before. Text normalization is often performed 
before text is processed in some way, such as generating 
synthesized speech, automated language translation, storage 
in a database, or comparison. Several algorithms were used to 
achieve this: binary image transformation (Boiangiu et al. 
2011), connected components labeling, merge filter, width 
filter, inside filter (Boiangiu et al. 2008a, b). 

After the text normalization process the similarity detection 
begins. The points of resemblance targeted are the following: 
font size, font boldness, line spacing, font italics. 

Image preparation is necessary in order to label the connected 
components. In the end, each component is colored 
differently for better a view. In fig. 6 is represented a test 
image and the connected components with their initial 
bounding boxes. 

 
Fig. 6. Initial image and connected components. 

3.1 Inside Filter 

Scanned documents usually have noise problems, lower 
quality and so on. This can generate a series of unconnected 
letters, spots of color and so on. To be able to properly 
analyze the text all letters must be correctly identified and as 
much as possible the noise must be eliminated. 

The “inside filter” checks whether a component is inside 
another. In fig. 7 are presented some results of this filter 
execution applied onto a common set of “non-ideal” scanned 
characters. 
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All filters make use of the component's bounding box (the 
enclosing rectangle). The edges are tested to check for 
coverage. 

 
Fig. 7. Corrupted letters, initial connected components and 
connected components after inside filter. 

3.2. Merge Filter 

An improvement was made by applying the inside filter, but 
the letters still aren't completely defined. Merge filter checks 
if two or more components are connected vertically. In our 
example, the letter C is split in 3 components divided 
vertically. 

The algorithm makes use of the average letter height. A 
margin of 10% of that average is used to merge the 
components together. 

 
Fig. 8. Components after “merge filter”. 

3.3 Width Filter 

Noise cancellation is another important step in normalization. 
The bounding box of each component is computed. If the 
width to height ratio is higher than 80% the component is 
removed as noise. Punctuation marks are often removed as 
well as a result. Once all bounding boxes have been 
computed, components extracted text analysis can begin. 

3.4 Similarity Measure between Texts: Font Size 

In order to determine the font size in a text, a histogram of 
the heights of connected components within the document is 
created. For the resulting histogram, is counted the number of 
peaks. According to this count, some conclusions can be 
drawn: 

• If the histogram contains less than two peaks, it 
follows that the text is written in capital letters (font 
capital letters are usually all the same height). 

• Otherwise, the text is written in mixed capital and 
lower case letters. Histogram peaks represent: 
capital letters, lower case letters and punctuation. 
Normally, a mixed-case text will contain 
proportionally more lower case letters than higher 

case letters, thus, the histogram’s highest peak will 
belong to lower case letters. 

3.5. Similarity Measure between Texts: Font Boldness 

Two font boldness detection methods have been 
implemented, both generating robust results. 

The first of these computes the ratio between the number of 
pixels that belong to the contour of a connected component 
and the total number of pixels belonging to the connected 
component. Using these percentages, a histogram is created 
and the most frequent item is selected. 

The second implemented method that test for font boldness is 
the “crosshair” method. This method actually measures the 
width of each letter. For each black pixel inside the bounding 
box for each connected component, is measured the vertical 
and horizontal segments that pass through (and intersect each 
other in) this pixel. In order to measure the length of the 
vertical segment for the pixel, we check the color of the pixel 
directly above it. If black, we increment the length counter 
and check the next pixel above. This continues until we 
encounter a white pixel. The horizontal segment is measured 
in a similar manner. Of the two resulting segments, the 
shorter one is chosen. With these values a histogram is built 
for each connected component, finally obtaining the width for 
this letter (the most frequent item in the histogram). Finally, 
we create a histogram of pen widths for each letter in the 
document and select the one with the highest frequency. 

After applying this algorithm for two documents, the higher 
resulting value marks the document with the bolder text. 

3.6. Similarity Measure between Texts: Font Italics 

Determining the italics characteristics of font can be made 
using two main algorithms: width and chain. The choice was 
the width method due to the importance of the bounding box. 

Typically italic font has an inclination degree of 16. For this 
reason we measure the width of the letter after applying a 
rotation of 16 and -16 degrees. Italic characters are wider 
than non-italic one, so those letters that are thinner after the 
rotation can be categorized as italic. The chain algorithm 
compares the longest vertical line in the original character 
and in the rotated one. If the length is smaller after the 
rotation, then the character was italic. 

 

 
Fig. 9. Results of italic measurements: computed percentages 
of 100% (upper) and respectively 53% (lower). 
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3.7. Line Spacing 

Spacing between two lines was measured by averaging the 
distance between entities found on consecutive lines and 
approximately on the same column (one beneath the other). 

Initially, the average height of connected components within 
the document was computed, and using this average, the line 
to which each component belongs was determined. 

Next, the connected components were sorted in increasing 
order of the size of their bounding box’s lower side. If the 
vertical distance between two bounding box bottom segments 
is greater than the computed average height, we have passed 
on to another line of text. 

Connected component coordinates on each line of text are 
kept in the lines of a matrix. Components are tested if they 
are approximately on the same column by parsing the matrix 
lines two by two and checking the x axis coordinates of their 
bounding boxes. If these are not approximately on the same 
column, the distance is discounted when computing the 
average distance. 

3.8. The Font Resemblance Algorithm 

The bounding box coordinates are computed for each 
connected component in every image. 

Next, for each image is performed a count of the number of 
peaks in the height histogram and decide whether the text is 
written in all upper case or mixed upper case and lower case, 
determine the height of a lower case letter and/or of a upper 
case letter and line spacing. 

A similarity ratio is computed between the two images 
according to results computed thus far. If this ratio is greater 
than 50%, then the two boldness tests are applied: based on 
the contour of each connected component and crosshair; 
otherwise it is determined that the two fonts are too different 
and no further tests are applied. 

 

 
Fig. 10. Input texts for comparison (Test 1). 

Table 1. The algorithm applied on an image with bold 
text and a image with normal text. 

 Text 
Up 

Text 
Down Conclusions 

Number of 
peaks 3 4 Low caps & 

high caps 
Low caps 

& high caps 
Low Caps 

(pixels) 21 24  

 Text 
Up 

Text 
Down Conclusions 

High Caps 
(pixels) 28 30  

Line Spacing 
(pixels) 33 30  

Font size 
match 90.58% 

Boldness 
contour (%) 100 70 Image 2 has bold text 

Boldness 
crosshair 
(pixels) 

2 2  

 

 
Fig. 11. Input texts for comparison (Test 2). 

Table 2. The algorithm applied on an image written only 
with high caps and an image with low and high caps. 

 Text 
Up 

Text 
Down Conclusions 

Number of 
peaks 1 2 

High 
caps 
only 

Low caps 
& high 
caps 

Low Caps 
(pixels) 0 27  

High Caps 
(pixels) 36 33  

Line Spacing 
(pixels) 23 30  

Font size 
match 56.11% 

Boldness 
contour (%) - -  

Boldness 
crosshair 
(pixels) 

- -  

4. ONLY-TEXT IMAGE COMPRESSION METHODS 

A highly effective solution to reduce the size of image data 
for remote correction purposes is to use a well-established 
format that has a compression profile suited for the task at 
hand. In the following section, the most relevant image 
compression formats will be detailed, compared and also 
combined with some image configurations that will improve 
compression. 
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At this point in the presented research using the text 
extraction algorithm that was presented, some text areas can 
be extracted. In order to fully format the text and reject the 
unwanted data, the text extracted is clustered using the 
algorithm presented in the second stage. 

As a result, after the two presented approaches are run, valid 
cluster of texts are found on the image. An OCR engine is run 
using the selected areas and in order to reach our initial goal 
(i.e. to remote correct the OCR-engine output) is needed that 
the content conversion remote operator to receive fast and 
accurate both the OCR result and the original text found in 
the image. The image text should be readable and should be 
transferred very fast because the remote correction is a time-
critical process. This is why the entire document (which may 
contain huge collections of scanned pages at 10K x 10K 
points or more per each page) cannot be sent remote, instead, 
a lower resolution image which contains only the text 
information is sent instead. The problem that arises now is 
how to compress (eventually preprocess) the image so that it 
is still readable remote, it transfers fast and decompresses 
almost instantaneously so that the remote operator can be 
productive in his/her text correction task. 

In order to compare results obtained by different compression 
approaches, there have been considered the size of the image 
after compression (“compressed size”), and the time the 
image takes to load/decompress (“load time”). 

In order to determine best compression settings, the input 
images have been chosen to be of 3 types: true-color 24-BPP, 
grayscale 8-BPP and black & white 2-BPP. The image 
content is significant to our purpose, extracted from various 
British Library books and newspapers. Several tests were 
performed with the original images cropped to the union of 
the bounding rectangles of the text areas and with the 
background erased to a dominant color: 
• Color images: 

o CompuServe GIF : no extra settings 
o JPEG : at “normal” compression 
o PNG : at “best” compression 
o TIFF : LZW 
o 256 and 16 Color PNG : reduce number of 

colors to 256 and 16 and compress using PNG 
o 256 Color JPEG Lossless: reduce number of 

colors to 256 and compress using JPEG 
Lossless 

o 16 Color GIF : reduce number of colors to 16 
and compress using GIF 

• Grayscale images: 
o GIF 
o JPEG 
o TIFF LZW 
o 16 Color PNG 
o 16 Color GIF 
o 16 Color JPEG 

• Black & White images: 
o GIF 
o PNG/TIFF Group Fax 4 
o TIFF LZW 

o JBIG2 (just as a compression ratio reference) 

Unfortunately, the JPEG 2000 format (which for sure would 
have proved to be the most space efficient for a desired 
quality by all of the image compression formats) has not been 
included between candidates. The reason for this is that JPEG 
2000 despite the fact that it is a very modern and extremely 
strong image compression algorithm; it is also a very slow 
one. The compression is very time consuming but what 
bothers most in this case is that the decompression time is 
unacceptable high for a system that should ensure fast OCR 
remote correction. 
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Below are presented results for significant images of the 3 
types and the corresponding compressions. 

4.1. True-Color Remarks 

• The compression time for PNG is the largest of all 
methods. 

• PNG and GIF work a lot better on images with a reduced 
number of colors, but still easily readable. 

• The worst results are obtained using TIFF-LZW. 
• The best results, both in loading time and disk space 

came from the preprocessed images, using color 
reduction. As it can be seen in the graphs, the results 
from 16-Color PNG and 256-Color JPEG Lossless are 
the best for Color images, but images in 256-Colors are 
of slightly higher quality. The 16-Color PNG has the 
lowest deflate time of all methods, and can be used if 
speed is more important than quality. 

• Depending on the need, a choice can be made between 
16-Color PNG, 256-Color JPEG lossless and 16-Color 
GIF, according to the graphs. 

4.2. Grayscale Remarks: 

• In the case of grayscale images, the color reduction does 
not improve the compression and speed capabilities of 
other formats beyond those of the standard JPEG. 

• The PNG compression time for files of size similar to the 
tested images (around 60-70 MPixels) is very high, and 
so the unprocessed PNG compression method has not 
been included in this comparison. 

• The worst results are those of TIFF-LZW and GIF 
formats. 

• The best overall results are obtained using standard 
JPEG compression. Again, PNG has the fastest load 
time, but occupies more disk space. Reducing colors to 
16 and compressing by JPEG does not improve 
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performance, and so the best options are standard JPEG 
and 16-Color PNG. 

4.3. Black & White Remarks 

• Because JBIG2 is quite an uncommon format, the 
computation of the loading time is not available for this 
format. 

• The worst results are obtained using GIF. 
• If the compatibility of the JBIG2 is not a problem, this 

format is the most space-effective. Unfortunately, the 
compression and decompression time is much higher 
than any of the other candidates, fact that is making 
JBIG2 only a reference of compression ratio but 
unusable in fast remote correction in content conversion 
projects. The alternative is to use PNG, as it has a fast 
loading speed and also the lowest size from the 
remaining candidates. So, the best results for B&W are 
JBIG2 and PNG. 

Overall, on our small test benchmark comprised of about 100 
images from all kind of publications a gain of about 65% in 
compressed size when comparing the proposed approach with 
the full image coding using JPEG standard with average 
quality (current digitization industry standard). This may 
depend in a real-life scenario of the average document area 
occupied by illustrations, text compactness (compact text 
may result in smaller areas to be sent) and contrast (the better 
the contrast, the fewer colors may be used in palletized 
conversions). 

5. CONCLUSIONS AND FUTURE WORK 

The algorithms presented in this paper offers a solution to 
isolate text from scanned document images, a measure for 
classification and clustering of text lines and a proposal for a 
simple and efficient compression scheme that enables fast 
and reliable remote correction of OCR-resulted text. After all 
the steps of the algorithm are executed it may result in a 
significant reduction (almost two thirds in our benchmark 
test) of the data size to be sent in the remote OCR correction, 
with virtually indistinguishable processing time penalty. 

The primary intent of the text selection algorithm is to 
eliminate images and other non-text areas in the printed 
document. This specification is accomplished but at the cost 
of sometimes eliminating some areas of text, especially 
headers, titles and footers. Isolated words are also sometimes 
filtered out. Some of this problems and misclassifications 
may be solved in the future by employing an improved font 
resemblance and clustering scheme. 
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Appendix A. True-Color Image Compression Results. 

Image 
Name 

Color 
Space Format Uncompressed 

size 
Compression 

method 
Deflate 
time (s) 

Compressed 
size (MB) 

Compression 
ratio 

        
colorA 

(1) 
Color 

24BPP 
3328 x 
4992 47.53 MB GIF 0.328 2 4% 

    JPEG 0.609 0.736 2% 

    PNG 1.641 4.78 10% 

    TIFF LZW 0.672 17.09 35% 

    256 Color PNG 0.172 1.49 3% 

    16 Color PNG 0.125 0.587 1% 

    256 Color JPEG 0.625 0.486 1% 

    16 Color GIF 0.297 0.748 2% 
colorB 

(1) 
Color 

24BPP 
1505 x 
2500 10.77 MB GIF 0.188 1.26 10% 

    JPEG 0.156 0.222 2% 

    PNG 0.656 4.52 50% 

    TIFF LZW 0.406 9.11 84% 

    256 Color PNG 0.063 1.12 10% 

    16 Color PNG 0.046 0.405 3% 

    256 Color JPEG 0.25 0.232 2% 

    16 Color GIF 0.078 0.461 4% 
colorA 

(15) 
Color 

24BPP 
3328 x 
4992 47.53 MB GIF 0.438 3.31 6% 

    JPEG 0.766 1 2% 

    PNG 1.907 7.8 16% 

    TIFF LZW 0.891 28.3 59% 

    256 Color PNG 0.313 2.5 5% 

    16 Color PNG 0.094 0.939 2% 

    256 Color JPEG 0.703 0.737 1.50% 

    16 Color GIF 0.485 1.11 2% 
colorB 

(6) 
Color 

24BPP 
1691 x 
2555 12.37 MB GIF 0.109 0.88 20% 

    JPEG 0.187 0.258 2% 

    PNG 0.391 2.75 22% 

    TIFF LZW 0.328 6.11 49% 

    256 Color PNG 0.047 0.757 6% 

    16 Color PNG 0.031 0.244 2% 

    256 Color JPEG 0.188 0.259 2.00% 

    16 Color GIF 0.062 0.252 2% 
colorA 

(18) 
Color 

24BPP 
3328 x 
4992 47.53 MB GIF 0.344 1.15 2% 

    JPEG 0.688 0.591 1% 

    PNG 1.39 2.71 5% 

    TIFF LZW 0.875 10.42 21% 

    256 Color PNG 0.235 0.889 2% 

    16 Color PNG 0.109 0.274 < 1% 
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Image 
Name 

Color 
Space Format Uncompressed 

size 
Compression 

method 
Deflate 
time (s) 

Compressed 
size (MB) 

Compression 
ratio 

    256 Color JPEG 0.609 0.353 < 1% 

    16 Color GIF 0.406 0.401 1% 

Appendix B. Grayscale Image Compression Results. 

Image 
Name 

Color 
Space Format Uncompressed 

size 
Compression 

method 
Deflate 
time (s) 

Compressed 
size (MB) 

Compression 
ratio 

gray (1) Grayscale 
8BPP 

7130 x 
8765 59.6 MB GIF 4.343 42.77 70% 

    JPEG 2.531 4.04 6% 

    TIFF LZW 3.422 59.6 100% 

    16 Color PNG 0.625 6.44 10% 

    16 Color GIF 1.938 7.16 12% 

    16 Color JPEG 2.391 4.2 7% 

gray (2) Grayscale 
8BPP 

7204 x 
8744 60 MB GIF 4.297 45.29 75% 

    JPEG 2.656 4.25 7% 

    TIFF LZW 2.109 45.34 75% 

    16 Color PNG 0.672 7.27 12% 

    16 Color GIF 2.016 8.03 13% 

    16 Color JPEG 2.656 4.55 7% 

gray (5) Grayscale 
8BPP 

7164 x 
8797 60 MB GIF 4.265 45.73 76% 

    JPEG 2.703 4.25 7% 

    TIFF LZW 1.906 45.82 76% 

    16 Color PNG 0.75 7.75 13% 

    16 Color GIF 2.109 8.54 14% 

    16 Color JPEG 2.547 4.59 7% 

Appendix C. Binary Image Compression Results. 

Image 
Name 

Color 
Space Format Uncompressed 

size 
Compression 

method 
Deflate 
time (s) 

Compressed 
size (MB) 

Compression 
ratio 

        
bw (1) BW 

2BPP 
4634 x 
6461 3.57 GIF 0.734 1.29 36% 

    PNG 0.156 0.919 25% 

    TIFF LZW 0.141 1.19 33% 

    JBIG2 N/A 0.456 12% 

bw (2) BW 
2BPP 

3504 x 
4960 2.08 GIF 0.313 0.534 25% 

    PNG 0.063 0.381 18% 

    TIFF LZW 0.047 0.511 24% 

    JBIG2 N/A 0.183 8% 

bw (8) BW 
2BPP 

4944 x 
6249 3.69 GIF 0.766 0.844 22% 

    PNG 0.062 0.597 16% 

    TIFF LZW 0.078 0.796 20% 

    JBIG2 N/A 0.281 7% 

 


